1
|
Esposito S, Palombieri S, Vitale P, Angione G, D'Attilia C, Taranto F, Sestili F, De Vita P. Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:210. [PMID: 39198268 DOI: 10.1007/s00122-024-04710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
KEY MESSAGE Two allelic variants of Pp-A3 and Pp-B1 were identified in purple durum wheat. Molecular markers at both loci were developed and validated on an independent panel, offering a breakthrough for wheat improvement. Purple wheats are a class of cereals with pigmented kernels of particular interest for their antioxidant and anti-inflammatory properties. Although two complementary loci (Pp-B1 and Pp-A3), responsible for purple pericarp have been pinpointed in bread wheat (Triticum aestivum L.), in durum wheat (Triticum durum Desf.) the causative genes along with functional and non-functional alleles are still unknown. Here, using a quantitative trait loci (QTL) mapping approach on a RIL population derived from purple and non-purple durum wheat genotypes, we identified three major regions on chromosomes 2A, 3A, and 7B explaining the highest phenotypic variation (> 50%). Taking advantage of the Svevo genome, a MYB was reannotated on chromosome 7B and reported as a candidate for Pp-B1. An insertion of ~ 1.6 kb within the first exon led to a non-functional allele (TdPpm1b), whereas the functional allele (TdPpm1a) was characterized and released for the first time in durum wheat. Pp-A3 was instead identified as a duplicated gene, of which only one was functional. The promoter sequencing of the functional allele (TdPpb1a) revealed six 261-bp tandem repeats in purple durum wheat, whereas one unit (TdPpb1b) was found in the yellow once. Functional molecular markers at both loci were developed to precisely discriminate purple and not purple genotypes, representing a valuable resource for selecting superior purple durum lines at early growth stages. Overall, our results expand the understanding of the function of MYB and bHLH activators in durum wheat, paving new ways to explore cis-regulatory elements at the promoter level.
Collapse
Affiliation(s)
- Salvatore Esposito
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Via Università, 133, 80055, Portici, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Paolo Vitale
- International Maize and Wheat Improvement Center (CIMMYT), Edo. de Mexico, El Batan, Mexico
| | - Giuseppina Angione
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy
- Department of Agriculture, Food, Natural Science, Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Chiara D'Attilia
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Francesca Taranto
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Bari (CNR-IBBR), Via Amendola 165/A, 70126, Bari, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops (CREA-CI), SS 673 Meters 25200, 71122, Foggia, Italy.
| |
Collapse
|
2
|
Hernández-Espinosa N, Posadas-Romano G, Dreisigacker S, Crossa J, Crespo L, Ibba MI. Efficient arabinoxylan assay for wheat: Exploring variability and molecular marker associations in Wholemeal and refined flour. J Cereal Sci 2024; 117:103897. [PMID: 38883418 PMCID: PMC11177631 DOI: 10.1016/j.jcs.2024.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 06/18/2024]
Abstract
In this study, we present a modified high throughput phloroglucinol colorimetric assay for the quantification of arabinoxylans (AX) in wheat named PentoQuant. The method was downscaled from a 10 ml glass tube to 2 ml microcentrifuge tube format, resulting in a fivefold increase in throughput while concurrently reducing the overall cost and manual labor required for the analysis. Comparison with established colorimetric assays and gas chromatography validates the modified protocol, demonstrating its superior repeatability, rapidity, and simplicity. The effectiveness of the protocol was tested on 606 unique whole meal (WM) and refined flour (RF) bread wheat samples which revealed the presence of more than a twofold variation in both the soluble (WE-AX) and total (TOT-AX) AX fractions in WM (TOT-AX = 31.9-76.1 mg/g; WE-AX = 4.4-12.6 mg/g) and RF (TOT-AX = 7.7-22.4 mg/g; WE-AX = 3.9-11.4 mg/g). Results obtained from the AX quantification were used to test the effectiveness of four molecular markers associated with AX variation and targeting two major genomic regions on the 1BL and 6BS chromosomes. These markers appeared to be particularly relevant for the WE-AX fraction, providing insights to enable marker-assisted breeding.
Collapse
Affiliation(s)
- Nayelli Hernández-Espinosa
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Gabriel Posadas-Romano
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Susanne Dreisigacker
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Jose Crossa
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Leonardo Crespo
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| | - Maria Itria Ibba
- Global Wheat program, International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Texcoco, Edo. de México, CP 56100, México
| |
Collapse
|
3
|
Piro MC, Muylle H, Haesaert G. Exploiting Rye in Wheat Quality Breeding: The Case of Arabinoxylan Content. PLANTS (BASEL, SWITZERLAND) 2023; 12:737. [PMID: 36840085 PMCID: PMC9965444 DOI: 10.3390/plants12040737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Rye (Secale cereale subsp. cereale L.) has long been exploited as a valuable alternative genetic resource in wheat (Triticum aestivum L.) breeding. Indeed, the introgression of rye genetic material led to significant breakthroughs in the improvement of disease and pest resistance of wheat, as well as a few agronomic traits. While such traits remain a high priority in cereal breeding, nutritional aspects of grain crops are coming under the spotlight as consumers become more conscious about their dietary choices and the food industry strives to offer food options that meet their demands. To address this new challenge, wheat breeding can once again turn to rye to look for additional genetic variation. A nutritional aspect that can potentially greatly benefit from the introgression of rye genetic material is the dietary fibre content of flour. In fact, rye is richer in dietary fibre than wheat, especially in terms of arabinoxylan content. Arabinoxylan is a major dietary fibre component in wheat and rye endosperm flours, and it is associated with a variety of health benefits, including normalisation of glycaemic levels and promotion of the gut microbiota. Thus, it is a valuable addition to the human diet, and it can represent a novel target for wheat-rye introgression breeding.
Collapse
Affiliation(s)
- Maria Chiara Piro
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Caritasstraat 39, 9090 Melle, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
4
|
The Influence of Farming Systems, Genotype and Their Interaction on Bioactive Compound, Protein and Starch Content of Bread and Spelt Wheat. Foods 2022; 11:foods11244028. [PMID: 36553770 PMCID: PMC9778307 DOI: 10.3390/foods11244028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
An increase in the production and consumption of spelt products can be associated with positive effects on human health, which are attributed to bioactive compounds present in the grain. The basic success of spelt wheat in organic farming might be explained by the fact that spelt wheat belongs to the group of hulled wheat where the presence of a husk protects the seed from abiotic and biotic stress factors, thus demanding less chemical protection. The goal of this study was to investigate the variations in the bioactive compound (alkylresorcinol, arabinoxylan, β-glucan), protein, starch and fructan content of bread and spelt wheat under different farming systems (conventional and organic). The results showed higher protein and alkylresorcinol but lower fructan content in spelt wheat. Organic spelt had significantly higher starch, fiber and alkylresorcinol content but lower β-glucan and protein content than conventionally grown spelt. The spelt variety 'Oberkulmer-Rotkorn' was characterized by the highest values for the majority of analyzed traits under both farming systems. Overall, the environmental conditions (Hungary and Serbia), farming systems (conventional and organic) and wheat species (bread and spelt) contributed to the variations of the compositional traits in different manners.
Collapse
|
5
|
Nishitsuji Y, Whitney K, Nakamura K, Hayakawa K, Simsek S. Analysis of molecular weight and structural changes in water-extractable arabinoxylans during the breadmaking process. Food Chem 2022; 386:132772. [PMID: 35344729 DOI: 10.1016/j.foodchem.2022.132772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
Arabinoxylans are important for dough and breadmaking properties. It is not clear how arabinoxylans of different molecular weights behave during the breadmaking process as well as the changes in individual structures. We investigated changes in the molecular weight and structure of water-extractable arabinoxylans. It was revealed that molecules larger than high molecular weight arabinoxylans were formed during the mixing and 1st fermentation (105 min before 1st punch). High molecular weight arabinoxylan continued to be degraded from mixing to the proofing stage. The arabinose to xylose ratio increased at mixing and the 1st fermentation due to solubilization of highly substituted arabinoxylan. Low molecular weight arabinoxylan did not show degradation and structural changes during the fermentation process, whereas the weight average molecular weight of low molecular weight arabinoxylan significantly decreased (P < 0.05) at mixing. Water extractable arabinoxylan shows different behaviors for molecular weight and structural changes during the breadmaking process.
Collapse
Affiliation(s)
- Yasuyuki Nishitsuji
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan.
| | - Kristin Whitney
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Kenji Nakamura
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. Int J Mol Sci 2022; 23:ijms23073821. [PMID: 35409181 PMCID: PMC8999039 DOI: 10.3390/ijms23073821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with β-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain β-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.
Collapse
|
7
|
Whole-flours from hard and soft wheat genotypes: study of the ability of prediction test to estimate whole flour end-use. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1462-1469. [PMID: 33746274 DOI: 10.1007/s13197-020-04658-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
The aims of this work were to assess the influence of the physicochemical composition of whole flour from soft and hard wheat genotypes on cookie and bread properties, as well as the ability of the prediction tests to estimate the whole meal flour end-use. Flours from hard and soft wheat genotypes proved to have different chemical composition and particle size distribution. Flours from hard wheat had lower particle average size and dietary fiber content, and higher lipid and wet gluten contents than flours from soft wheat. Particle size distribution, water absorption capacity and chemical composition of whole flours strongly influenced bread and cookie making performance. Considering prediction tests, flours from different wheat types were successfully discriminated using SDS-SI, SRC lac, and GI. However, rather weak correlations were found between the prediction test and the cookie and bread quality parameters. The prediction test, standardized for refined flours, showed a poor performance when whole flours were used. Nevertheless, grain texture and whole flour physicochemical properties did affect bread and cookie quality parameters, thus classical prediction tests should be modified in order to estimate the end-use performance of whole flours. Moreover, a standardization of the milling process should be considered.
Collapse
|
8
|
Ibba MI, Juliana P, Hernández-Espinosa N, Posadas-Romano G, Dreisigacker S, Sehgal D, Crespo-Herrera L, Singh R, Guzmán C. Genome-wide association analysis for arabinoxylan content in common wheat (T. Aestivum L.) flour. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Effects of lamellar organization and arabinoxylan substitution rate on the properties of films simulating wheat grain aleurone cell wall. Carbohydr Polym 2021; 270:117819. [PMID: 34364586 DOI: 10.1016/j.carbpol.2021.117819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/20/2022]
Abstract
Herein, we evaluated the properties of alternate arabinoxylan (AX)/(1→3) (1→4)-β-D-glucan (BG) multilayer films. AX was extracted from wheat at three growth stages and single-component and alternate overlapping multilayer films were prepared. The physical properties, water diffusion rate, and water mobility of multilayer films during water absorption and desorption were studied. There were significant differences in the AX content and arabinose-to-xylose ratio at different growth stages. The LAX/BG multilayer films showed excellent thermal stability and mechanical properties with an increase in the relative humidity. The AX multilayer films with a low substitution rate showed a better water-binding capacity, whereas water molecules in films with a high substitution rate showed higher mobility. Therefore, a low substitution rate AX and AX/BG composite structure can improve the thermodynamic properties of multilayer films, but limit water mobility. We provide new insights on the physicochemical properties and water-regulation effects of wheat cell wall.
Collapse
|
10
|
Hernández-Espinosa N, Posadas Romano G, Crespo-Herrera L, Singh R, Guzmán C, Ibba MI. Endogenous arabinoxylans variability in refined wheat flour and its relationship with quality traits. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Dale T, Hannay I, Bedford MR, Tucker GA, Brameld JM, Parr T. The effects of exogenous xylanase supplementation on the in vivo generation of xylooligosaccharides and monosaccharides in broilers fed a wheat-based diet. Br Poult Sci 2020; 61:471-481. [PMID: 32683884 DOI: 10.1080/00071668.2020.1751805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. This study quantified xylanase-induced changes in soluble monosaccharides, xylooligosaccharides (XOS) and volatile fatty acid (VFA) contents of the different sections of the gastrointestinal tract (GIT) and whether these were related to altered bird performance. 2. An in vitro digestion of the wheat-based diet was carried out with the xylanase (Econase XT at 16,000BXU/kg diet) to compare the in vitro and in vivo generation of these XOS and monosaccharides. For the in vivo study, 80 male Ross 508 b roiler chicks were split into two groups fed a wheat-based diet with or without Econase XT (16,000BXU/kg diet) for 21 days. 3. There were no effects of Econase XT inclusion on growth performance characteristics, likely a result of the high-quality wheat diet, the corresponding high performance of the control group (FCR average of 1.45 in controls) and the relatively young age of the birds (from four to 26 days of age). 4. Econase XT supplementation increased the xylotetraose (X4) content in the colon (P = 0.046, enzyme x GIT section interaction) and the xylose contents in the colon and caeca (P < 0.001, enzyme x GIT section interaction). 5. The trend for increased acetate production in the caeca of Econase XT treated birds (P = 0.062) suggested that the XOS generated were subsequently fermented in the caeca, potentially impacting upon the types of microbiota present. 6. The present study suggested that wheat arabinoxylan degradation was enhanced by xylanase supplementation, which may have increased the production of beneficial volatile fatty acids (VFA) in the caeca, and thereby potentially modulated the caecal microbiome, but without affecting bird performance at this early age.
Collapse
Affiliation(s)
- T Dale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - I Hannay
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | | | - G A Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - J M Brameld
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| | - T Parr
- School of Biosciences, University of Nottingham, Sutton Bonington Campus , Loughborough, UK
| |
Collapse
|
12
|
Gao X, Ying R, Zhao D, Zhu J. Variation in cell wall structure and composition of wheat grain based on geography and regulatory effect of cell wall on water mobility. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:840-852. [PMID: 32534602 DOI: 10.1071/fp19302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Wheat grain from 12 different regions in China was used to study variations in the cell wall structure and chemical composition based on geography. The mobility and migration rate of water in wheat grain during moisture absorption and drying were determined under different relative humidity conditions. Depending on the geography, variations were noted in the thickness and component content of the wheat grain cell wall. Cell wall thickness was positively correlated with the total arabinoxylan (TAX) content. Cell wall thickness and TAX content of the aleurone layer were positively correlated with altitude and negatively correlated with longitude. The water migration rate decreased with the increase of cell wall thickness and TAX content. Nuclear magnetic resonance (NMR) results revealed that grains with thick aleurone cell wall showed increased molecular mobility of water. These findings lay the foundation for further study of water regulation in wheat cell wall.
Collapse
Affiliation(s)
- Xiaoquan Gao
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; and Corresponding author.
| | - Dan Zhao
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiewei Zhu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Stability analysis of wheat lines with increased level of arabinoxylan. PLoS One 2020; 15:e0232892. [PMID: 32384107 PMCID: PMC7209258 DOI: 10.1371/journal.pone.0232892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
Plant breeders have long sought to develop lines that combine outstanding performance with high and stable quality in different environments. The high-arabinoxylan (AX) Chinese variety Yumai-34 was crossed with three Central European wheat varieties (Lupus, Mv-Mambo, Ukrainka) and 31 selected high-AX lines were compared for physical (hectolitre weight, thousand grain weight, flour yield), compositional (protein content, gluten content, pentosan) and processing quality traits (gluten index, Zeleny sedimentation, Farinograph parameters) in a three-year experiment (2013–2015) in the F7-F9 generations. The stability and heritability of different traits, including the relative effects of the genotype (G) and environment (E), were determined focusing on grain composition. The contents of total and water-soluble pentosans were significantly affected by G, E and G × E interactions, but the heritability of total (TOT)-pentosan was significantly lower (0.341) than that of water-extractable (WE)-pentosan (0.825). The main component of the pentosans, the amount and composition (arabinose:xylose ratio) of the arabinoxylan (AX), was primarily determined by the environment and, accordingly, the broader heritability of these parameters were 0.516 and 0.772. However, genotype significantly affected the amount of water-soluble arabinoxylan and its composition and thus the heritability of these traits was also significant (0.840 and 0.721). The genotypes exhibiting higher stability of content of TOT-pentosan also showed more stable contents of WE-pentosan. There was a positive correlation between the stability of contents of WE-pentosan and WE-AX, while the stability of the WE-AX content and AX composition were also strongly correlated. Water absorption was strongly genetically determined with a heritability of 0.829 with the genotype determining 38.67% of the total variance. Many lines were grouped in the GGE biplot, indicating that they did not significantly differ stability.
Collapse
|
14
|
Török K, Szentmiklóssy M, Tremmel-Bede K, Rakszegi M, Tömösközi S. Possibilities and barriers in fibre-targeted breeding: Characterisation of arabinoxylans in wheat varieties and their breeding lines. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Smeets N, Nuyens F, Van Campenhout L, Delezie E, Niewold TA. Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial. Poult Sci 2018; 97:2064-2070. [PMID: 29471412 PMCID: PMC5950926 DOI: 10.3382/ps/pey038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/05/2018] [Indexed: 12/05/2022] Open
Abstract
Two broiler trials were designed to investigate the relationship between the concentration of non-starch polysaccharides (NSP) in wheat and 1) its nutritional value for broilers and 2) the efficacy of exogenous enzymes. In a balance trial, diets were formulated with 3 wheat cultivars (Rustic and Viscount—medium NSP, Centenaire—high NSP) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 144 male Ross 308 broiler chickens housed in digestibility cages. Total tract nutrient digestibilities and AMEn were measured from 18 to 22 d of age. In a performance trial, diets were formulated with wheat (medium NSP diet) or with wheat mixed with rye and barley (high NSP diet) and were tested with or without the addition of an exogenous enzyme mixture. The diets were fed to 960 male Ross 308 broilers housed in pens and broiler performance during starter, grower and finisher periods was measured. In the balance trial, wheat cultivar did not affect nutrient digestibility or AMEn. Enzyme addition caused a significant increase in nutrient digestibilities and AMEn for the diet formulated with the high NSP wheat Centenaire only. In the performance trial, feeding the high NSP diet resulted in a higher feed conversion ratio and lower final body weight compared to the medium NSP diet. The largest improvements by enzyme addition were observed in the high NSP diet. In conclusion, the study was not able to show a consistent relationship between the NSP concentration of wheat and its nutritional value, but did demonstrate that the effect of an enzyme mixture on nutrient digestibility or broiler performance depends upon the NSP concentration in the diet.
Collapse
Affiliation(s)
- N Smeets
- KU Leuven, Faculty of Bioscience Engineering, Department of Biosystems, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium.,Kemin Europa NV, Toekomstlaan 42, 2200, Herentals, Belgium
| | - F Nuyens
- Kemin Europa NV, Toekomstlaan 42, 2200, Herentals, Belgium
| | - L Van Campenhout
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Lab4Food, Kleinhoefstraat 4, 2440 Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe)
| | - E Delezie
- Institute for Agricultural and Fisheries Research (ILVO), Scheldeweg 68, 9090 Melle, Belgium
| | - T A Niewold
- KU Leuven, Faculty of Bioscience Engineering, Department of Biosystems, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe)
| |
Collapse
|
16
|
Karunaratne ND, Abbott DA, Chibbar RN, Hucl PJ, Pozniak CJ, Classen HL. In vitro assessment of the starch digestibility of western Canadian wheat market classes and cultivars. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of the study was to measure the effect of wheat market class and cultivar on starch digestibility using an in vitro model that mimics the chicken digestive tract and relate it to grain characteristics. The study evaluated 18 wheat cultivars from eight western Canadian wheat classes and, each cultivar was replicated four times. Samples were subjected to gastric and small intestine (SI) digestion phases and each sample was assayed in triplicate; glucose release was measured in SI phase. Starch granule distribution, amylose, total starch, crude protein (CP), ash, and non-starch polysaccharides (NSP) were analyzed in all wheat samples. Small intestinal phase times of 15, 60, and 120 min were chosen to approximate digestion in the terminal duodenum, jejunum, and ileum. Starch digestibility of wheat classes ranged as follows: 15 min — 33.1% to 49.1%, 60 min — 80.2% to 93.3%, and 120 min — 92.4% to 97.6%. Starch digestibility positively correlated with CP, ash, NSP, and proportion of large granules, whereas it negatively correlated with total starch, and proportion of small and medium granules. In conclusion, market class and cultivar of western Canadian wheat affects both rate and extent of starch digestibility and it is related to various grain characteristics.
Collapse
Affiliation(s)
- Namalika D. Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Dawn A. Abbott
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Ravindra N. Chibbar
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Pierre J. Hucl
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
17
|
Bader Ul Ain H, Saeed F, Ahmad N, Imran A, Niaz B, Afzaal M, Imran M, Tufail T, Javed A. Functional and health-endorsing properties of wheat and barley cell wall’s non-starch polysaccharides. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1489837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huma Bader Ul Ain
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Niaz
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tabussam Tufail
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahsan Javed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
18
|
Olaerts H, Courtin CM. Impact of Preharvest Sprouting on Endogenous Hydrolases and Technological Quality of Wheat and Bread: A Review. Compr Rev Food Sci Food Saf 2018; 17:698-713. [PMID: 33350132 DOI: 10.1111/1541-4337.12347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 11/30/2022]
Abstract
The cereal-based food industry faces the challenge to produce food of high and uniform quality to meet consumer demands. However, adverse weather conditions, including prolonged and repeated rainfall, before harvest time evoke germination of the kernels in the ear of the parent plant, which is known as preharvest sprouting (PHS). PHS results in the production of several hydrolytic enzymes in the kernel, which decreases the technological quality of wheat and causes problems during processing of the flour into cereal-based products. Therefore, wheat that is severely sprouted in the field is less suitable for products for human consumption, and is often discounted to animal feed. Up till now, most knowledge on PHS is obtained by research on laboratory-sprouted wheat as a proxy for field-sprouted wheat. Knowledge on PHS in the field itself is more scarce. This review gives a comprehensive overview of the recent findings on PHS of wheat in the field, compared to knowledge on controlled sprouting. The physiological and functional changes occurring in wheat during PHS and their impact on wheat and bread quality are discussed. This review provides a useful background for further research concerning the potential of field-sprouted wheat to be used as raw material in the food industry.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
19
|
Krogh Madsen C, Pettersson D, Hjortshøj R, Katholm A, Brinch-Pedersen H. Superior Growth Rates in Broilers Fed Wheat with Low In Vitro Feed-Xylanase Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4044-4050. [PMID: 29575893 DOI: 10.1021/acs.jafc.8b00208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Grain-batch variation in xylanase-inhibitor levels may account for variations in the efficacy of feed xylanase supplementation. This would make inhibition an important quality parameter in the routine analysis of feedstuffs. Two analytical procedures for testing feedstuffs against specific xylanases were researched: the high-throughput viscosity-pressure assay (ViPr) and the extraction-free remazol-brilliant-blue-beechwood-xylan (RBBX) assay. Thirty-two wheat cultivars were analyzed for inhibition of a commercial xylanase, Ronozyme WX. Four cultivars were selected for a feeding experiment in which the growth of 1440 broilers from ages 7-33 days was monitored. The treatments resulted up to 7 % difference (day 14) in broiler weight . The cultivar choice had an effect throughout the experiment ( p < 0.05). The performance ranking of the treatments corresponded better to xylanase inhibition than to crude-protein content or nonstarch-polysaccharide content. Wheat-grain xylanase-inhibitor content is therefore a highly relevant quality parameter when broiler diets are supplemented with feed xylanase.
Collapse
Affiliation(s)
- Claus Krogh Madsen
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg , Aarhus University , 4200 Slagelse , Denmark
| | | | | | | | - Henrik Brinch-Pedersen
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg , Aarhus University , 4200 Slagelse , Denmark
| |
Collapse
|
20
|
Effect of sourdough fermentation and baking process severity on bioactive fiber compounds in immature and ripe wheat flour bread. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
|
22
|
Vignola MB, Moiraghi M, Salvucci E, Baroni V, Pérez GT. Whole meal and white flour from Argentine wheat genotypes: Mineral and arabinoxylan differences. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Smeets N, Nuyens F, Van Campenhout L, Niewold T. Insight into the chemical composition of wheat used in European broiler diets. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Cowieson AJ, Schliffka W, Knap I, Roos FF, Schoop R, Wilson JW. Meta-analysis of effect of a mono-component xylanase on the nutritional value of wheat supplemented with exogenous phytase for broiler chickens. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A total of 1600 Ross broiler chicks were used in six separate balance studies (with equivalent protocols) to investigate the effect of an exogenous xylanase on the nutritional value of wheat (supplemented with a background of exogenous phytase) sourced from Asia, North America and Europe. The mean apparent metabolisable energy of the 10 batches of wheat per se was 13.4 MJ/kg DM and the addition of xylanase increased (P < 0.001) this by an average of 0.43 MJ/kg DM (~3.2%). Apparent ileal digestibility of nitrogen in the 10 batches of wheat per se was 69.8% and xylanase addition increased (P < 0.001) this by 2%. The apparent ileal disappearance of soluble and insoluble non-starch polysaccharides (NSP) was –53% and +5%, respectively and xylanase addition increased these by 28% and 15%, respectively. The apparent ileal disappearance of total arabinose + xylose was –10% and xylanase increased this by 21%. The apparent ileal flow of fucose was 0.38 g/kg DM intake and xylanase addition reduced (P < 0.05) this by 0.03 g/kg DM intake. There was a significant negative correlation between the apparent ileal flow of fucose and the digestibility of nitrogen and energy in the wheat and the wheat plus xylanase. These results demonstrate the continued effectiveness of exogenous xylanase to enhance the nutritional value of wheat for broiler chickens. Furthermore, the degradation of NSP fractions is confirmatory of both soluble and insoluble fibre hydrolysis in the intestine of the birds. Finally, although de-caging, viscosity amelioration and microbial changes are likely to be involved, the reduced flow of fucose in the intestine of birds fed wheat with supplemental xylanase is indicative of reduced endogenous (mucin) loss with net energy and enteric health implications. The effect of wheat pentosans and xylanase on intestinal secretion and endogenous protein and energy loss is an area for future study. Finally, the results presented herein suggest a reduction in soluble NSP concentrations in wheat over the past 2–3 decades, which is a trend that may explain anecdotal observations that the incidence of so-called sticky wheats is in decline. Systematic assessment of the implications of changing substrate concentrations and characteristics for new xylanase development is warranted.
Collapse
|
25
|
Shewry PR, Hey SJ. The contribution of wheat to human diet and health. Food Energy Secur 2015; 4:178-202. [PMID: 27610232 PMCID: PMC4998136 DOI: 10.1002/fes3.64] [Citation(s) in RCA: 511] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Wheat is the most important staple crop in temperate zones and is in increasing demand in countries undergoing urbanization and industrialization. In addition to being a major source of starch and energy, wheat also provides substantial amounts of a number of components which are essential or beneficial for health, notably protein, vitamins (notably B vitamins), dietary fiber, and phytochemicals. Of these, wheat is a particularly important source of dietary fiber, with bread alone providing 20% of the daily intake in the UK, and well-established relationships between the consumption of cereal dietary fiber and reduced risk of cardio-vascular disease, type 2 diabetes, and forms of cancer (notably colo-rectal cancer). Wheat shows high variability in the contents and compositions of beneficial components, with some (including dietary fiber) showing high heritability. Hence, plant breeders should be able to select for enhanced health benefits in addition to increased crop yield.
Collapse
Affiliation(s)
- Peter R Shewry
- Rothamsted Research Harpenden Hertfordshire AL5 2JQ UK; University of Reading Whiteknights Reading Berkshire RG6 6AH UK
| | - Sandra J Hey
- Rothamsted Research Harpenden Hertfordshire AL5 2JQ UK
| |
Collapse
|
26
|
Escarnot E, Dornez E, Verspreet J, Agneessens R, Courtin CM. Quantification and visualization of dietary fibre components in spelt and wheat kernels. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Smeets N, Nuyens F, Niewold T, Van Campenhout L. Temperature Resistance of Xylanase Inhibitors and the Presence of Grain-Associated Xylanases Affect the Activity of Exogenous Xylanases Added to Pelleted Wheat-Based Feeds. Cereal Chem 2014. [DOI: 10.1094/cchem-02-14-0032-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Natasja Smeets
- Nutrition and Health, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
- Kemin Europa N.V., Toekomstlaan 42, 2200, Herentals, Belgium
- Corresponding author. Phone: +32 14 28 62 00
| | - Filip Nuyens
- Kemin Europa N.V., Toekomstlaan 42, 2200, Herentals, Belgium
| | - Theo Niewold
- Nutrition and Health, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee , Belgium
| | - Leen Van Campenhout
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee , Belgium
- KU Leuven, Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Lab4Food, Kleinhoefstraat 4, 2440 Geel, Belgium
| |
Collapse
|
28
|
Zhao H, Guo B, Wei Y, Zhang B. Effects of grown origin, genotype, harvest year, and their interactions of wheat kernels on near infrared spectral fingerprints for geographical traceability. Food Chem 2014; 152:316-22. [DOI: 10.1016/j.foodchem.2013.11.122] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 11/07/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022]
|
29
|
Moiraghi M, Vanzetti L, Pflüger L, Helguera M, Teresa Pérez G. Effect of high molecular weight glutenins and rye translocations on soft wheat flour cookie quality. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Kiszonas AM, Fuerst EP, Morris CF. Wheat Arabinoxylan Structure Provides Insight into Function. Cereal Chem 2013. [DOI: 10.1094/cchem-02-13-0025-fi] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Alecia M. Kiszonas
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6376; affiliated with the USDA-ARS Western Wheat Quality Laboratory. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| | - E. Patrick Fuerst
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6376; affiliated with the USDA-ARS Western Wheat Quality Laboratory. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| | - Craig F. Morris
- USDA-ARS Western Wheat Quality Laboratory, E-202 Food Quality Bldg., Washington State University, P.O. Box 646394, Pullman, WA 99164-6394
- Corresponding author. Phone: (509) 335-4062. Fax: (509) 335-8573. E-mail:
| |
Collapse
|
31
|
Zhao H, Guo B, Wei Y, Zhang B. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. Food Chem 2013; 138:1902-7. [DOI: 10.1016/j.foodchem.2012.11.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 07/28/2012] [Accepted: 11/08/2012] [Indexed: 11/29/2022]
|
32
|
Mendis M, Ohm JB, Delcour JA, Gebruers K, Meinhardt S, Simsek S. Variability in Arabinoxylan, Xylanase Activity, and Xylanase Inhibitor Levels in Hard Spring Wheat. Cereal Chem 2013. [DOI: 10.1094/cchem-08-12-0103-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mihiri Mendis
- North Dakota State University, Department of Plant Sciences, Cereal Science Graduate Program, P.O. Box 6050, Department Number 7670, Fargo, ND 58108-6050, U.S.A
| | - Jae-Bom Ohm
- USDA-ARS Hard Red Spring and Durum Wheat Quality Laboratory, Harris Hall, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Steven Meinhardt
- North Dakota State University, Department of Plant Pathology, P.O. Box 6050, Department Number 7660, Fargo, ND 58108-6050, U.S.A
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, Cereal Science Graduate Program, P.O. Box 6050, Department Number 7670, Fargo, ND 58108-6050, U.S.A
- Corresponding author. Phone: (701) 231-7737. Fax: (701) 231-8474. E-mail:
| |
Collapse
|
33
|
Rheological characterisation of aqueous extracts of triticale grains and its relation to dietary fibre characteristics. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2012.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Dornez E, Holopainen U, Cuyvers S, Poutanen K, Delcour JA, Courtin CM, Nordlund E. Study of grain cell wall structures by microscopic analysis with four different staining techniques. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2011.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Rakha A, Åman P, Andersson R. Dietary fiber in triticale grain: Variation in content, composition, and molecular weight distribution of extractable components. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2011.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Ciccoritti R, Scalfati G, Cammerata A, Sgrulletta D. Variations in content and extractability of durum wheat (Triticum turgidum L. var durum) Arabinoxylans associated with genetic and environmental factors. Int J Mol Sci 2011; 12:4536-49. [PMID: 21845095 PMCID: PMC3155368 DOI: 10.3390/ijms12074536] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/01/2011] [Accepted: 07/05/2011] [Indexed: 11/17/2022] Open
Abstract
Arabinoxylans (AX) represent the most abundant components of non-starch polysaccharides in wheat, constituting about 70% of cell wall polysaccharides. An important property of AX is their ability to form highly viscous water solutions; this peculiarity has a significant impact on the technological characteristics of wheat and determines the physiologically positive influence in consumption. Durum wheat (Triticum turgidum L. var durum), the raw material for pasta production, is one of the most important crops in Italy. As part of a large project aimed at improving durum wheat quality, the characterization of the nutritional and technological aspects of whole grains was considered. Particular attention was addressed to identify the best suited genotypes for the production of innovative types of pasta with enhanced functional and organoleptic properties. The objective of the present study was to investigate the genetic variability of AX by examining a group of durum wheat genotypes collected at two localities in Italy for two consecutive years. The environmental influence on AX content and extractability was also evaluated. Variability in the AX fraction contents was observed; the results indicated that AX fractions of durum wheat grain can be affected by the genotype and environment characteristics and the different contribution of genotype and environment to total variation was evidenced. The genotype × environment (G × E) interaction was significant for all examined traits, the variations due to G × E being lower than that of genotype or environment. The data and the statistical analysis allowed identification of the Italian durum wheat varieties that were consistently higher in total arabinoxilans; in addition, principal component analysis biplots illustrated that for arabinoxylan fractions some varieties responded differently in various environment climatic conditions.
Collapse
Affiliation(s)
- Roberto Ciccoritti
- Research Unit for Cereal Quality, CRA (Agricultural Research Council), Via Cassia 176, 00191 Rome, Italy; E-Mails: (R.C.); (G.S.); (A.C.)
| | - Giulia Scalfati
- Research Unit for Cereal Quality, CRA (Agricultural Research Council), Via Cassia 176, 00191 Rome, Italy; E-Mails: (R.C.); (G.S.); (A.C.)
| | - Alessandro Cammerata
- Research Unit for Cereal Quality, CRA (Agricultural Research Council), Via Cassia 176, 00191 Rome, Italy; E-Mails: (R.C.); (G.S.); (A.C.)
| | - Daniela Sgrulletta
- Research Unit for Cereal Quality, CRA (Agricultural Research Council), Via Cassia 176, 00191 Rome, Italy; E-Mails: (R.C.); (G.S.); (A.C.)
| |
Collapse
|
37
|
Majzoobi M, Farahnaky A, Amiri S. Physicochemical Characteristics of Starch Component of Wheat Flours Obtained from Fourteen Iranian Wheat Cultivars. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2011. [DOI: 10.1080/10942910903367613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Simsek S, Whitney KL, Ohm JB, Anderson J, Mergoum M. Refrigerated dough quality: effect of environment and genotypes of hard red spring wheat. J Food Sci 2011; 76:S101-7. [PMID: 21535707 DOI: 10.1111/j.1750-3841.2010.01895.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Refrigerated dough products use wheat flour as their primary ingredient, so the quality and chemical composition of the flour determine the quality of the final product. Six varieties of hard red spring wheat, grown in 3 locations in Minnesota, U.S.A., were evaluated for use in refrigerated dough products. Total arabinoxylan percentages in the flours ranged from 0.97 to 1.54. Xylanase activity of the flour was measured and ranged from 0.20 to 0.84 mU/g. An important factor in the suitability for refrigerated dough is the syruping during storage. A large amount of variability in dough syruping was observed among the varieties and locations when the extent of dough syruping was measured over a period of 10 d. The mean dough syruping on day 10 ranged from 2.05% to 14.83%. Despite the significant interaction effect of genotype and environment, 2 varieties, Glenn and Oklee, had lower dough syrup formation with greater stability across growing locations and storage days than other varieties. Practical Application: Refrigerated dough production is one of the fastest growing segments of the ready-to-use food industry. Well-formulated and processed refrigerated doughs are practical to consume and should stay fresh during extended periods of storage; thus, maintenance of dough quality during refrigeration is critical. This study was designed to perform the research on genotypic and environmental effects on variations in dough syruping during refrigeration storage of doughs from hard red spring wheats.
Collapse
Affiliation(s)
- S Simsek
- North Dakota State Univ., Dept. of Plant Sciences, PO Box 6050, Dept# 7670 Fargo, ND 58108-6050, USA.
| | | | | | | | | |
Collapse
|
39
|
Moiraghi M, Vanzetti L, Bainotti C, Helguera M, León A, Pérez G. Relationship Between Soft Wheat Flour Physicochemical Composition and Cookie-Making Performance. Cereal Chem 2011. [DOI: 10.1094/cchem-09-10-0131] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Malena Moiraghi
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, CC 509, 5000 Córdoba, Argentina
| | | | - Carlos Bainotti
- INTA EEA Marcos Juárez, CC 21, 2580-Marcos Juárez, Argentina
| | | | - Alberto León
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, CC 509, 5000 Córdoba, Argentina
- CONICET, Av Rivadavia 1917, C1033AJ, Argentina
| | - Gabriela Pérez
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, CC 509, 5000 Córdoba, Argentina
- CONICET, Av Rivadavia 1917, C1033AJ, Argentina
- Corresponding author. Phone: +54 351 4334105, ext 255. Fax: +54 351 4334105. E-mail:
| |
Collapse
|
40
|
Gusakov AV. Proteinaceous inhibitors of microbial xylanases. BIOCHEMISTRY (MOSCOW) 2010; 75:1185-99. [DOI: 10.1134/s0006297910100019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Shewry PR, Piironen V, Lampi AM, Edelmann M, Kariluoto S, Nurmi T, Fernandez-Orozco R, Andersson AAM, Aman P, Fraś A, Boros D, Gebruers K, Dornez E, Courtin CM, Delcour JA, Ravel C, Charmet G, Rakszegi M, Bedo Z, Ward JL. Effects of genotype and environment on the content and composition of phytochemicals and dietary fiber components in rye in the HEALTHGRAIN diversity screen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9372-83. [PMID: 20438063 DOI: 10.1021/jf100053d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The effects of genotype and environment on the content of bioactive components in rye were determined with four varieties being grown on one site for three years and on three additional sites in the third year and a fourth variety being included in all trials except year 1. Clear differences were observed in the extent to which the contents of dietary fiber components (arabinoxylan, beta-glucan, total dietary fiber) and phytochemicals (folates, alkylresorcinols, sterols, tocols, phenolic acids) varied between varieties and between the same varieties grown in different sites (United Kingdom, France, Hungary, Poland) and years (2005-2007 in Hungary), with sterols being the most stable and phenolic acids the least. However, no single variety could be selected as having the highest overall level of bioactive components or as being more stable in comparison across environments.
Collapse
Affiliation(s)
- Peter R Shewry
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gebruers K, Dornez E, Bedõ Z, Rakszegi M, Courtin CM, Delcour JA. Variability in xylanase and xylanase inhibition activities in different cereals in the HEALTHGRAIN diversity screen and contribution of environment and genotype to this variability in common wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9362-9371. [PMID: 20462210 DOI: 10.1021/jf100474m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Endo-1,4-beta-d-xylanases (EC 3.2.1.8, xylanases) and xylanase inhibitors, that is, TAXI (Triticum aestivum xylanase inhibitor), XIP (xylanase inhibiting protein), and TLXI (thaumatin-like xylanase inhibitor) type xylanase inhibitors, which naturally occur in cereals, are believed to be at the basis of a significant part of the variability in biotechnological functional properties of cereals. Xylanase inhibitors in particular affect grain functionality during processing and in animal feeds when xylanases are used to improve processing parameters and product quality. In the present study the variability of xylanase, TAXI, and XIP activities was quantified in different cereals, including different wheat types [common wheat (Triticum aestivum L.), durum wheat (Triticum durum Desf.), spelt wheat (Triticum spelta L.), einkorn wheat (Triticum monococcum L.), and emmer wheat (Triticum dicoccum Schübler)], barley (Hordeum vulgare L.), rye (Secale cereale L.), and oat (Avena sativa L.), and the contribution of genotype and environment to this variability in common wheat was estimated. Substantial differences in xylanase, TAXI, and XIP activities exist between the different cereal types and varieties. Under the experimental conditions of this study, the durum wheat samples show very high xylanase activities compared to the other cereals. High TAXI and XIP activities were measured in, for example, common wheat, spelt wheat, and rye, whereas low activities occur in barley and oat. For wheat, a significant part of the variability in inhibitor levels can be explained by genotype, whereas xylanase activity is most strongly determined by environment. The results obtained suggest that plant breeders and industry to certain extent can select for wheat varieties with high or low xylanase inhibition activities, but the relatively high contribution of the genotype-environment interaction term to the total variability in inhibition activities indicates that TAXI and XIP activities are not very stable breeding parameters.
Collapse
Affiliation(s)
- Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 2463, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
43
|
Gebruers K, Dornez E, Bedõ Z, Rakszegi M, Frás A, Boros D, Courtin CM, Delcour JA. Environment and genotype effects on the content of dietary fiber and its components in wheat in the HEALTHGRAIN diversity screen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9353-61. [PMID: 20462191 DOI: 10.1021/jf100447g] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Within the HEALTHGRAIN diversity screen, the variability of the contents of dietary fiber (DF) and components thereof was studied in wheat. Furthermore, the contribution of genotype and environment to this variability was estimated. The levels of total DF (TDF), total nonstarch polysaccharide (TOTNSP), water-extractable nonstarch polysaccharide (WENSP), total arabinoxylan (TOTAX), lignin, and beta-glucan in whole meal, flour, and/or bran varied approximately 1.8-fold. The highest variability was observed for the water-extractable arabinoxylan (WEAX) level in flour and bran (approximately 3.7-fold). Genotype and environment contributed to a similar extent to the variability in TDF, TOTNSP, and TOTAX content in wheat. The observed relatively high impact of genotype-environment interaction suggests that the levels of these constituents are weak breeding parameters. The WENSP level is a more stable parameter as the effect of the interaction term was much less than the impact of genotype. For TOTAX and WEAX in flour, WEAX in bran, beta-glucan in whole meal, and extract viscosity, wheat genotype determined approximately 50% or higher of the variation observed, whereas the impact of the genotype-environment interaction was relatively low. These findings suggest that the health-related and technological functionality of wheat can be directed to a certain extent by selection of appropriate wheat varieties.
Collapse
Affiliation(s)
- Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 2463, 3001 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedo Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 2010; 11:71-83. [PMID: 20697765 DOI: 10.1007/s10142-010-0183-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/30/2022]
Abstract
Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.
Collapse
Affiliation(s)
- Umar Masood Quraishi
- INRA-University Blaise Pascal, UMR1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, 63100, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Oliete B, Pérez GT, Gómez M, Ribotta PD, Moiraghi M, León AE. Use of wheat, triticale and rye flours in layer cake production. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02183.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Dornez E, Gebruers K, Delcour JA, Courtin CM. Grain-associated xylanases: occurrence, variability, and implications for cereal processing. Trends Food Sci Technol 2009. [DOI: 10.1016/j.tifs.2009.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Croes E, Gebruers K, Luyten N, Delcour JA, Courtin CM. Immunoblot quantification of three classes of proteinaceous xylanase inhibitors in different wheat ( Triticum aestivum ) cultivars and milling fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:1029-1035. [PMID: 19138080 DOI: 10.1021/jf802638n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In wheat ( Triticum aestivum ) grains, TAXI- (T. aestivum xylanase inhibitor), XIP- (xylanase inhibiting protein), and TLXI-type (thaumatin-like xylanase inhibitor) xylanase inhibitors (XIs) are expressed in considerable levels and under different forms. As these proteins have a significant impact on microbial xylanases frequently used in cereal-based biotechnological processes, knowledge of their quantitative and qualitative variability in wheat is of great interest. This paper reports the successful use of immunoquantification by Western blotting to determine the intercultivar variation in the three structurally different classes of XIs, as well as their distribution among various industrial milling fractions. TAXI and XIP protein levels in eight wheat cultivars ranged from 81 to 190 ppm and from 156 to 371 ppm, with average values of 133 and 235 ppm, respectively. Using immunoblotting, TLXI protein levels could be measured directly for the first time. They ranged from 51 to 150 ppm and amounted to 112 ppm on average. The three classes of XIs were distributed among different wheat milling fractions in a similar way, with 4 and 10 times higher concentrations in the aleurone-enriched fraction than in white flour and pericarp fractions, respectively. Immunoblot patterns suggested that the observed intercultivar and spatial variabilities within the wheat grain are not due to the presence or absence of specific members of the large polymorphic XI families but to differences in the overall level and/or proportions of the specific members.
Collapse
Affiliation(s)
- Evi Croes
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
48
|
Li S, Morris CF, Bettge AD. Genotype and Environment Variation for Arabinoxylans in Hard Winter and Spring Wheats of the U.S. Pacific Northwest. Cereal Chem 2009. [DOI: 10.1094/cchem-86-1-0088] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuobi Li
- Northwest A&F University, Yangling, Shaanxi 712100, China. On sabbatical at the Western Wheat Quality Laboratory
| | - Craig F. Morris
- United States Department of Agriculture (USDA)–Agricultural Research Service Western Wheat Quality Laboratory, Washington State University, Pullman, WA 99164-6394. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
- Corresponding author. Phone: +1.509.335.4062. Fax: +1.509.335.8573. E-mail:
| | - Arthur D. Bettge
- United States Department of Agriculture (USDA)–Agricultural Research Service Western Wheat Quality Laboratory, Washington State University, Pullman, WA 99164-6394. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| |
Collapse
|
49
|
Gebruers K, Dornez E, Boros D, Fraś A, Dynkowska W, Bedo Z, Rakszegi M, Delcour JA, Courtin CM. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN Diversity Screen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9740-9. [PMID: 18921978 DOI: 10.1021/jf800975w] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Within the HEALTHGRAIN diversity screening program, the variation in the content of dietary fiber and components thereof in different types of wheat was studied. The wheat types were winter (131 varieties) and spring (20 varieties) wheats (both Triticum aestivum L., also referred to as common wheats), durum wheat (Triticum durum Desf., 10 varieties), spelt wheat (Triticum spelta L., 5 varieties), einkorn wheat (T. monococcum L., 5 varieties), and emmer wheat (Triticum dicoccum Schubler, 5 varieties). Common wheats contained, on average, the highest level of dietary fiber [11.5-18.3% of dry matter (dm)], whereas einkorn and emmer wheats contained the lowest level (7.2-12.8% of dm). Intermediate levels were measured in durum and spelt wheats (10.7-15.5% of dm). Also, on the basis of the arabinoxylan levels in bran, the different wheat types could be divided this way, with ranges of 12.7-22.1% of dm for common wheats, 6.1-14.4% of dm for einkorn and emmer wheats, and 10.9-13.9% of dm for durum and spelt wheats. On average, bran arabinoxylan made up ca. 29% of the total dietary fiber content of wheat. In contrast to what was the case for bran, the arabinoxylan levels in flour were comparable between the different types of wheat. For wheat, in general, they varied between 1.35 and 2.75% of dm. Einkorn, emmer, and durum wheats contained about half the level of mixed-linkage beta-glucan (0.25-0.45% of dm) present in winter, spring, and spelt wheats (0.50-0.95% of dm). All wheat types had Klason lignin, the levels of which varied from 1.40 to 3.25% of dm. The arabinoxylan contents in bran and the dietary fiber contents in wholemeal were inversely and positively related with bran yield, respectively. Aqueous wholemeal extract viscosity, a measure for the level of soluble dietary fiber, was determined to large extent by the level of water-extractable arabinoxylan. In conclusion, the present study revealed substantial variation in the contents of dietary fiber and constituents thereof between different wheat types and varieties.
Collapse
Affiliation(s)
- Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 2463, 3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Effects of fungicide treatment, N-fertilisation and harvest date on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|