1
|
Zhao M, Liu Z, Gan J, Yang C, Lu A, Han Q, Yang H, Xu Y, Sun G, Wu D. Identification and expression analysis of XIP gene family members in rice. Genetica 2024; 152:83-100. [PMID: 38743131 DOI: 10.1007/s10709-024-00207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Xylanase inhibitor proteins (XIP) are widely distributed in the plant kingdom, and also exist in rice. However, a systematic bioinformatics analysis of this gene family in rice (OsXIP) has not been conducted to date. In this study, we identified 32 members of the OsXIP gene family and analyzed their physicochemical properties, chromosomal localization, gene structure, protein structure, expression profiles, and interaction networks. Our results indicated that OsXIP genes exhibit an uneven distribution across eight rice chromosomes. These genes generally feature a low number of introns or are intronless, all family members, except for OsXIP20, contain two highly conserved motifs, namely Motif 8 and Motif 9. In addition, it is worth noting that the promoter regions of OsXIP gene family members feature a widespread presence of abscisic acid response elements (ABRE) and gibberellin response elements (GARE-motif and TATC-box). Quantitative Real-time PCR (qRT-PCR) analysis unveiled that the expression of OsXIP genes exhibited higher levels in leaves and roots, with considerable variation in the expression of each gene in these tissues both prior to and following treatments with abscisic acid (ABA) and gibberellin (GA3). Protein interaction studies and microRNA (miRNA) target prediction showed that OsXIP engages with key elements within the hormone-responsive and drought signaling pathways. The qRT-PCR suggested osa-miR2927 as a potential key regulator in the rice responding to drought stress, functioning as tissue-specific and temporally regulation. This study provides a theoretical foundation for further analysis of the functions within the OsXIP gene family.
Collapse
Affiliation(s)
- Manman Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhiwei Liu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiangtao Gan
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Chen Yang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ai Lu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingqing Han
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Haitao Yang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Yonghan Xu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, Canada.
| | - Dechuan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Lin J, Ruan S, Guo Q, Zhang Y, Fang M, Li T, Luo G, Tian Z, Zhang Y, Tandayu E, Chen C, Lu J, Ma C, Si H. Comprehensive genome-wide analysis of wheat xylanase inhibitor protein (XIP) genes: unveiling their role in Fusarium head blight resistance and plant immune mechanisms. BMC PLANT BIOLOGY 2024; 24:462. [PMID: 38802731 PMCID: PMC11129392 DOI: 10.1186/s12870-024-05176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.
Collapse
Affiliation(s)
- Juan Lin
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Shuang Ruan
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Yonglin Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Mengyuan Fang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Tiantian Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Gan Luo
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Zhuangbo Tian
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Yi Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Erwin Tandayu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
| |
Collapse
|
3
|
Baker JT, Duarte ME, Holanda DM, Kim SW. Friend or Foe? Impacts of Dietary Xylans, Xylooligosaccharides, and Xylanases on Intestinal Health and Growth Performance of Monogastric Animals. Animals (Basel) 2021; 11:609. [PMID: 33652614 PMCID: PMC7996850 DOI: 10.3390/ani11030609] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
This paper discusses the structural difference and role of xylan, procedures involved in the production of xylooligosaccharides (XOS), and their implementation into animal feeds. Xylan is non-starch polysaccharides that share a β-(1-4)-linked xylopyranose backbone as a common feature. Due to the myriad of residues that can be substituted on the polymers within the xylan family, more anti-nutritional factors are associated with certain types of xylan than others. XOS are sugar oligomers extracted from xylan-containing lignocellulosic materials, such as crop residues, wood, and herbaceous biomass, that possess prebiotic effects. XOS can also be produced in the intestine of monogastric animals to some extent when exogenous enzymes, such as xylanase, are added to the feed. Xylanase supplementation is a common practice within both swine and poultry production to reduce intestinal viscosity and improve digestive utilization of nutrients. The efficacy of xylanase supplementation varies widely due a number of factors, one of which being the presence of xylanase inhibitors present in common feedstuffs. The use of prebiotics in animal feeding is gaining popularity as producers look to accelerate growth rate, enhance intestinal health, and improve other production parameters in an attempt to provide a safe and sustainable food product. Available research on the impact of xylan, XOS, as well as xylanase on the growth and health of swine and poultry, is also summarized. The response to xylanase supplementation in swine and poultry feeds is highly variable and whether the benefits are a result of nutrient release from NSP, reduction in digesta viscosity, production of short chain xylooligosaccharides or a combination of these is still in question. XOS supplementation seems to benefit both swine and poultry at various stages of production, as well as varying levels of XOS purity and degree of polymerization; however, further research is needed to elucidate the ideal dosage, purity, and degree of polymerization needed to confer benefits on intestinal health and performance in each respective species.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (J.T.B.); (M.E.D.); (D.M.H.)
| |
Collapse
|
4
|
Finnie C, Sultan A, Grasser KD. From protein catalogues towards targeted proteomics approaches in cereal grains. PHYTOCHEMISTRY 2011; 72:1145-1153. [PMID: 21134685 DOI: 10.1016/j.phytochem.2010.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/27/2023]
Abstract
Due to their importance for human nutrition, the protein content of cereal grains has been a subject of intense study for over a century and cereal grains were not surprisingly one of the earliest subjects for 2D-gel-based proteome analysis. Over the last two decades, countless cereal grain proteomes, mostly derived using 2D-gel based technologies, have been described and hundreds of proteins identified. However, very little is still known about post-translational modifications, subcellular proteomes, and protein-protein interactions in cereal grains. Development of techniques for improved extraction, separation and identification of proteins and peptides is facilitating functional proteomics and analysis of sub-proteomes from small amounts of starting material, such as seed tissues. The combination of proteomics with structural and functional analysis is increasingly applied to target subsets of proteins. These "next-generation" proteomics studies will vastly increase our depth of knowledge about the processes controlling cereal grain development, nutritional and processing characteristics.
Collapse
Affiliation(s)
- Christine Finnie
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg 224, DK-2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
5
|
Gusakov AV. Proteinaceous inhibitors of microbial xylanases. BIOCHEMISTRY (MOSCOW) 2010; 75:1185-99. [DOI: 10.1134/s0006297910100019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
De Backer E, Gebruers K, Van den Ende W, Courtin CM, Delcour JA. Post-translational processing of beta-d-xylanases and changes in extractability of arabinoxylans during wheat germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:90-97. [PMID: 20031435 DOI: 10.1016/j.plaphy.2009.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/29/2009] [Accepted: 10/31/2009] [Indexed: 05/28/2023]
Abstract
Endo-1,4-beta-d-xylanase (EC 3.2.1.8, beta-d-xylanase) activity, and arabinoxylan (AX) level and extractability were monitored for the first time simultaneously in wheat kernels (Triticum aestivum cv. Glasgow) up to 24 days post-imbibition (DPI), both in the absence and presence of added gibberellic acid (GA). Roughly three different stages (early, intermediate and late) can be discriminated. Addition of GA resulted in a faster increase of water extractable arabinoxylan (WEAX) level in the early stage (up to 3-4 DPI). This increase was not accompanied by the discernible presence of homologues of the barley X-I beta-d-xylanase as established by immunodetection. This suggests that other, yet unidentified beta-d-xylanases operate in this early time window. The intermediate stage (up to 13 DPI) was characterized by the presence of unprocessed 67 kDa X-I like beta-d-xylanase, which was much more abundant in the presence of GA. The occurrence of higher levels of the unprocessed enzyme was related with higher beta-d-xylanase activities and a further increase in WEAX level, pointing to in vivo activity of the unprocessed 67 kDa beta-d-xylanase. During the late stage (up to 24 DPI) gradual processing of the 67 kDa beta-d-xylanase occurred and was associated with a drastic increase in beta-d-xylanase activity. Up to 120-fold higher activity was recorded at 24 DPI, with approx. 85% thereof originating from the kernel remnants. The WEAX level decreased during the late stage, suggesting that the beta-d-xylanase is processed into more active forms to achieve extensive AX breakdown.
Collapse
Affiliation(s)
- Evelien De Backer
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20 bus 2463, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
7
|
Lagaert S, Beliën T, Volckaert G. Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol 2009; 20:1064-73. [DOI: 10.1016/j.semcdb.2009.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
|
8
|
|
9
|
Croes E, Gebruers K, Luyten N, Delcour JA, Courtin CM. The three classes of wheat xylanase-inhibiting proteins accumulate in an analogous way during wheat ear development and germination. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1253-1262. [PMID: 19339078 DOI: 10.1016/j.jplph.2009.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/03/2008] [Accepted: 02/03/2009] [Indexed: 05/27/2023]
Abstract
Wheat contains high levels of the three classes of xylanase inhibitors (XIs), Triticum aestivum xylanase inhibitor (TAXI), xylanase-inhibiting protein (XIP) and thaumatin-like xylanase inhibitor (TLXI). These proteins have been linked to plant defense. In this study, expression of XIs during wheat ear development and germination was examined using immunoblotting. The three types of XIs accumulated at high levels between the milky and the soft dough stages of ear development, and reached the highest levels at the hard kernel stage. From the hard kernel stage to harvest ripeness, a slight drop in inhibitor levels was observed, which was more marked for TAXI and TLXI than for XIP. During germination, the levels of the three types of XIs initially decreased, but XIs accumulated again after 1-2d, reaching maximum levels between 5 and 9d after imbibition. The levels of TAXI, XIP and TLXI in the seedlings then gradually and continuously declined as a function of time. 1D- and 2D-immunoblotting indicated that the three types of XIs occur in a wide variety of forms. This polymorphism is maintained throughout ear development and germination, although the proportions of the different (iso)forms vary with time. A differential temporal profile was observed for the unprocessed and processed forms of TAXI-type proteins. Finally, the occurrence of TAXI and XIP, but not TLXI, in roots and shoots of young seedlings was demonstrated. No XIs were detected in roots, leaves or stems at later stages of ear development. Overall, the three classes of XIs show remarkable similarities in their temporal distribution, indicating a related function within the wheat plant.
Collapse
Affiliation(s)
- Evi Croes
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular systems, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20/2463, B-3001 Leuven, Belgium
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular systems, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20/2463, B-3001 Leuven, Belgium
| | - Nikkie Luyten
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular systems, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20/2463, B-3001 Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular systems, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20/2463, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular systems, and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20/2463, B-3001 Leuven, Belgium.
| |
Collapse
|
10
|
Mokrane H, Gebruers K, Beaugrand J, Proost P, Nadjemi B, Belhanèche-Bensemra N, Courtin CM, Delcour JA. Algerian pearl millet ( Pennisetum glaucum L.) contains XIP but not TAXI and TLXI type xylanase inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5542-5548. [PMID: 19459708 DOI: 10.1021/jf9003785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An XIP (xylanase inhibiting protein) type xylanase inhibitor was purified from Algerian pearl millet ( Pennisetum glaucum L.) grains and characterized for the first time. Cation exchange and affinity chromatography with immobilized Trichoderma longibrachiatum glycoside hydrolase (GH) family 11 xylanase resulted in electrophoretically pure protein with a molecular mass of 27-29 kDa and a pI value of 6.7. The experimentally determined N-terminal amino acid sequence of the purified XIP protein is 87.5%, identical to that of sorghum ( Sorghum bicolor L.) XIP and 79.2% identical to that of wheat ( Triticum aestivum L.) XIP-I. The biochemical properties of pearl millet XIP are comparable to those described earlier for sorghum XIP, except for the higher specific activity toward a T. longibrachiatum GH family 11 xylanase. On the basis of immunoblot neither TAXI nor TLXI type xylanase inhibitors were detected in pearl millet grains.
Collapse
Affiliation(s)
- Hind Mokrane
- Laboratoire des Produits Bioactifs et de la Valorisation de la Biomasse, Ecole Normale Superieure, Vieux-Kouba, Alger, Algeria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Croes E, Gebruers K, Luyten N, Delcour JA, Courtin CM. Immunoblot quantification of three classes of proteinaceous xylanase inhibitors in different wheat ( Triticum aestivum ) cultivars and milling fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:1029-1035. [PMID: 19138080 DOI: 10.1021/jf802638n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In wheat ( Triticum aestivum ) grains, TAXI- (T. aestivum xylanase inhibitor), XIP- (xylanase inhibiting protein), and TLXI-type (thaumatin-like xylanase inhibitor) xylanase inhibitors (XIs) are expressed in considerable levels and under different forms. As these proteins have a significant impact on microbial xylanases frequently used in cereal-based biotechnological processes, knowledge of their quantitative and qualitative variability in wheat is of great interest. This paper reports the successful use of immunoquantification by Western blotting to determine the intercultivar variation in the three structurally different classes of XIs, as well as their distribution among various industrial milling fractions. TAXI and XIP protein levels in eight wheat cultivars ranged from 81 to 190 ppm and from 156 to 371 ppm, with average values of 133 and 235 ppm, respectively. Using immunoblotting, TLXI protein levels could be measured directly for the first time. They ranged from 51 to 150 ppm and amounted to 112 ppm on average. The three classes of XIs were distributed among different wheat milling fractions in a similar way, with 4 and 10 times higher concentrations in the aleurone-enriched fraction than in white flour and pericarp fractions, respectively. Immunoblot patterns suggested that the observed intercultivar and spatial variabilities within the wheat grain are not due to the presence or absence of specific members of the large polymorphic XI families but to differences in the overall level and/or proportions of the specific members.
Collapse
Affiliation(s)
- Evi Croes
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
12
|
Rombouts S, Fierens E, Vandermarliere E, Voet A, Gebruers K, Beaugrand J, Courtin CM, Delcour JA, de Maeyer M, Rabijns A, Van Campenhout S, Volckaert G. His22 of TLXI plays a critical role in the inhibition of glycoside hydrolase family 11 xylanases. J Enzyme Inhib Med Chem 2008; 24:38-46. [DOI: 10.1080/14756360701841913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Sigrid Rombouts
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium
| | - Ellen Fierens
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Elien Vandermarliere
- Laboratory for Biocrystallography, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Arnout Voet
- Laboratory of Biomolecular Modeling and BioMacS, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven, Belgium
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Johnny Beaugrand
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Marc de Maeyer
- Laboratory of Biomolecular Modeling and BioMacS, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven, Belgium
| | - Anja Rabijns
- Laboratory for Biocrystallography, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Steven Van Campenhout
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium
| | - Guido Volckaert
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Gebruers K, Beaugrand J, Croes E, Dornez E, Courtin CM, Delcour JA. Quantification of Wheat TAXI and XIP Type Xylanase Inhibitors: A Comparison of Analytical Techniques. Cereal Chem 2008. [DOI: 10.1094/cchem-85-5-0586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20 box 2463, B-3001 Leuven, Belgium
- Corresponding author. Phone: +32 (0) 16 32 16 34. Fax: +32 (0) 16 32 19 97. E-mail address:
| | - Johnny Beaugrand
- INRA Agronomie, 2 esplanade Roland Garros, 51686 Reims Cedex 2, France
| | - Evi Croes
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20 box 2463, B-3001 Leuven, Belgium
| | - Emmie Dornez
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20 box 2463, B-3001 Leuven, Belgium
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20 box 2463, B-3001 Leuven, Belgium
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20 box 2463, B-3001 Leuven, Belgium
| |
Collapse
|
14
|
Gebruers K, Mokrane H, Nadjemi B, Beaugrand J, Fierens K, Proost P, Courtin CM, Delcour JA. Sorghum (Sorghum bicolor L. Moench) contains a XIP-type xylanase inhibitor but none of the TAXI- and TLXI-types. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Biely P, Leathers TD, Cziszárová M, Vršanská M, Cotta MA. Endo-β-1,4-xylanase inhibitors in leaves and roots of germinated maize. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Croes E, Gebruers K, Robben J, Noben JP, Samyn B, Debyser G, Van Beeumen J, Delcour JA, Courtin CM. Variability of polymorphic families of three types of xylanase inhibitors in the wheat grain proteome. Proteomics 2008; 8:1692-705. [PMID: 18340629 DOI: 10.1002/pmic.200700813] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cereals contain proteinaceous inhibitors of endo-beta-1,4-xylanases (E.C.3.2.1.8, xylanases). Since these xylanase inhibitors (XIs) are only active against xylanases of microbial origin and do not interact with plant endogenous xylanases, they are believed to act as a defensive barrier against phytopathogenic attack. So far, three types of XIs have been identified, i.e. Triticum aestivum XI (TAXI), xylanase inhibiting protein (XIP), and thaumatin-like XI (TLXI) proteins. In this study the variation in XI forms present in wheat grain was elucidated using high-resolution 2-DE in combination with LC-ESI-MS/MS and biochemical techniques. Reproducible 2-DE fingerprints of TAXI-, XIP-, and TLXI-type XIs, selectively purified from whole meal of three European wheat cultivars using cation exchange chromatography followed by affinity chromatography, were obtained using a pH-gradient of 6 to 11 and a molecular mass range of 10 to 60 kDa. Large polymorphic XI families, not known to date, which exhibit different pI- and/or molecular mass values, were visualised by colloidal CBB staining. Identification of distinct genetic variants by MS/MS-analysis provides a partial explanation for the observed XI heterogeneity. Besides genetic diversity, PTMs, such as glycosylation, account for the additional complexity of the 2-DE patterns.
Collapse
Affiliation(s)
- Evi Croes
- Laboratory of Food Chemistry and Biochemistry, Department of Microbial and Molecular systems, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Beaugrand J, Gebruers K, Ververken C, Fierens E, Dornez E, Goddeeris BM, Delcour JA, Courtin CM. Indirect enzyme-antibody sandwich enzyme-linked immunosorbent assay for quantification of TAXI and XIP type xylanase inhibitors in wheat and other cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7682-8. [PMID: 17715986 DOI: 10.1021/jf071087b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
To quantify Triticum aestivum xylanase inhibitor (TAXI) and xylanase inhibiting protein (XIP) type proteins in cereals in general and wheat ( T. aestivum) in particular, a robust enzyme-linked immunosorbent assay (ELISA) using an uncommon enzyme-antibody sandwich format was developed. Bacillus subtilis glycoside hydrolase family (GH) 11 and Aspergillus oryzae GH 10 xylanases were selected for coating ELISA plate wells to capture TAXI and XIP, respectively, prior to probing with antibodies. The detection threshold of the developed ELISA was much lower than that of the currently used xylanase inhibitor assay and the recently described Western blot approach. Because of its broad dynamic range (TAXI, 30-600 ng/mL, and XIP, 3-60 ng/mL), one proper standard extract dilution can be used for analyzing different wheat varieties, whereas for the currently used colorimetric assay, often different dilutions need to be analyzed. The TAXI ELISA for wheat was successfully adapted for barley ( Hordeum vulgare) and could also be used for other cereals.
Collapse
Affiliation(s)
- Johnny Beaugrand
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 30, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, Van Campenhout S, Proost P, Courtin C, Delcour J. TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 2007; 403:583-91. [PMID: 17269932 PMCID: PMC1876379 DOI: 10.1042/bj20061291] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wheat (Triticum aestivum) contains a previously unknown type of xylanase (EC 3.2.1.8) inhibitor, which is described in the present paper for the first time. Based on its >60% similarity to TLPs (thaumatin-like proteins) and the fact that it contains the Prosite PS00316 thaumatin family signature, it is referred to as TLXI (thaumatin-like xylanase inhibitor). TLXI is a basic (pI> or =9.3 in isoelectric focusing) protein with a molecular mass of approx. 18-kDa (determined by SDS/PAGE) and it occurs in wheat with varying extents of glycosylation. The TLXI gene sequence encodes a 26-amino-acid signal sequence followed by a 151-amino-acid mature protein with a calculated molecular mass of 15.6-kDa and pI of 8.38. The mature TLXI protein was expressed successfully in Pichia pastoris, resulting in a 21-kDa (determined by SDS/PAGE) recombinant protein (rTLXI). Polyclonal antibodies raised against TLXI purified from wheat react with epitopes of rTLXI as well as with those of thaumatin, demonstrating high structural similarity between these three proteins. TLXI has a unique inhibition specificity. It is a non-competitive inhibitor of a number of glycoside hydrolase family 11 xylanases, but it is inactive towards glycoside hydrolase family 10 xylanases. Progress curves show that TLXI is a slow tight-binding inhibitor, with a K(i) of approx. 60-nM. Except for zeamatin, an alpha-amylase/trypsin inhibitor from maize (Zea mays), no other enzyme inhibitor is currently known among the TLPs. TLXI thus represents a novel type of inhibitor within this group of proteins.
Collapse
Affiliation(s)
- Ellen Fierens
- *Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Sigrid Rombouts
- †Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium
| | - Kurt Gebruers
- *Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
- To whom correspondence should be addressed (email )
| | - Hans Goesaert
- *Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kristof Brijs
- *Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Johnny Beaugrand
- *Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Guido Volckaert
- †Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium
| | - Steven Van Campenhout
- *Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Paul Proost
- ‡Laboratory of Molecular Immunology, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe M. Courtin
- *Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan A. Delcour
- *Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
19
|
Beliën T, Van Campenhout S, Robben J, Volckaert G. Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1072-81. [PMID: 17022171 DOI: 10.1094/mpmi-19-1072] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Endo-beta-1,4-xylanases (EC 3.2.1.8) are key enzymes in the degradation of xylan, the predominant hemicellulose in the cell walls of plants and the second most abundant polysaccharide on earth. A number of endoxylanases are produced by microbial phytopathogens responsible for severe crop losses. These enzymes are considered to play an important role in phytopathogenesis, as they provide essential means to the attacking organism to break through the plant cell wall. Plants have evolved numerous defense mechanisms to protect themselves against invading pathogens, amongst which are proteinaceous inhibitors of cell wall-degrading enzymes. These defense mechanisms are triggered when a pathogen-derived elicitor is recognized by the plant. In this review, the diverse aspects of endoxylanases in promoting virulence and in eliciting plant defense systems are highlighted. Furthermore, the role of the relatively recently discovered cereal endoxylanase inhibitor families TAXI (Triticum aestivum xylanase inhibitor) and XIP (xylanase inhibitor protein) in plant defense is discussed.
Collapse
Affiliation(s)
- Tim Beliën
- Katholieke Universiteit Leuven, Laboratory of Gene Technology, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|