1
|
Li R, Liu J, Chai L, Du D, Yang W, Zhu J, Gao Y, Liu Y, Miao L, Song L, Xie X, Chen Y, Zhang Z, Ni P, Zhao Y, Li Z, Lu L, Guo W, Peng H, Sun Q, Ni Z. Natural variation in TaERF-A1 confers semi-dwarf and lodging-resistant plant architecture in wheat. PLANT COMMUNICATIONS 2025; 6:101194. [PMID: 39563037 PMCID: PMC11956107 DOI: 10.1016/j.xplc.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The introduction of Reduced height (Rht) genes into wheat varieties has been pivotal in developing semi-dwarf plant architectures, significantly improving lodging resistance and harvest indices. Therefore, identifying new Rht gene resources for breeding semi-dwarf wheat cultivars has been a key strategy for ensuring high and stable grain yields since the 1960s. In this study, we report the map-based cloning of TaERF-A1, which encodes an AP2/ERF (APETALA2/ethylene responsive factor) transcription factor that acts as a positive regulator of wheat stem elongation, as a novel gene that regulates plant height and spike length. The natural variant, TaERF-A1JD6, features a Phe (derived from 'Nongda3338') to Ser (derived from 'Jingdong6') substitution at position 178, which significantly reduces the stability of the TaERF-A1 protein. This substitution leads to partially attenuated transcriptional activation of downstream target genes, including TaPIF4 (Triticum aestivum Phytochrome Interacting Factor 4), thereby restricting stem and spike elongation. Importantly, the introgression of the semi-dwarfing allele TaERF-A1JD6 into wheat can significantly enhance lodging resistance, particularly in dense cropping systems. Therefore, our study identifies TaERF-A1JD6 as a new Rht gene resource for breeding semi-dwarf wheat varieties with increased yield stability.
Collapse
Affiliation(s)
- Renhan Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Lingling Chai
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Dejie Du
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Wen Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Jun Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Yaotian Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Yunjie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Long Song
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Zhaoju Li
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Lahu Lu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China.
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Dallinger HG, Löschenberger F, Azrak N, Ametz C, Michel S, Bürstmayr H. Genome-wide association mapping for pre-harvest sprouting in European winter wheat detects novel resistance QTL, pleiotropic effects, and structural variation in multiple genomes. THE PLANT GENOME 2024; 17:e20301. [PMID: 36851839 DOI: 10.1002/tpg2.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/20/2022] [Indexed: 06/18/2023]
Abstract
Pre-harvest sprouting (PHS), germination of seeds before harvest, is a major problem in global wheat (Triticum aestivum L.) production, and leads to reduced bread-making quality in affected grain. Breeding for PHS resistance can prevent losses under adverse conditions. Selecting resistant lines in years lacking pre-harvest rain, requires challenging of plants in the field or in the laboratory or using genetic markers. Despite the availability of a wheat reference and pan-genome, linking markers, genes, allelic, and structural variation, a complete understanding of the mechanisms underlying various sources of PHS resistance is still lacking. Therefore, we challenged a population of European wheat varieties and breeding lines with PHS conditions and phenotyped them for PHS traits, grain quality, phenological and agronomic traits to conduct genome-wide association mapping. Furthermore, we compared these marker-trait associations to previously reported PHS loci and evaluated their usefulness for breeding. We found markers associated with PHS on all chromosomes, with strong evidence for novel quantitative trait locus/loci (QTL) on chromosome 1A and 5B. The QTL on chromosome 1A lacks pleiotropic effect, for the QTL on 5B we detected pleiotropic effects on phenology and grain quality. Multiple peaks on chromosome 4A co-located with the major resistance locus Phs-A1, for which two causal genes, TaPM19 and TaMKK3, have been proposed. Mapping markers and genes to the pan-genome and chromosomal alignments provide evidence for structural variation around this major PHS-resistance locus. Although PHS is controlled by many loci distributed across the wheat genome, Phs-A1 on chromosome 4A seems to be the most effective and widely deployed source of resistance, in European wheat varieties.
Collapse
Affiliation(s)
- Hermann G Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | | | - Naim Azrak
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Christian Ametz
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, Probstdorf, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| | - Hermann Bürstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, Tulln, Austria
| |
Collapse
|
3
|
Muqaddasi QH, Muqaddasi RK, Ebmeyer E, Korzun V, Argillier O, Mirdita V, Reif JC, Ganal MW, Röder MS. Genetic control and prospects of predictive breeding for European winter wheat's Zeleny sedimentation values and Hagberg-Perten falling number. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:229. [PMID: 37874400 PMCID: PMC10598174 DOI: 10.1007/s00122-023-04450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2023] [Indexed: 10/25/2023]
Abstract
KEY MESSAGE Sedimentation values and falling number in the last decades have helped maintain high baking quality despite rigorous selection for grain yield in wheat. Allelic combinations of major loci sustained the bread-making quality while improving grain yield. Glu-D1, Pinb-D1, and non-gluten proteins are associated with sedimentation values and falling number in European wheat. Zeleny sedimentation values (ZSV) and Hagberg-Perten falling number (HFN) are among the most important parameters that help determine the baking quality classes of wheat and, thus, influence the monetary benefits for growers. We used a published data set of 372 European wheat varieties evaluated in replicated field trials in multiple environments. ZSV and HFN traits hold a wide and significant genotypic variation and high broad-sense heritability. The genetic correlations revealed positive and significant associations of ZSV and HFN with each other, grain protein content (GPC) and grain hardness; however, they were all significantly negatively correlated with grain yield. Besides, GPC appeared to be the major predictor for ZSV and HFN. Our genome-wide association analyses based on high-quality SSR, SNP, and candidate gene markers revealed a strong quantitative genetic nature of ZSV and HFN by explaining their total genotypic variance as 41.49% and 38.06%, respectively. The association of known Glutenin (Glu-1) and Puroindoline (Pin-1) with ZSV provided positive analytic proof of our studies. We report novel candidate loci associated with globulins and albumins-the non-gluten monomeric proteins in wheat. In addition, predictive breeding analyses for ZSV and HFN suggest using genomic selection in the early stages of breeding programs with an average prediction accuracy of 81 and 59%, respectively.
Collapse
Affiliation(s)
- Quddoos H Muqaddasi
- European Wheat Breeding Center, BASF Agricultural Solutions GmbH, Am Schwabeplan 8, 06466, Stadt Seeland OT Gatersleben, Germany.
- KWS SAAT SE & Co. KGaA, Einbeck, 37574, Germany.
| | - Roop Kamal Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | | | | | | | - Vilson Mirdita
- European Wheat Breeding Center, BASF Agricultural Solutions GmbH, Am Schwabeplan 8, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Martin W Ganal
- TraitGenetics GmbH, Am Schwabeplan 1B, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
4
|
Wang M, Lu J, Liu R, Li Y, Ao D, Wu Y, Zhang L. Identification and validation of a major quantitative trait locus for spike length and compactness in the wheat ( Triticum aestivum L.) line Chuanyu12D7. FRONTIERS IN PLANT SCIENCE 2023; 14:1186183. [PMID: 37469784 PMCID: PMC10353862 DOI: 10.3389/fpls.2023.1186183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
Spike length (SL) and spike compactness (SC) are crucial traits related to wheat (Triticum aestivum L.) yield potential. In this study, a backcrossed inbred lines (BILs) population segregating for SL/SC was developed by using a commercial variety chuanyu25 as recurrent parent and a backbone parent Chuanyu12D7. Bulked segregant analysis (BSA) combined with the Wheat 660K SNP array was performed to conduct quantitative trait locus (QTL) mapping. A major and stable SL/SC QTL (designated as QSl/Sc.cib-2D.1) was identified on chromosome 2DS, explaining 45.63-59.72% of the phenotypic variation. QSl/Sc.cib-2D.1 was mapped to a 102.29-Kb interval by flanking SNPs AX-110276364 and AX-111593853 using a BC4F2:3 population. Since QSl/Sc.cib-2D.1 is linked to the Rht8 gene, their additive effects on plant type and spike type were analysed. Remarkably, the superior allele of QSl/Sc.cib-2D.1 combined with Rht8 can increase SL and TGW, and decrese SC without any apparent trade-offs in other yield-related traits. In addition, the closely linked kompetitive allele-specific PCR (KASP) markers of this locus were developed for marker-assisted selection (MAS) breeding. Four genes within the physical interval were considered as potential candidates based on expression patterns as well as orthologous gene functions. These results laid the foundation for map-based cloning of the gene(s) underlying QSl/Sc.cib-2D.1 and its potential application in wheat ideotype breeding.
Collapse
Affiliation(s)
- Mingxiu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- Department of Agriculture, Forestry and Food Engineering of Yibin University, Yibin, China
| | - Yunfang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Donghui Ao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
5
|
Fradgley NS, Gardner K, Kerton M, Swarbreck SM, Bentley AR. Trade-offs in the genetic control of functional and nutritional quality traits in UK winter wheat. Heredity (Edinb) 2022; 128:420-433. [PMID: 35393550 PMCID: PMC9178040 DOI: 10.1038/s41437-022-00503-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
A complex network of trade-offs exists between wheat quality and nutritional traits. We investigated the correlated relationships among several milling and baking traits as well as mineral density in refined white and whole grain flour. Our aim was to determine their pleiotropic genetic control in a multi-parent population over two trial years with direct application to practical breeding. Co-location of major quantitative trait loci (QTL) and principal component based multi-trait QTL mapping increased the power to detect QTL and revealed pleiotropic effects explaining many complementary and antagonistic trait relationships. High molecular weight glutenin subunit genes explained much of the heritable variation in important dough rheology traits, although additional QTL were detected. Several QTL, including one linked to the TaGW2 gene, controlled grain size and increased flour extraction rate. The semi-dwarf Rht-D1b allele had a positive effect on Hagberg falling number, but reduced grain size, specific weight, grain protein content and flour water absorption. Mineral nutrient concentrations were lower in Rht-D1b lines for many elements, in wholemeal and white flour, but potassium concentration was higher in Rht-D1b lines. The presence of awns increased calcium content without decreasing extraction rate, despite the negative correlation between these traits. QTL were also found that affect the relative concentrations of key mineral nutrients compared to phosphorus which may help increase bioavailability without associated anti-nutritional effects of phytic acid. Taken together these results demonstrate the potential for marker-based selection to optimise trait trade-offs and enhance wheat nutritional value by considering pleiotropic genetic effects across multiple traits.
Collapse
Affiliation(s)
- Nick S Fradgley
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Keith Gardner
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, C.P.56237, Mexico
| | | | | | - Alison R Bentley
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, C.P.56237, Mexico
| |
Collapse
|
6
|
White J, Sharma R, Balding D, Cockram J, Mackay IJ. Genome-wide association mapping of Hagberg falling number, protein content, test weight, and grain yield in U.K. wheat. CROP SCIENCE 2022; 62:965-981. [PMID: 35915786 PMCID: PMC9314726 DOI: 10.1002/csc2.20692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Association mapping using crop cultivars allows identification of genetic loci of direct relevance to breeding. Here, 150 U.K. wheat (Triticum aestivum L.) cultivars genotyped with 23,288 single nucleotide polymorphisms (SNPs) were used for genome-wide association studies (GWAS) using historical phenotypic data for grain protein content, Hagberg falling number (HFN), test weight, and grain yield. Power calculations indicated experimental design would enable detection of quantitative trait loci (QTL) explaining ≥20% of the variation (PVE) at a relatively high power of >80%, falling to 40% for detection of a SNP with an R2 ≥ .5 with the same QTL. Genome-wide association studies identified marker-trait associations for all four traits. For HFN (h 2 = .89), six QTL were identified, including a major locus on chromosome 7B explaining 49% PVE and reducing HFN by 44 s. For protein content (h 2 = 0.86), 10 QTL were found on chromosomes 1A, 2A, 2B, 3A, 3B, and 6B, together explaining 48.9% PVE. For test weight, five QTL were identified (one on 1B and four on 3B; 26.3% PVE). Finally, 14 loci were identified for grain yield (h 2 = 0.95) on eight chromosomes (1A, 2A, 2B, 2D, 3A, 5B, 6A, 6B; 68.1% PVE), of which five were located within 16 Mbp of genetic regions previously identified as under breeder selection in European wheat. Our study demonstrates the utility of exploiting historical crop datasets, identifying genomic targets for independent validation, and ultimately for wheat genetic improvement.
Collapse
Affiliation(s)
- Jon White
- Genetics and Breeding Dep.NIAB93 Lawrence Weaver RoadCambridge, CB3 0LEUK
- Institute of GeneticsUniv. College LondonLondon, WC1E 6BTUK
| | - Rajiv Sharma
- Scotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburgh, EH9 3JGUK
| | - David Balding
- Institute of GeneticsUniv. College LondonLondon, WC1E 6BTUK
- Current address: Melbourne Integrative GenomicsUniv. of MelbourneMelbourneAustralia
| | - James Cockram
- Genetics and Breeding Dep.NIAB93 Lawrence Weaver RoadCambridge, CB3 0LEUK
| | - Ian J. Mackay
- Scotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburgh, EH9 3JGUK
| |
Collapse
|
7
|
Van De Velde K, Thomas SG, Heyse F, Kaspar R, Van Der Straeten D, Rohde A. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles. MOLECULAR PLANT 2021; 14:679-687. [PMID: 33422695 DOI: 10.1016/j.molp.2021.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The unprecedented wheat yield increases during the Green Revolution were achieved through the introduction of the Reduced height (Rht)-B1b and Rht-D1b semi-dwarfing alleles. These Rht-1 alleles encode growth-repressing DELLA genes containing a stop codon within their open reading frame that confers gibberellin (GA)-insensitive semi-dwarfism. In this study, we successfully took the hurdle of detecting wild-type RHT-1 proteins in different wheat organs and confirmed their degradation in response to GAs. We further demonstrated that Rht-B1b and Rht-D1b produce N-terminal truncated proteins through translational reinitiation. Expression of these N-terminal truncated proteins in transgenic lines and in Rht-D1c, an allele containing multiple Rht-D1b copies, demonstrated their ability to cause strong dwarfism, resulting from their insensitivity to GA-mediated degradation. N-terminal truncated proteins were detected in spikes and nodes, but not in the aleurone layers. Since Rht-B1b and Rht-D1b alleles cause dwarfism but have wild-type dormancy, this finding suggests that tissue-specific differences in translational reinitiation may explain why the Rht-1 alleles reduce plant height without affecting dormancy. Taken together, our findings not only reveal the molecular mechanism underlying the Green Revolution but also demonstrate that translational reinitiation in the main open reading frame occurs in plants.
Collapse
Affiliation(s)
- Karel Van De Velde
- BASF Belgium Coordination Center - Innovation Center Gent, Technologiepark 101, 9052 Ghent, Belgium
| | | | - Floor Heyse
- BASF Belgium Coordination Center - Innovation Center Gent, Technologiepark 101, 9052 Ghent, Belgium
| | - Rim Kaspar
- BASF Belgium Coordination Center - Innovation Center Gent, Technologiepark 101, 9052 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | - Antje Rohde
- BASF Belgium Coordination Center - Innovation Center Gent, Technologiepark 101, 9052 Ghent, Belgium.
| |
Collapse
|
8
|
Evaluation of the impact of heat on wheat dormancy, late maturity α-amylase and grain size under controlled conditions in diverse germplasm. Sci Rep 2020; 10:17800. [PMID: 33082361 PMCID: PMC7576155 DOI: 10.1038/s41598-020-73707-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
In the Australian wheat belts, short episodes of high temperatures or hot spells during grain filling are becoming increasingly common and have an enormous impact on yield and quality, bringing multi-billion losses annually. This problem will become recurrent under the climate change scenario that forecast increasing extreme temperatures, but so far, no systematic analysis of the resistance to hot spells has yet been performed in a diverse genetic background. We developed a protocol to study the effects of heat on three important traits: grain size, grain dormancy and the presence of Late Maturity α-Amylase (LMA), and we validated it by analysing the phenotypes of 28 genetically diverse wheat landraces and exploring the potential variability existing in the responses to hot spells. Using controlled growth environments, the different genotypes were grown in our standard conditions until 20 days after anthesis, and then moved for 10 days into a heat chamber. Our study showed that our elevated temperature treatment during mid-late filling triggered multiple detrimental effects on yield and quality. We observed a reduction in grain size, a reduction in grain dormancy and increased LMA expression in most of the tested genotypes, but potential resistant lines were identified for each analyzed trait opening new perspectives for future genetic studies and breeding for heat-insensitive commercial lines.
Collapse
|
9
|
Derkx AP, Mares DJ. Late-maturity α-amylase expression in wheat is influenced by genotype, temperature and stage of grain development. PLANTA 2020; 251:51. [PMID: 31950359 DOI: 10.1007/s00425-020-03341-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Late-maturity α-amylase (LMA) expression in wheat grains can be induced by either a cool temperature shock close to physiological maturity or continuous cool maximum temperatures during grain development. Late-maturity α-amylase (LMA) is a genetic trait in wheat (Triticum aestivum L.) involving the production of α-amylase during grain development, which can result in an unacceptably low Falling Number (FN) in mature grain and consequent grain downgrading. Comparison of the FN test, an α-amylase activity assay and a high pI α-amylase-specific ELISA on the same meal samples gave equivalent results; ELISA was used for further experiments because of its isoform specificity. A cool temperature shock during the middle stages of grain development is known to induce LMA and is used for phenotypic screening. It was determined that a cool temperature treatment of seven days was required to reliably induce LMA. Glasshouse studies performed in summer and winter demonstrated that temperature affected the timing of sensitivity to cool-shock by altering the rate and duration of grain development, but that the sensitive grain developmental stage was unchanged at 35-45% moisture content. Wheat varieties with Rht-B1b or Rht-D1b dwarfing genes responded to a cool-shock only from mid grain filling until physiological maturity, whilst genotypes with Rht8c or without a dwarfing gene expressed LMA in response to a cool-shock during a wider developmental range. A continuous cool maximum temperature regimen (23 °C/15 °C day/night) during grain development also resulted in LMA expression and showed a stronger association with field expression than the cool-shock treatment. These results clarify how genotype, temperature and grain developmental stage determine LMA expression, and allow for the improvement of LMA phenotypic screening methods.
Collapse
Affiliation(s)
- Adinda P Derkx
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia.
| | - Daryl J Mares
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
10
|
Li Q, Pan Z, Gao Y, Li T, Liang J, Zhang Z, Zhang H, Deng G, Long H, Yu M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined With Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. FRONTIERS IN PLANT SCIENCE 2020; 11:600788. [PMID: 33424899 PMCID: PMC7793810 DOI: 10.3389/fpls.2020.600788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhifen Pan, ; orcid.org/0000-0002-1692-5425
| | - Yuan Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
11
|
Mo Y, Pearce S, Dubcovsky J. Phenotypic and transcriptomic characterization of a wheat tall mutant carrying an induced mutation in the C-terminal PFYRE motif of RHT-B1b. BMC PLANT BIOLOGY 2018; 18:253. [PMID: 30348083 PMCID: PMC6196432 DOI: 10.1186/s12870-018-1465-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/03/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND As central regulators of the gibberellic acid (GA) signaling pathway in plants, DELLA proteins function as growth repressors and affect diverse biological processes. The wheat RHT-B1b and RHT-D1b semi-dwarfing alleles, which encode GA-insensitive DELLA proteins, have been widely adopted in modern wheat varieties to improve lodging tolerance and harvest index. However, the molecular mechanisms by which DELLA modulates these responses in wheat remain largely unknown. RESULTS We identified a tall tetraploid wheat mutant line carrying an induced missense mutation (E529K) in the PFYRE motif of RHT-B1b that partially suppressed the semi-dwarf phenotype. The height-increasing effect of RHT-B1bE529K relative to RHT-B1b (19 cm or 21% increase) was significantly smaller than the effect of RHT-B1a (33 cm or 34% increase) relative to RHT-B1b in the same field experiment. The RHT-B1bE529K mutation was also associated with length increases in coleoptiles, seedling shoots, and stem internodes relative to the RHT-B1b allele. We detected no significant differences in germination rate, seedling root length, tiller number, flag leaf size, spike length, or yield components. Using RNA-seq, we compared gene expression profiles of plants encoding RHT-B1b and RHT-B1bE529K in coleoptile, first leaf, and elongating peduncles. We detected limited overlap among tissues of the genes differentially regulated by the two genotypes, and more genes upregulated (77%) than downregulated (23%) in RHT-B1bE529K relative to RHT-B1b. These results suggest that the wheat DELLA protein affects the transcriptome in a tissue-specific manner and that the mutation mainly eliminates or reduces repression functions of the RHT-B1 protein. Our study identified distinct sets of potential DELLA direct or indirect target genes involved in cell wall and carbohydrate metabolisms, cell cycle/division, and hormone pathways. CONCLUSIONS We identified the hypomorphic RHT-B1bE529K allele that confers an intermediate plant height and coleoptile elongation. This allele can be useful in rain-fed wheat breeding programs where the strong reduction in height and biomass associated with RHT-B1b has detrimental effects. Transcriptomic characterization of different tissues from the plants encoding RHT-B1bE529K and RHT-B1b provided valuable information for identifying DELLA downstream GA response genes in wheat.
Collapse
Affiliation(s)
- Youngjun Mo
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- National Institute of Crop Science, Rural Development Administration, Wanju, 55365 South Korea
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
12
|
Newberry M, Zwart AB, Whan A, Mieog JC, Sun M, Leyne E, Pritchard J, Daneri-Castro SN, Ibrahim K, Diepeveen D, Howitt CA, Ral JPF. Does Late Maturity Alpha-Amylase Impact Wheat Baking Quality? FRONTIERS IN PLANT SCIENCE 2018; 9:1356. [PMID: 30245701 PMCID: PMC6137811 DOI: 10.3389/fpls.2018.01356] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/28/2018] [Indexed: 05/27/2023]
Abstract
Late maturity α-amylase (LMA) and pre-harvest sprouting (PHS) are both recognized as environmentally induced grain quality defects resulting from abnormally high levels of α-amylase. LMA is a more recently identified quality issue that is now receiving increasing attention worldwide and whose prevalence is now seen as impeding the development of superior quality wheat varieties. LMA is a genetic defect present in specific wheat genotypes and is characterized by elevated levels of the high pI TaAMY1 α-amylase, triggered by environmental stress during wheat grain development. TaAMY1 remains present in the aleurone through the harvest, lowering Falling Number (FN) at receival, causing a down-grading of the grain, often to feed grade, thus reducing the farmers' income. This downgrading is based on the assumption within the grain industry that, as for PHS, a low FN represents poor quality grain. Consequently any wheat line possessing low FN or high α-amylase levels is automatically considered a poor bread wheat despite there being no published evidence to date, to show that LMA is detrimental to end product quality. To evaluate the validity of this assumption a comprehensive evaluation of baking properties was performed from LMA prone lines using a subset of tall non-Rht lines from a multi-parent advanced generation inter-cross (MAGIC) wheat population grown at three different sites. LMA levels were determined along with quality parameters including end product functionality such as oven spring, bread loaf volume and weight, slice area and brightness, gas cell number and crumb firmness. No consistent or significant phenotypic correlation was found between LMA related FN and any of the quality traits. This manuscript provides for the first time, compelling evidence that LMA has limited impact on bread baking end product functionality.
Collapse
Affiliation(s)
- Marcus Newberry
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Alexander B. Zwart
- Data61, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Alex Whan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Jos C. Mieog
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Data61, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - May Sun
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Emmett Leyne
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Jenifer Pritchard
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | | | - Kutty Ibrahim
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Dean Diepeveen
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Crispin A. Howitt
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Jean-Philippe F. Ral
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
13
|
Brown LK, Wiersma AT, Olson EL. Preharvest sprouting and α-amylase activity in soft winter wheat. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Derkx AP, Harding CA, Miraghazadeh A, Chandler PM. Overgrowth (Della) mutants of wheat: development, growth and yield of intragenic suppressors of the Rht-B1c dwarfing gene. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:525-537. [PMID: 32480585 DOI: 10.1071/fp16262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/01/2017] [Indexed: 06/11/2023]
Abstract
A suppressor screen using the dwarf Rht-B1c Della mutant of wheat (Triticum aestivum L.) led to the isolation of overgrowth mutants, which retained the original dwarfing gene but grew at a faster rate because of a new mutation elsewhere in that gene. Forty-six alleles were identified, which included amino acid substitutions, premature stop codons, and splice site alterations. The sites of amino acid substitution were primarily localised around conserved motifs in the DELLA protein, and these mutants showed a wide range in their extent of growth recovery (dwarf, semidwarf, tall). Detailed growth comparisons were made on a wide height range of backcrossed overgrowth alleles, comparing stem and spike growth, leaf size, tillering, phenological development, coleoptile length, grain dormancy and grain yield. There were large and reproducible differences between alleles for some traits, whereas others were largely unaffected or varied with growth conditions. Some of the overgrowth alleles offer promise as alternatives to the Rht-B1b and Rht-D1b dwarfing genes, allowing a wider range of height control, improved grain dormancy and equivalent grain yield. The collection of mutants will also be valuable as a resource to study the effect of height on different physiological or agronomic traits, and in elucidating DELLA protein function.
Collapse
Affiliation(s)
- Adinda P Derkx
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Carol A Harding
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | - Peter M Chandler
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Thomas SG. Novel Rht-1 dwarfing genes: tools for wheat breeding and dissecting the function of DELLA proteins. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:354-358. [PMID: 28201630 PMCID: PMC5444474 DOI: 10.1093/jxb/erw509] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Stephen G Thomas
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
16
|
Van De Velde K, Chandler PM, Van Der Straeten D, Rohde A. Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:443-455. [PMID: 28073950 PMCID: PMC5853533 DOI: 10.1093/jxb/erw471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/22/2016] [Indexed: 05/29/2023]
Abstract
During the Green Revolution, substantial increases in wheat (Triticum aestivum) yields were realized, at least in part, through the introduction of the Reduced height (Rht)-B1b and Rht-D1b semi-dwarfing alleles. In contrast to Rht-B1b and Rht-D1b, the Rht-B1c allele is characterized by extreme dwarfism and exceptionally strong dormancy. Recently, 35 intragenic Rht-B1c suppressor alleles were created in the spring wheat cultivar Maringá, and termed overgrowth (ovg) alleles. Here, 14 ovg alleles with agronomically relevant plant heights were reproducibly classified into nine tall and five semi-dwarf alleles. These alleles differentially affected grain dormancy, internode elongation rate, and coleoptile and leaf lengths. The stability of these ovg effects was demonstrated for three ovg alleles in different genetic backgrounds and environments. Importantly, two semi-dwarf ovg alleles increased dormancy, which correlated with improved pre-harvest sprouting (PHS) resistance. Since no negative effects on grain yield or quality were observed, these semi-dwarf ovg alleles are valuable for breeding to achieve adequate height reduction and protection of grain quality in regions prone to PHS. Furthermore, this research highlights a unique role for the first 70 amino acids of the DELLA protein, encoded by the Rht-1 genes, in grain dormancy.
Collapse
Affiliation(s)
- Karel Van De Velde
- R&D Innovation Center, Bayer CropScience, Ghent, Belgium
- Ghent University, Department of Physiology, Laboratory of Functional Plant Biology, Ghent, Belgium
| | | | | | - Antje Rohde
- R&D Innovation Center, Bayer CropScience, Ghent, Belgium
| |
Collapse
|
17
|
Alghabari F, Ihsan MZ, Khaliq A, Hussain S, Daur I, Fahad S, Nasim W. Gibberellin-sensitive Rht alleles confer tolerance to heat and drought stresses in wheat at booting stage. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Casebow R, Hadley C, Uppal R, Addisu M, Loddo S, Kowalski A, Griffiths S, Gooding M. Reduced Height (Rht) Alleles Affect Wheat Grain Quality. PLoS One 2016; 11:e0156056. [PMID: 27196288 PMCID: PMC4873232 DOI: 10.1371/journal.pone.0156056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the strongest evidence for a direct pleiotropic effect of GA-insensitivity, rather than an effect consequential to yield and/or height.
Collapse
Affiliation(s)
- Richard Casebow
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, United Kingdom
| | - Caroline Hadley
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, United Kingdom
| | - Rajneet Uppal
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, United Kingdom
| | - Molla Addisu
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, United Kingdom
| | - Stefano Loddo
- Department of Environmental Agronomy and Crop Sciences, University of Padova, Legnaro, Padova, Italy
| | | | | | - Mike Gooding
- Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, Ceredigion, United Kingdom
| |
Collapse
|
19
|
Ma S, Wang X, Zheng X, Tian J, Bian K, Li L, Xu R. Physicochemical properties of wheat grains affected by after-ripening. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2015.0595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- S. Ma
- College of Grain Oil and Food science, Henan University of Technology, Lianhua street, Zhengzhou 450001, China P.R
| | - X.X. Wang
- College of Grain Oil and Food science, Henan University of Technology, Lianhua street, Zhengzhou 450001, China P.R
| | - X.L. Zheng
- College of Grain Oil and Food science, Henan University of Technology, Lianhua street, Zhengzhou 450001, China P.R
| | - J.Z. Tian
- College of Grain Oil and Food science, Henan University of Technology, Lianhua street, Zhengzhou 450001, China P.R
| | - K. Bian
- College of Grain Oil and Food science, Henan University of Technology, Lianhua street, Zhengzhou 450001, China P.R
| | - L. Li
- College of Grain Oil and Food science, Henan University of Technology, Lianhua street, Zhengzhou 450001, China P.R
| | - R. Xu
- College of Grain Oil and Food science, Henan University of Technology, Lianhua street, Zhengzhou 450001, China P.R
| |
Collapse
|
20
|
Cui F, Fan X, Chen M, Zhang N, Zhao C, Zhang W, Han J, Ji J, Zhao X, Yang L, Zhao Z, Tong Y, Wang T, Li J. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:469-84. [PMID: 26660466 DOI: 10.1007/s00122-015-2641-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 11/20/2015] [Indexed: 05/21/2023]
Abstract
QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified. Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.
Collapse
Affiliation(s)
- Fa Cui
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoli Fan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Mei Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Chunhua Zhao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueqiang Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijuan Yang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453000, China
| | - Zongwu Zhao
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453000, China
| | - Yiping Tong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Alghabari F, Ihsan MZ, Hussain S, Aishia G, Daur I. Effect of Rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15506-15. [PMID: 26006072 DOI: 10.1007/s11356-015-4724-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/13/2015] [Indexed: 05/10/2023]
Abstract
The present study examined the effects of gibberellin semi-sensitive reduced height (Rht) alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis stages. Near-isogenic lines (NILs) of winter wheat (Rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-8c, Rht-D1c, Rht-12) having background of Mercia and Maris Widgeon cultivars were compared under variable temperatures (day/night: 20/12, 27/19, 30/22, 33/25, 36/28, and 39/31 °C) and irrigation regimes. Pots were transferred to controlled thermal conditions (Saxcil growth chamber) during booting and anthesis stages and were maintained at field capacity (FC) or had water withheld. High temperature (>30 °C) and drought stress for seven consecutive days during booting and anthesis stages reduced the grain yield, while increased nitrogen (N) and sulphur (S) concentrations. A 50 % reduction in grain yield was fitted to have occurred at 37.4 °C for well-watered plants and at 31.4 °C for drought-stressed plants. The N and S concentrations were higher for severe dwarfs, whereas no significant differences were observed between tall and semi-dwarfs in Mercia. In the taller background (Maris Widgeon), N and S concentrations were significantly higher compared with that in Mercia. In Mercia, the severe dwarf Rht-D1c had higher Hagberg falling number (HFN) and sodium dodecyl sulphate (SDS) sedimentation volume. In both backgrounds, semi-dwarfs and severe dwarfs had higher HFN. Moreover, the SDS sedimentation volumes in Maris Widgeon were also higher than that in Mercia. Greater adaptability and improved grain quality traits suggested that severe dwarf Rht alleles are better able to enhance tolerance to high temperature and drought stress in wheat.
Collapse
Affiliation(s)
- Fahad Alghabari
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment & Arid Land Agriculture, King Abdul Aziz University, Jeddah, 21589, Saudi Arabia
- School of Agriculture Policy and Development, University of Reading Earley Gate, PO Box 237, Reading, RG6 6AR, UK
| | - Muhammad Zahid Ihsan
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment & Arid Land Agriculture, King Abdul Aziz University, Jeddah, 21589, Saudi Arabia
| | - Saddam Hussain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Ghulam Aishia
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ihsanullah Daur
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment & Arid Land Agriculture, King Abdul Aziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
22
|
Tan MK, Koval J, Ghalayini A. Novel genetic variants of GA-insensitive Rht-1 genes in hexaploid wheat and their potential agronomic value. PLoS One 2013; 8:e69690. [PMID: 23894524 PMCID: PMC3716649 DOI: 10.1371/journal.pone.0069690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 06/13/2013] [Indexed: 01/01/2023] Open
Abstract
This study has found numerous novel genetic variants of GA-insensitive dwarfing genes with potential agricultural value for crop improvement. The cultivar, Spica is a tall genotype and possesses the wild-type genes of Rht-A1a, Rht-B1a and Rht-D1a. The cultivar Quarrion possesses a null mutant in the DELLA motif in each of the 3 genomes. This is a first report of a null mutant of Rht-A1. In addition, novel null mutants which differ from reported null alleles of Rht-B1b, Rht-B1e and Rht-D1b have been found in Quarrion, Carnamah and Whistler. The accession, Aus1408 has an allele of Rht-B1 with a mutation in the conserved ‘TVHYNP’ N-terminal signal binding domain with possible implications on its sensitivity to GA. Mutations in the conserved C-terminal GRAS domain of Rht-A1 alleles with possible effects on expression have been found in WW1842, Quarrion and Drysdale. Genetic variants with putative spliceosomal introns in the GRAS domain have been found in all accessions except Spica. Genome-specific cis-sequences about 124 bp upstream of the start codon of the Rht-1 gene have been identified for each of the three genomes.
Collapse
Affiliation(s)
- Mui-Keng Tan
- Elizabeth Macarthur Agricultural Institute, New South Wales (NSW) Department of Primary Industries, Menangle, New South Wales, Australia.
| | | | | |
Collapse
|