1
|
Rikken G, Meesters LD, Jansen PAM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, Niehues H, Smits JPH, Oláh P, Homey B, Schalkwijk J, Zeeuwen PLJM, van den Bogaard EH. Novel methodologies for host-microbe interactions and microbiome-targeted therapeutics in 3D organotypic skin models. MICROBIOME 2023; 11:227. [PMID: 37849006 PMCID: PMC10580606 DOI: 10.1186/s40168-023-01668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Following descriptive studies on skin microbiota in health and disease, mechanistic studies on the interplay between skin and microbes are on the rise, for which experimental models are in great demand. Here, we present a novel methodology for microbial colonization of organotypic skin and analysis thereof. RESULTS An inoculation device ensured a standardized application area on the stratum corneum and a homogenous distribution of bacteria, while preventing infection of the basolateral culture medium even during prolonged culture periods for up to 2 weeks at a specific culture temperature and humidity. Hereby, host-microbe interactions and antibiotic interventions could be studied, revealing diverse host responses to various skin-related bacteria and pathogens. CONCLUSIONS Our methodology is easily transferable to a wide variety of organotypic skin or mucosal models and different microbes at every cell culture facility at low costs. We envision that this study will kick-start skin microbiome studies using human organotypic skin cultures, providing a powerful alternative to experimental animal models in pre-clinical research. Video Abstract.
Collapse
Affiliation(s)
- Gijs Rikken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | | | - Hanna Niehues
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Oláh
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Jin Y, Bergmann SM, Mai Q, Yang Y, Liu W, Sun D, Chen Y, Yu Y, Liu Y, Cai W, Dong H, Li H, Yu H, Wu Y, Lai M, Zeng W. Simultaneous Isolation and Identification of Largemouth Bass Virus and Rhabdovirus from Moribund Largemouth Bass ( Micropterus salmoides). Viruses 2022; 14:v14081643. [PMID: 36016264 PMCID: PMC9415833 DOI: 10.3390/v14081643] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Largemouth bass is an important commercially farmed fish in China, but the rapid expansion of its breeding has resulted in increased incidence of diseases caused by bacteria, viruses and parasites. In this study, moribund largemouth bass containing ulcer foci on body surfaces indicated the most likely pathogens were iridovirus and rhabdovirus members and this was confirmed using a combination of immunohistochemistry, cell culture, electron microscopy and conserved gene sequence analysis. We identified that these fish had been co-infected with these viruses. We observed bullet-shaped virions (100−140 nm long and 50−100 nm in diameter) along with hexagonal virions with 140 nm diameters in cell culture inoculated with tissue homogenates. The viruses were plaque purified and a comparison of the highly conserved regions of the genome of these viruses indicated that they are most similar to largemouth bass virus (LMBV) and hybrid snakehead rhabdovirus (HSHRV), respectively. Regression infection experiments indicated fish mortalities for LMBV-FS2021 and HSHRV-MS2021 were 86.7 and 11.1%, respectively. While co-infection resulted in 93.3% mortality that was significantly (p < 0.05) higher than the single infections even though the viral loads differed by >100-fold. Overall, we simultaneously isolated and identified LMBV and a HSHRV-like virus from diseased largemouth bass, and our results can provide novel ideas for the prevention and treatment of combined virus infection especially in largemouth bass.
Collapse
Affiliation(s)
- Yuqi Jin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Sven M. Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-InselRiems, Germany;
| | - Qianyi Mai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Weiqiang Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Dongli Sun
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Yanfeng Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
| | - Hanxu Dong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
| | - Yali Wu
- Foshan Institute of Agricultural Sciences, Guangdong, Foshan 528145, China; (Y.W.); (M.L.)
| | - Mingjian Lai
- Foshan Institute of Agricultural Sciences, Guangdong, Foshan 528145, China; (Y.W.); (M.L.)
| | - Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (Y.J.); (Q.M.); (Y.Y.); (W.L.); (D.S.); (Y.C.); (Y.Y.); (Y.L.); (H.D.); (H.L.); (H.Y.)
- Correspondence: ; Tel.: +86-(0757)-83962672
| |
Collapse
|
3
|
Koban R, Neumann M, Nelson PP, Ellerbrok H. Differential Efficacy of Novel Antiviral Substances in 3D and Monolayer Cell Culture. Viruses 2020; 12:v12111294. [PMID: 33198108 PMCID: PMC7697553 DOI: 10.3390/v12111294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Repurposing of approved drugs that target host functions also important for virus replication promises to overcome the shortage of antiviral therapeutics. Mostly, virus biology including initial screening of antivirals is studied in conventional monolayer cells. The biology of these cells differs considerably from infected tissues. 3D culture models with characteristics of human tissues may reflect more realistically the in vivo events during infection. We screened first, second, and third generation epidermal growth factor receptor (EGFR)-inhibitors with different modes of action and the EGFR-blocking monoclonal antibody cetuximab in a 3D cell culture infection model with primary human keratinocytes and cowpox virus (CPXV) for antiviral activity. Antiviral activity of erlotinib and osimertinib was nearly unaffected by the cultivation method similar to the virus-directed antivirals tecovirimat and cidofovir. In contrast, the host-directed inhibitors afatinib and cetuximab were approx. 100-fold more efficient against CPXV in the 3D infection model, similar to previous results with gefitinib. In summary, inhibition of EGFR-signaling downregulates virus replication comparable to established virus-directed antivirals. However, in contrast to virus-directed inhibitors, in vitro efficacy of host-directed antivirals might be seriously affected by cell cultivation. Results obtained for afatinib and cetuximab suggest that screening of such drugs in standard monolayer culture might underestimate their potential as antivirals.
Collapse
Affiliation(s)
- Robert Koban
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (M.N.); (P.P.N.)
| | - Markus Neumann
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (M.N.); (P.P.N.)
| | - Philipp P. Nelson
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (M.N.); (P.P.N.)
| | - Heinz Ellerbrok
- Highly Pathogenic Viruses, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany; (R.K.); (M.N.); (P.P.N.)
- Public Health Laboratory Support, Centre for International Health Protection, Nordufer 20, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-18754-2258
| |
Collapse
|
4
|
Weber S, Jeske K, Ulrich RG, Imholt C, Jacob J, Beer M, Hoffmann D. In Vivo Characterization of a Bank Vole-Derived Cowpox Virus Isolate in Natural Hosts and the Rat Model. Viruses 2020; 12:v12020237. [PMID: 32093366 PMCID: PMC7077282 DOI: 10.3390/v12020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/04/2022] Open
Abstract
Cowpox virus (CPXV) belongs to the genus Orthopoxvirus in the Poxviridae family and is endemic in western Eurasia. Based on seroprevalence studies in different voles from continental Europe and UK, voles are suspected to be the major reservoir host. Recently, a CPXV was isolated from a bank vole (Myodes glareolus) in Germany that showed a high genetic similarity to another isolate originating from a Cotton-top tamarin (Saguinus oedipus). Here we characterize this first bank vole-derived CPXV isolate in comparison to the related tamarin-derived isolate. Both isolates grouped genetically within the provisionally called CPXV-like 3 clade. Previous phylogenetic analysis indicated that CPXV is polyphyletic and CPXV-like 3 clade represents probably a different species if categorized by the rules used for other orthopoxviruses. Experimental infection studies with bank voles, common voles (Microtusarvalis) and Wistar rats showed very clear differences. The bank vole isolate was avirulent in both common voles and Wistar rats with seroconversion seen only in the rats. In contrast, inoculated bank voles exhibited viral shedding and seroconversion for both tested CPXV isolates. In addition, bank voles infected with the tamarin-derived isolate experienced a marked weight loss. Our findings allow for the conclusion that CPXV isolates might differ in their replication capacity in different vole species and rats depending on their original host. Moreover, the results indicate host-specific differences concerning CPXV-specific virulence. Further experiments are needed to identify individual virulence and host factors involved in the susceptibility and outcome of CPXV-infections in the different reservoir hosts.
Collapse
Affiliation(s)
- Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
| | - Kathrin Jeske
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Christian Imholt
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany; (C.I.); (J.J.)
| | - Jens Jacob
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany; (C.I.); (J.J.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Correspondence: (M.B.); (D.H.); Tel.: +49-38351-7-1200 (M.B.); +49-38351-7-1627 (D.H.)
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Correspondence: (M.B.); (D.H.); Tel.: +49-38351-7-1200 (M.B.); +49-38351-7-1627 (D.H.)
| |
Collapse
|
5
|
What a Difference a Gene Makes: Identification of Virulence Factors of Cowpox Virus. J Virol 2020; 94:JVI.01625-19. [PMID: 31645446 DOI: 10.1128/jvi.01625-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that causes spillover infections from its animal hosts to humans. In 2009, several human CPXV cases occurred through transmission from pet rats. An isolate from a diseased rat, RatPox09, exhibited significantly increased virulence in Wistar rats and caused high mortality compared to that caused by the mildly virulent laboratory strain Brighton Red (BR). The RatPox09 genome encodes four genes which are absent in the BR genome. We hypothesized that their gene products could be major factors influencing the high virulence of RatPox09. To address this hypothesis, we employed several BR-RatPox09 chimeric viruses. Using Red-mediated mutagenesis, we generated BR-based knock-in mutants with single or multiple insertions of the respective RatPox09 genes. High-throughput sequencing was used to verify the genomic integrity of all recombinant viruses, and transcriptomic analyses confirmed that the expression profiles of the genes that were adjacent to the modified ones were unaltered. While the in vitro growth kinetics were comparable to those of BR and RatPox09, we discovered that a knock-in BR mutant containing the four RatPox09-specific genes was as virulent as the RatPox09 isolate, causing death in over 75% of infected Wistar rats. Unexpectedly, the insertion of gCPXV0030 (g7tGP) alone into the BR genome resulted in significantly higher clinical scores and lower survival rates matching the rate for rats infected with RatPox09. The insertion of gCPXV0284, encoding the BTB (broad-complex, tramtrack, and bric-à-brac) domain protein D7L, also increased the virulence of BR, while the other two open reading frames failed to rescue virulence independently. In summary, our results confirmed our hypothesis that a relatively small set of four genes can contribute significantly to CPXV virulence in the natural rat animal model.IMPORTANCE With the cessation of vaccination against smallpox and its assumed cross-protectivity against other OPV infections, waning immunity could open up new niches for related poxviruses. Therefore, the identification of virulence mechanisms in CPXV is of general interest. Here, we aimed to identify virulence markers in an experimental rodent CPXV infection model using bacterial artificial chromosome (BAC)-based virus recombineering. We focused our work on the recent zoonotic CPXV isolate RatPox09, which is highly pathogenic in Wistar rats, unlike the avirulent BR reference strain. In several animal studies, we were able to identify a novel set of CPXV virulence genes. Two of the identified virulence genes, encoding a putative BTB/POZ protein (CPXVD7L) and a B22R-family protein (CPXV7tGP), respectively, have not yet been described to be involved in CPXV virulence. Our results also show that single genes can significantly affect virulence, thus facilitating adaptation to other hosts.
Collapse
|
6
|
Muhsen M, Protschka M, Schneider LE, Müller U, Köhler G, Magin TM, Büttner M, Alber G, Siegemund S. Orf virus (ORFV) infection in a three-dimensional human skin model: Characteristic cellular alterations and interference with keratinocyte differentiation. PLoS One 2019; 14:e0210504. [PMID: 30699132 PMCID: PMC6353139 DOI: 10.1371/journal.pone.0210504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023] Open
Abstract
ORF virus (ORFV) is the causative agent of contagious ecthyma, a pustular dermatitis of small ruminants and humans. Even though the development of lesions caused by ORFV was extensively studied in animals, only limited knowledge exists about the lesion development in human skin. The aim of the present study was to evaluate a three-dimensional (3D) organotypic culture (OTC) as a human skin model for ORFV infection considering lesion development, replication of the virus, viral gene transcription and modulation of differentiation of human keratinocytes by ORFV. ORFV infection of OTC was performed using the ORFV isolate B029 derived from a human patient. The OTC sections showed a similar structure of stratified epidermal keratinocytes as human foreskin and a similar expression profile of the differentiation markers keratin 1 (K1), K10, and loricrin. Upon ORFV infection, OTCs exhibited histological cytopathic changes including hyperkeratosis and ballooning degeneration of the keratinocytes. ORFV persisted for 10 days and was located in keratinocytes of the outer epidermal layers. ORFV-specific early, intermediate and late genes were transcribed, but limited viral spread and restricted cell infection were noticed. ORFV infection resulted in downregulation of K1, K10, and loricrin at the transcriptional level without affecting proliferation as shown by PCNA or Ki-67 expression. In conclusion, OTC provides a suitable model to study the interaction of virus with human keratinocytes in a similar structural setting as human skin and reveals that ORFV infection downregulates several differentiation markers in the epidermis of the human skin, a hitherto unknown feature of dermal ORFV infection in man.
Collapse
Affiliation(s)
- Mahmod Muhsen
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Martina Protschka
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Laura E. Schneider
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Thomas M. Magin
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Leipzig, Germany
| | - Mathias Büttner
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sabine Siegemund
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Ricordel M, Foloppe J, Pichon C, Sfrontato N, Antoine D, Tosch C, Cochin S, Cordier P, Quemeneur E, Camus-Bouclainville C, Bertagnoli S, Erbs P. Cowpox Virus: A New and Armed Oncolytic Poxvirus. MOLECULAR THERAPY-ONCOLYTICS 2017; 7:1-11. [PMID: 28951885 PMCID: PMC5607123 DOI: 10.1016/j.omto.2017.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
Oncolytic virus therapy has recently been recognized as a promising new therapeutic approach for cancer treatment. In this study, we are proposing for the first time to evaluate the in vitro and in vivo oncolytic capacities of the Cowpox virus (CPXV). To improve the tumor selectivity and oncolytic activity, we developed a thymidine kinase (TK)-deleted CPXV expressing the suicide gene FCU1, which converts the non-toxic prodrug 5-fluorocytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) and 5-fluorouridine-5′-monophosphate (5-FUMP). This TK-deleted virus replicated efficiently in human tumor cell lines; however, it was notably attenuated in normal primary cells, thus displaying a good therapeutic index. Furthermore, this new recombinant poxvirus rendered cells sensitive to 5-FC. In vivo, after systemic injection in mice, the TK-deleted variant caused significantly less mortality than the wild-type strain. A biodistribution study demonstrated high tumor selectivity and low accumulation in normal tissues. In human xenograft models of solid tumors, the recombinant CPXV also displayed high replication, inducing relevant tumor growth inhibition. This anti-tumor effect was improved by 5-FC co-administration. These results demonstrated that CPXV is a promising oncolytic vector capable of expressing functional therapeutic transgenes.
Collapse
Affiliation(s)
- Marine Ricordel
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Johann Foloppe
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Christelle Pichon
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Nathalie Sfrontato
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Delphine Antoine
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Caroline Tosch
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Sandrine Cochin
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Pascale Cordier
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | - Eric Quemeneur
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| | | | | | - Philippe Erbs
- TRANSGENE S.A, 400 Boulevard Gonthier d'Andernach, 67400 Illkirch, France
| |
Collapse
|
8
|
Abstract
Novel affinity agents with high specificity are needed to make progress in disease diagnosis and therapy. Over the last several years, peptides have been considered to have fundamental benefits over other affinity agents, such as antibodies, due to their fast blood clearance, low immunogenicity, rapid tissue penetration, and reproducible chemical synthesis. These features make peptides ideal affinity agents for applications in disease diagnostics and therapeutics for a wide variety of afflictions. Virus-derived peptide techniques provide a rapid, robust, and high-throughput way to identify organism-targeting peptides with high affinity and selectivity. Here, we will review viral peptide display techniques, how these techniques have been utilized to select new organism-targeting peptides, and their numerous biomedical applications with an emphasis on targeted imaging, diagnosis, and therapeutic techniques. In the future, these virus-derived peptides may be used as common diagnosis and therapeutics tools in local clinics.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kegan Sunderland
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|