1
|
Zamani N, Sabzalian MR, Afyuni M. Elevated atmospheric CO 2 combined with Epichloë endophyte may improve growth and Cd phytoremediation potential of tall fescue (Festuca arundinacea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8164-8185. [PMID: 38172319 DOI: 10.1007/s11356-023-31496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Complex environmental conditions like heavy metal contamination and elevated CO2 concentration may cause numerous plant stresses and lead to considerable crop losses worldwide. Cadmium is a non-essential element and potentially highly toxic soil metal pollution, causing oxidative stress in plants and human toxicity. In order to assess a combination of complex factors on the responses of two genotypes of Festuca arundinacea (75B and 75C), a greenhouse experiment was conducted on plants grown in two Cd-contaminated soil conditions and two soil textures under combined effects of elevated ambient CO2 (700 ppm) and Epichloë endophyte infection. Plant biomass, Cd, Fe, Cu, Zn, and Mn concentrations in the plant shoots and roots, Fv/Fm, chlorophyll (a & b), and carotenoid contents were measured after 7 months of growth in pots. Our results showed that endophyte-infected plants (E+) grown in elevated CO2 atmosphere (CO2+), clay-loam soil texture (H) with no Cd amendment (Cd-) in the genotype 75B had significantly greater shoot and root biomass than non-infected plants (E-) grown in ambient CO2 concentration (CO2-), sandy-loam soil texture (L) with amended Cd (Cd+) in the genotype 75C. Increased CO2 concentration and endophyte infection, especially in the genotype 75B, enabled Festuca for greater phytoremediation of Cd because of higher tolerance to Cd stress and higher biomass accumulation in the plant genotype. However, CO2 enrichment negatively influenced the plant mineral absorption due to the inhibitory effects of high Cd concentration in shoots and roots. It is concluded that Cd phytoremediation can be positively affected by the increased atmospheric CO2 concentration, tolerant plant genotype, heavy soil texture, and Epichloë endophyte. Using Taguchi and AIC design methodologies, it was also predicted that the most critical factors affecting Cd phytoremediation potential were CO2 concentration and plant genotype.
Collapse
Affiliation(s)
- Narges Zamani
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran.
| | - Majid Afyuni
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| |
Collapse
|
2
|
Shi X, Shen J, Niu B, Lam SK, Zong Y, Zhang D, Hao X, Li P. An optimistic future of C 4 crop broomcorn millet ( Panicum miliaceum L.) for food security under increasing atmospheric CO 2 concentrations. PeerJ 2022; 10:e14024. [PMID: 36097526 PMCID: PMC9463996 DOI: 10.7717/peerj.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Broomcorn millet, a C4 cereal, has better tolerance to environmental stresses. Although elevated atmospheric CO2 concentration has led to grain nutrition reduction in most staple crops, studies evaluating its effects on broomcorn millet are still scarce. The yield, nutritional quality and metabolites of broomcorn millet were investigated under ambient CO2 (aCO2, 400 µmol mol-1) and elevated CO2 (eCO2, aCO2+ 200 µmol mol-1) for three years using open-top chambers (OTC). The results showed that the yield of broomcorn millet was markedly increased under eCO2 compared with aCO2. On average, eCO2 significantly increased the concentration of Mg (27.3%), Mn (14.6%), and B (21.2%) over three years, whereas it did not affect the concentration of P, K, Fe, Ca, Cu or Zn. Protein content was significantly decreased, whereas starch and oil concentrations were not changed by eCO2. With the greater increase in grain yield, eCO2 induced increase in the grain accumulations of P (23.87%), K (29.5%), Mn (40.08%), Ca (22.58%), Mg (51.31%), Zn (40.95%), B (48.54%), starch (16.96%) and oil (28.37%) on average for three years. Flavonoids such as kaempferol, apigenin, eriodictyol, luteolin, and chrysoeriol were accumulated under eCO2. The reduction in L-glutamine and L-lysine metabolites, which were the most representative amino acid in grain proteins, led to a reduction of protein concentration under eCO2. Broomcorn millet has more desirable nutritional traits for combating hidden hunger. This may potentially be useful for breeding more nutritious plants in the era of climate change.
Collapse
Affiliation(s)
- Xinrui Shi
- Shanxi Agricultural University, Taigu, China
| | - Jie Shen
- Changzhi University, Changzhi, China
| | - Bingjie Niu
- Shanxi Agricultural University, Taigu, China
| | - Shu Kee Lam
- University of Melbourne, Melbourne, Australia
| | | | | | - Xingyu Hao
- Shanxi Agricultural University, Taigu, China,Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, China
| | - Ping Li
- Shanxi Agricultural University, Taigu, China,Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, China
| |
Collapse
|
3
|
Helal NM, Khattab HI, Emam MM, Niedbała G, Wojciechowski T, Hammami I, Alabdallah NM, Darwish DBE, El-Mogy MM, Hassan HM. Improving Yield Components and Desirable Eating Quality of Two Wheat Genotypes Using Si and NanoSi Particles under Heat Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1819. [PMID: 35890453 PMCID: PMC9316522 DOI: 10.3390/plants11141819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Global climate change is a significant challenge that will significantly lower crop yield and staple grain quality. The present investigation was conducted to assess the effects of the foliar application of either Si (1.5 mM) or Si nanoparticles (1.66 mM) on the yield and grain quality attributes of two wheat genotypes (Triticum aestivum L.), cv. Shandweel 1 and cv. Gemmeiza 9, planted at normal sowing date and late sowing date (heat stress). Si and Si nanoparticles markedly mitigated the observed decline in yield and reduced the heat stress intensity index value at late sowing dates, and improved yield quality via the decreased level of protein, particularly glutenin, as well as the lowered activity of α-amylase in wheat grains, which is considered a step in improving grain quality. Moreover, Si and nanoSi significantly increased the oil absorption capacity (OAC) of the flour of stressed wheat grains. In addition, both silicon and nanosilicon provoked an increase in cellulose, pectin, total phenols, flavonoid, oxalic acid, total antioxidant power, starch and soluble protein contents, as well as Ca and K levels, in heat-stressed wheat straw, concomitant with a decrease in lignin and phytic acid contents. In conclusion, the pronounced positive effects associated with improving yield quantity and quality were observed in stressed Si-treated wheat compared with Si nanoparticle-treated ones, particularly in cv. Gemmeiza 9.
Collapse
Affiliation(s)
- Nesma M. Helal
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Hemmat I. Khattab
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Manal M. Emam
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Tomasz Wojciechowski
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Inès Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.H.); (N.M.A.)
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.H.); (N.M.A.)
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt;
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 46429, Saudi Arabia
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Heba M. Hassan
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| |
Collapse
|
4
|
A S, Sathee L, Singh D, Jha SK, Chinnusamy V, Singh MP. Interactive effect of elevated CO 2 and nitrogen dose reprograms grain ionome and associated gene expression in bread wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:134-143. [PMID: 35344758 DOI: 10.1016/j.plaphy.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Wheat crop grown under elevated CO2 (EC) often have a lowered grain nitrogen (N) and protein concentration along with an altered grain ionome. The mechanistic understanding on the impact of CO2 x N interactions on the grain ionome and the expression of genes regulating grain ionome is scarce in wheat. In the present study, the interactive effect of EC and N dosage on grain yield, grain protein, grain ionome, tissue nitrate, and the expression of genes contributing to grain ionome (TaNAM-B1 and TaYSL6) are described. Three bread wheat genotypes were evaluated under two CO2 levels (Ambient CO2 (AC) of 400 ± 10 ppm and elevated CO2 (EC) of 700 ± 10 ppm) and two N levels (Low (LN) and Optimum N (ON). In EC, wheat genotypes HD2967 and HI 1500 recorded a significant decrease in grain nitrate content, while leaf and stem nitrate showed a significant increase. BT. Schomburgk (BTS), showed a significant increase in unassimilated nitrate and a decline in grain N and grain protein under EC. There was a general decline of grain ionome (N, P, K, Ca, Fe) in EC, except for grain Na content. The expression of genes TaNAM-B1 and TaYSL6 associated with protein and micronutrient remobilization to grains during senescence were affected by both EC and N treatments. For instance, in flag leaves of BTS, the expression of TaNAM-B1 and TaYSL6 were lower in EC-LN compared to AC-LN. In maturing spikes, transcript abundance of TaNAM-B1 and TaYSL6 were lower in EC in BTS. The altered transcript abundance of TaYSL6 and TaNAM-B1 in source and sink supports the change in grain ionome and suggests an N dependent transcriptional reprogramming in EC.
Collapse
Affiliation(s)
- Sinto A
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
5
|
Guo X, Huang B, Zhang H, Cai C, Li G, Li H, Zhang Y, Struik PC, Liu Z, Dong M, Ni R, Pan G, Liu X, Chen W, Luo W, Yin X. T‐FACE studies reveal that increased temperature exerts an effect opposite to that of elevated CO
2
on nutrient concentration and bioavailability in rice and wheat grains. Food Energy Secur 2021. [DOI: 10.1002/fes3.336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xuanhe Guo
- College of Agriculture Nanjing Agricultural University Nanjing China
- Centre for Crop Systems Analysis Wageningen University & Research Wageningen The Netherlands
| | - Baowei Huang
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Han Zhang
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Chuang Cai
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Gang Li
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Haozheng Li
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Yaling Zhang
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Paul C. Struik
- Centre for Crop Systems Analysis Wageningen University & Research Wageningen The Netherlands
| | - Zijuan Liu
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Mingming Dong
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Rongbing Ni
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Genxing Pan
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Xiaoyu Liu
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China
| | - Weiping Chen
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Weihong Luo
- College of Agriculture Nanjing Agricultural University Nanjing China
| | - Xinyou Yin
- Centre for Crop Systems Analysis Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
6
|
Jiang M, Wang Z, Li X, Liu S, Song F, Liu F. Relationship between endophytic microbial diversity and grain quality in wheat exposed to multi-generational CO 2 elevation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:146029. [PMID: 33652312 DOI: 10.1016/j.scitotenv.2021.146029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 05/24/2023]
Abstract
To explore the potential association between the diversity of endophytic microorganisms and modifications of grain quality in wheat exposed to multi-generational elevated CO2 concentration, the grain quality attributes and microbial diversity were tested after five generations successively grown in ambient CO2 concentration (F5_A, 400 μmol L-1) and elevated CO2 concentration (F5_E, 800 μmol L-1). Elevated CO2 concentration significantly increased the grain number and starch concentration, while decreased the grain protein concentration. Multi-generational exposure to elevated CO2 concentration also led to significant changes in grain amino acid concentration. In response to the elevated CO2 concentration, Pseudomonas, Rhodococcus, Ralstonia, and Klebsiella were the dominant bacterial genera, while Penicillium, Cutaneotrichosporon, Fusarium, Sarocladium, Acremonium and Aspergillus were the dominant fungal genera in wheat grain. A significantly positive correlation was found between Pseudomonas, Penicillium and ratio of starch to protein concentration, implying that the multi-generational CO2 elevation induced modifications in grain quality might be associated with the changes in grain microbial diversity. The results of this study suggest that the endophytic microbes may play an important role in modulating the grain nutritional quality in wheat under multi-generational e[CO2] exposure, through regulating starch and N metabolism and production of secondary metabolites.
Collapse
Affiliation(s)
- Miao Jiang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education of China, Northwest A & F University, Yangling, China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China.
| | - Shengqun Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China.
| | - Fengbin Song
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China.
| | - Fulai Liu
- University of Copenhagen, Faculty of Science, Department of Plant and Environmental Sciences, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education of China, Northwest A & F University, Yangling, China
| |
Collapse
|
7
|
Baldoni M, Nardi A, De Angelis F, Rickards O, Martínez-Labarga C. How Does Diet Influence Our Lives? Evaluating the Relationship between Isotopic Signatures and Mortality Patterns in Italian Roman Imperial and Medieval Periods. Molecules 2021; 26:3895. [PMID: 34202264 PMCID: PMC8271375 DOI: 10.3390/molecules26133895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023] Open
Abstract
The present research investigates the relationship between dietary habits and mortality patterns in the Roman Imperial and Medieval periods. The reconstructions of population dynamics and subsistence strategies provide a fascinating source of information for understanding our history. This is particularly true given that the changes in social, economic, political, and religious aspects related to the transition from the Roman period to the Middle Ages have been widely discussed. We analyzed the isotopic and mortality patterns of 616 individuals from 18 archeological sites (the Medieval Latium sites of Colonna, Santa Severa, Allumiere, Cencelle, and 14 Medieval and Imperial funerary contexts from Rome) to compile a survivorship analysis. A semi-parametric approach was applied, suggesting variations in mortality patterns between sexes in the Roman period. Nitrogen isotopic signatures influenced mortality in both periods, showing a quadratic and a linear effect for Roman Imperial and Medieval populations, respectively. No influence of carbon isotopic signatures has been detected for Roman Imperial populations. Conversely, increased mortality risk for rising carbon isotopic values was observed in Medieval samples.
Collapse
Affiliation(s)
- Marica Baldoni
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (F.D.A.); (O.R.)
- Ph.D. Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandra Nardi
- Department of Mathematics, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Flavio De Angelis
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (F.D.A.); (O.R.)
| | - Olga Rickards
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (F.D.A.); (O.R.)
| | - Cristina Martínez-Labarga
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (F.D.A.); (O.R.)
| |
Collapse
|
8
|
Ben Mariem S, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I. Climate Change, Crop Yields, and Grain Quality of C 3 Cereals: A Meta-Analysis of [CO 2], Temperature, and Drought Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1052. [PMID: 34074065 PMCID: PMC8225050 DOI: 10.3390/plants10061052] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China;
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain; (S.B.M.); (D.S.); (F.M.)
| |
Collapse
|
9
|
Ben Mariem S, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I. Climate Change, Crop Yields, and Grain Quality of C 3 Cereals: A Meta-Analysis of [CO 2], Temperature, and Drought Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061052. [PMID: 34074065 DOI: 10.3390/plants10061052`] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/26/2023]
Abstract
Cereal yield and grain quality may be impaired by environmental factors associated with climate change. Major factors, including elevated CO2 concentration ([CO2]), elevated temperature, and drought stress, have been identified as affecting C3 crop production and quality. A meta-analysis of existing literature was performed to study the impact of these three environmental factors on the yield and nutritional traits of C3 cereals. Elevated [CO2] stimulates grain production (through larger grain numbers) and starch accumulation but negatively affects nutritional traits such as protein and mineral content. In contrast to [CO2], increased temperature and drought cause significant grain yield loss, with stronger effects observed from the latter. Elevated temperature decreases grain yield by decreasing the thousand grain weight (TGW). Nutritional quality is also negatively influenced by the changing climate, which will impact human health. Similar to drought, heat stress decreases starch content but increases grain protein and mineral concentrations. Despite the positive effect of elevated [CO2], increases to grain yield seem to be counterbalanced by heat and drought stress. Regarding grain nutritional value and within the three environmental factors, the increase in [CO2] is possibly the more detrimental to face because it will affect cereal quality independently of the region.
Collapse
Affiliation(s)
- Sinda Ben Mariem
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - David Soba
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Spain
| |
Collapse
|
10
|
Dier M, Hüther L, Schulze WX, Erbs M, Köhler P, Weigel HJ, Manderscheid R, Zörb C. Elevated Atmospheric CO 2 Concentration Has Limited Effect on Wheat Grain Quality Regardless of Nitrogen Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3711-3721. [PMID: 32105067 DOI: 10.1021/acs.jafc.9b07817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elevated atmospheric CO2 concentrations (e[CO2]) can decrease the grain quality of wheat. However, little information exists concerning interactions between e[CO2] and nitrogen fertilization on important grain quality traits. To investigate this, a 2-year free air CO2 enrichment (FACE) experiment was conducted with two CO2 (393 and 600 ppm) and three (deficiency, adequate, and excess) nitrogen levels. Concentrations of flour proteins (albumins/globulins, gliadins, and glutenins) and key minerals (iron, zinc, and sulfur) and baking quality (loaf volume) were markedly increased by increasing nitrogen levels and varied between years. e[CO2] resulted in slightly decreased albumin/globulin and total gluten concentration under all nitrogen conditions, whereas loaf volume and mineral concentrations remained unaffected. Two-dimensional gel electrophoresis revealed strong effects of nitrogen supply and year on the grain proteome. Under adequate nitrogen, the grain proteome was affected by e[CO2] with 19 downregulated and 17 upregulated protein spots. The downregulated proteins comprised globulins but no gluten proteins. e[CO2] resulted in decreased crude protein concentration at maximum loaf volume. The present study contrasts with other FACE studies showing markedly stronger negative impacts of e[CO2] on chemical grain quality, and the reasons for that might be differences between genotypes, soil conditions, or the extent of growth stimulation by e[CO2].
Collapse
Affiliation(s)
- Markus Dier
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Emil-Wolff-Str. 25, D-70599 Stuttgart, Germany
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, D-38116 Braunschweig, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Garbenstr. 30, D-70593 Stuttgart, Germany
| | - Martin Erbs
- German Agricultural Research Alliance-Deutsche Agrarforschungsallianz (DAFA), Bundesallee 50, D-38116 Braunschweig, Germany
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Peter Köhler
- Biotask AG, Schelztorstr. 54-56, D-73728 Esslingen, Germany
| | - Hans-Joachim Weigel
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Remy Manderscheid
- Thünen Institute of Biodiversity, Bundesallee 65, D-38116 Braunschweig, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Emil-Wolff-Str. 25, D-70599 Stuttgart, Germany
| |
Collapse
|
11
|
Leonzio G, Foscolo PU, Zondervan E. Sustainable utilization and storage of carbon dioxide: Analysis and design of an innovative supply chain. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.106569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Abstract
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
Collapse
|
13
|
Thompson M, Gamage D, Ratnasekera D, Perera A, Martin A, Seneweera S. Effect of elevated carbon dioxide on plant biomass and grain protein concentration differs across bread, durum and synthetic hexaploid wheat genotypes. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Rubio-Asensio JS, Bloom AJ. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2611-2625. [PMID: 28011716 DOI: 10.1093/jxb/erw465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Critical for predicting the future of primary productivity is a better understanding of plant responses to rising atmospheric carbon dioxide (CO2) concentration. This review considers recent results on the role of the inorganic nitrogen (N) forms nitrate (NO3-) and ammonium (NH4+) in determining the responses of wheat and Arabidopsis to elevated atmospheric CO2 concentration. Here, we identify four key issues: (i) the possibility that different plant species respond similarly to elevated CO2 if one accounts for the N form that they are using; (ii) the major influence that plant-soil N interactions have on plant responses to elevated CO2; (iii) the observation that elevated CO2 may favor the uptake of one N form over others; and (iv) the finding that plants receiving NH4+ nutrition respond more positively to elevated CO2 than those receiving NO3- nutrition because elevated CO2 inhibits the assimilation of NO3- in shoots of C3 plants. We conclude that the form and amount of N available to plants from the rhizosphere and plant preferences for the different N forms are essential for predicting plant responses to elevated CO2.
Collapse
Affiliation(s)
- José S Rubio-Asensio
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura, Espinardo, Murcia, Spain
| | - Arnold J Bloom
- Department of Plant Sciences, Mailstop 3, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Vandegeer RK, Powell KS, Tausz M. Barley yellow dwarf virus infection and elevated CO 2 alter the antioxidants ascorbate and glutathione in wheat. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:96-99. [PMID: 27302010 DOI: 10.1016/j.jplph.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 06/06/2023]
Abstract
Plant antioxidants ascorbate and glutathione play an important role in regulating potentially harmful reactive oxygen species produced in response to virus infection. Barley yellow dwarf virus is a widespread viral pathogen that systemically infects cereal crops including wheat, barley and oats. In addition, rising atmospheric CO2 will alter plant growth and metabolism, including many potential but not well understood effects on plant-virus interactions. In order to better understand the wheat-BYDV interaction and any potential changes under elevated CO2, the total concentration and oxidised fraction of ascorbate and glutathione was measured in leaves of a susceptible wheat cultivar (Triticum aestivum L. 'Yitpi') infected with Barley yellow dwarf virus-PAV (Padi Avenae virus) and grown under elevated CO2 in controlled environment chambers. Virus infection decreased total leaf ascorbate and glutathione concentrations and increased the fraction of oxidised ascorbate (dehydroascorbate). Elevated CO2 decreased the fraction of oxidised ascorbate. In this work, we demonstrate that systemic infection by a phloem-restricted virus weakens the antioxidant pools of ascorbate and glutathione. In addition, elevated CO2 may decrease oxidative stress, for example, from virus infection, but there was no direct evidence for an interactive effect between treatments.
Collapse
Affiliation(s)
- Rebecca K Vandegeer
- Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia.
| | - Kevin S Powell
- Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, 124 Chiltern Valley Road, Rutherglen, Victoria 3685, Australia.
| | - Michael Tausz
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia; School of Ecosystem and Forest Sciences, Faculty of Science, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia.
| |
Collapse
|
16
|
Fernando N, Manalil S, Florentine SK, Chauhan BS, Seneweera S. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2. FRONTIERS IN PLANT SCIENCE 2016; 7:910. [PMID: 27446140 PMCID: PMC4916228 DOI: 10.3389/fpls.2016.00910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/08/2016] [Indexed: 05/25/2023]
Abstract
The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of essential in managing weed control by herbicide use, and to thus ensure an increase in global food production in the event of increased atmospheric [CO2] levels.
Collapse
Affiliation(s)
- Nimesha Fernando
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University, Mount Helen Campus, Ballarat, VICAustralia
| | - Sudheesh Manalil
- School of Plant Biology, UWA Institute of Agriculture, The University of Western Australia, Crawley, WAAustralia
- Amrita University, CoimbatoreIndia
- The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, QLDAustralia
| | - Singarayer K. Florentine
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University, Mount Helen Campus, Ballarat, VICAustralia
| | - Bhagirath S. Chauhan
- The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, QLDAustralia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLDAustralia
| |
Collapse
|
17
|
Henry RJ, Rangan P, Furtado A. Functional cereals for production in new and variable climates. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:11-18. [PMID: 26828379 DOI: 10.1016/j.pbi.2015.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Adaptation of cereal crops to variable or changing climates requires that essential quality attributes are maintained to deliver food that will be acceptable to human consumers. Advances in cereal genomics are delivering insights into the molecular basis of nutritional and functional quality traits in cereals and defining new genetic resources. Understanding the influence of the environment on expression of these traits will support the retention of these essential functional properties during climate adaptation. New cereals for use as whole grain or ground to flour for other food products may be based upon the traditional species such as rice and wheat currently used in these food applications but may also include new options exploiting genomics tools to allow accelerated domestication of new species.
Collapse
Affiliation(s)
- Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Parimalan Rangan
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Abstract
One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we present data from a meta-analysis of the nutritional contents of the edible portions of 41 cultivars of six major crop species grown using free-air CO2 enrichment (FACE) technology to expose crops to ambient and elevated CO2 concentrations in otherwise normal field cultivation conditions. This data, collected across three continents, represents over ten times more data on the nutrient content of crops grown in FACE experiments than was previously available. We expect it to be deeply useful to future studies, such as efforts to understand the impacts of elevated atmospheric CO2 on crop macro- and micronutrient concentrations, or attempts to alleviate harmful effects of these changes for the billions of people who depend on these crops for essential nutrients.
Collapse
|
19
|
Buchner P, Tausz M, Ford R, Leo A, Fitzgerald GJ, Hawkesford MJ, Tausz-Posch S. Expression patterns of C- and N-metabolism related genes in wheat are changed during senescence under elevated CO2 in dry-land agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:239-249. [PMID: 26025537 DOI: 10.1016/j.plantsci.2015.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Projected climatic impacts on crop yield and quality, and increased demands for production, require targeted research to optimise nutrition of crop plants. For wheat, post-anthesis carbon and nitrogen remobilisation from vegetative plant parts and translocation to grains directly affects grain carbon (C), nitrogen (N) and protein levels. We analysed the influence of increased atmospheric CO2 on the expression of genes involved in senescence, leaf carbohydrate and nitrogen metabolism and assimilate transport in wheat under field conditions (Australian Grains Free Air CO2 Enrichment; AGFACE) over a time course from anthesis to maturity, the key period for grain filling. Wheat grown under CO2 enrichment had lower N concentrations and a tendency towards greater C/N ratios. A general acceleration of the senescence process by elevated CO2 was not confirmed. The expression patterns of genes involved in carbohydrate metabolism, nitrate reduction and metabolite transport differed between CO2 treatments, and this CO2 effect was different between pre-senescence and during senescence. The results suggest up-regulation of N remobilisation and down-regulation of C remobilisation during senescence under elevated CO2, which is consistent with greater grain N-sink strength of developing grains.
Collapse
Affiliation(s)
- Peter Buchner
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 4TX, UK.
| | - Michael Tausz
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, VIC 3363, Australia.
| | - Rebecca Ford
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Campus, Melbourne, VIC 3010, Australia.
| | - Audrey Leo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Campus, Melbourne, VIC 3010, Australia.
| | - Glenn J Fitzgerald
- Department of Economic Development, Jobs, Transport and Resources, 110 Natimuk Road, Horsham, VIC 3400, Australia.
| | - Malcolm J Hawkesford
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 4TX, UK.
| | - Sabine Tausz-Posch
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Campus, Melbourne, VIC 3010, Australia.
| |
Collapse
|
20
|
Verspreet J, Dornez E, Van den Ende W, Delcour JA, Courtin CM. Cereal grain fructans: Structure, variability and potential health effects. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Elevated carbon dioxide changes grain protein concentration and composition and compromises baking quality. A FACE study. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Goufo P, Falco V, Brites C, Wessel DF, Kratz S, Rosa EAS, Carranca C, Trindade H. Effect of Elevated Carbon Dioxide Concentration on Rice Quality: Nutritive Value, Color, Milling, Cooking, and Eating Qualities. Cereal Chem 2014. [DOI: 10.1094/cchem-12-13-0256-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Piebiep Goufo
- CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Virgilio Falco
- CQVR – Centro de Quimica Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Carla Brites
- Instituto Nacional de Investigação Agrária e Veterinária, Av. República, Nova Oeiras, 2784-505 Oeiras, Portugal
| | - Dulcineia F. Wessel
- Department of Food Industries, ESAV, Polytechnic Institute of Viseu, CI&DETS, 3500-606 Viseu, Portugal
| | - Sylvia Kratz
- Institut für Pflanzenbau und Bodenkunde, Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Bundesallee 50, D-38116 Braunschweig, Germany
| | - Eduardo A. S. Rosa
- CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Corina Carranca
- Instituto Nacional de Investigação Agrária e Veterinária, Av. República, Nova Oeiras, 2784-505 Oeiras, Portugal
| | - Henrique Trindade
- CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
- Corresponding author. Phone: +351 259 350 751. Fax: +351 259 350 327
| |
Collapse
|
23
|
Fernando N, Panozzo J, Tausz M, Norton R, Fitzgerald G, Khan A, Seneweera S. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics. Food Chem 2014; 170:448-54. [PMID: 25306370 DOI: 10.1016/j.foodchem.2014.07.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/14/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
Wheat cv. H45 was grown under ambient CO2 concentration and Free Air CO2 Enrichment (FACE; e[CO2], ∼550 μmol CO2 mol(-1)). The effect of FACE on wheat grain proteome and associated changes in the flour rheological properties was investigated. A comparative proteomic analysis was performed using 2-D-DIGE followed by MALDI/TOF-MS. Total grain protein concentration was decreased by 9% at e[CO2]. Relative abundance of three high molecular weight glutenin sub units (HMW-GS) were decreased at e[CO2]. In contrast, relative abundance of serpins Z1C and 1-Cys peroxiredoxin was increased at e[CO2]. Elevated [CO2] also decreased the bread volume (by 11%) and dough strength (by 7%) while increased mixing time. However, dough extensibility and dough stability were unchanged at elevated [CO2]. These findings suggest that e[CO2] has a major impact on gluten protein concentration which is associated lower bread quality at e[CO2].
Collapse
Affiliation(s)
- Nimesha Fernando
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Water Street, Creswick, Victoria 3363, Australia
| | - Joe Panozzo
- Department of Primary Industries, Natimuk Road, Private Box 260, Horsham, Victoria 3401, Australia
| | - Michael Tausz
- Department of Forest and Ecosystem Science, Melbourne School of Land and Environment, The University of Melbourne, Water Street, Creswick, Victoria 3363, Australia
| | - Robert Norton
- International Plant Nutrition Institute, 54 Florence St, Horsham, Victoria 3400, Australia
| | - Glenn Fitzgerald
- Department of Primary Industries, Natimuk Road, Private Box 260, Horsham, Victoria 3401, Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility (APAF), Level 4, Building F7B, Research Park Drive, Macquarie University, Sydney, NSW 2109, Australia
| | - Saman Seneweera
- Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Water Street, Creswick, Victoria 3363, Australia; Centre for Systems Biology, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
24
|
Loladze I. Hidden shift of the ionome of plants exposed to elevated CO₂depletes minerals at the base of human nutrition. eLife 2014. [PMID: 24867639 DOI: 10.7554/elife.02245.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Mineral malnutrition stemming from undiversified plant-based diets is a top global challenge. In C3 plants (e.g., rice, wheat), elevated concentrations of atmospheric carbon dioxide (eCO2) reduce protein and nitrogen concentrations, and can increase the total non-structural carbohydrates (TNC; mainly starch, sugars). However, contradictory findings have obscured the effect of eCO2 on the ionome-the mineral and trace-element composition-of plants. Consequently, CO2-induced shifts in plant quality have been ignored in the estimation of the impact of global change on humans. This study shows that eCO2 reduces the overall mineral concentrations (-8%, 95% confidence interval: -9.1 to -6.9, p<0.00001) and increases TNC:minerals > carbon:minerals in C3 plants. The meta-analysis of 7761 observations, including 2264 observations at state of the art FACE centers, covers 130 species/cultivars. The attained statistical power reveals that the shift is systemic and global. Its potential to exacerbate the prevalence of 'hidden hunger' and obesity is discussed.DOI: http://dx.doi.org/10.7554/eLife.02245.001.
Collapse
Affiliation(s)
- Irakli Loladze
- Department of Mathematics Education, The Catholic University of Daegu, Gyeongsan, Republic of Korea
| |
Collapse
|
25
|
Loladze I. Hidden shift of the ionome of plants exposed to elevated CO₂depletes minerals at the base of human nutrition. eLife 2014; 3:e02245. [PMID: 24867639 PMCID: PMC4034684 DOI: 10.7554/elife.02245] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/25/2014] [Indexed: 12/19/2022] Open
Abstract
Mineral malnutrition stemming from undiversified plant-based diets is a top global challenge. In C3 plants (e.g., rice, wheat), elevated concentrations of atmospheric carbon dioxide (eCO2) reduce protein and nitrogen concentrations, and can increase the total non-structural carbohydrates (TNC; mainly starch, sugars). However, contradictory findings have obscured the effect of eCO2 on the ionome-the mineral and trace-element composition-of plants. Consequently, CO2-induced shifts in plant quality have been ignored in the estimation of the impact of global change on humans. This study shows that eCO2 reduces the overall mineral concentrations (-8%, 95% confidence interval: -9.1 to -6.9, p<0.00001) and increases TNC:minerals > carbon:minerals in C3 plants. The meta-analysis of 7761 observations, including 2264 observations at state of the art FACE centers, covers 130 species/cultivars. The attained statistical power reveals that the shift is systemic and global. Its potential to exacerbate the prevalence of 'hidden hunger' and obesity is discussed.DOI: http://dx.doi.org/10.7554/eLife.02245.001.
Collapse
Affiliation(s)
- Irakli Loladze
- Department of Mathematics Education, The Catholic University of Daegu, Gyeongsan, Republic of Korea
| |
Collapse
|
26
|
Fernando N, Panozzo J, Tausz M, Norton RM, Fitzgerald GJ, Myers S, Nicolas ME, Seneweera S. Intra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatments. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2013.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|