1
|
Crosta M, Croci M, Dall’Asta C, Pisante M, Battilani P. First Report of Safe Italian Peanut Production Regarding Aflatoxin. Toxins (Basel) 2025; 17:90. [PMID: 39998107 PMCID: PMC11860490 DOI: 10.3390/toxins17020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
The growing interest in peanut production in Italy represents a significant opportunity from both an agronomic and economic standpoint. Aflatoxin B1 (AFB1) contamination is a major concern with imported peanuts; developing an Italian peanut supply chain can ensure a well-managed local product, with special care for food safety. This study aimed to provide a first overview of Italian peanut production, focusing on the Aspergillus section Flavi and AFB1 occurrence in the raw product. During 2022 and 2023, 18 peanut fields were sampled at complete maturity across the Italian production areas, considering three varieties: Lotos, SIS-AR_01, and IPG914. The results showed the occurrence of Aspergillus sec. Flavi in peanut pods, even though AFB1 was always absent or in traces, well below the European legal limits. These findings confirmed the quality of Italian peanut production, even though further research is requested to confirm the positive results of this first report.
Collapse
Affiliation(s)
- Matteo Crosta
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.C.); (M.C.)
| | - Michele Croci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.C.); (M.C.)
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy;
| | - Michele Pisante
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.C.); (M.C.)
| |
Collapse
|
2
|
Ouadhene MA, Callicott KA, Ortega‐Beltran A, Mehl HL, Cotty PJ, Battilani P. Structure of Aspergillus flavus populations associated with maize in Greece, Spain, and Serbia: Implications for aflatoxin biocontrol on a regional scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13249. [PMID: 38634243 PMCID: PMC11024511 DOI: 10.1111/1758-2229.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Aspergillus flavus is the most frequently identified producer of aflatoxins. Non-aflatoxigenic members of the A. flavus L strains are used in various continents as active ingredients of bioprotectants directed at preventing aflatoxin contamination by competitive displacement of aflatoxin producers. The current research examined the genetic diversity of A. flavus L strain across southern Europe to gain insights into the population structure and evolution of this species and to evaluate the prevalence of genotypes closely related to MUCL54911, the active ingredient of AF-X1. A total of 2173L strain isolates recovered from maize collected across Greece, Spain, and Serbia in 2020 and 2021 were subjected to simple sequence repeat (SSR) genotyping. The analysis revealed high diversity within and among countries and dozens of haplotypes shared. Linkage disequilibrium analysis indicated asexual reproduction and clonal evolution of A. flavus L strain resident in Europe. Moreover, haplotypes closely related to MUCL54911 were found to belong to the same vegetative compatibility group (VCG) IT006 and were relatively common in all three countries. The results indicate that IT006 is endemic to southern Europe and may be utilized as an aflatoxin mitigation tool for maize across the region without concern for potential adverse impacts associated with the introduction of an exotic microorganism.
Collapse
Affiliation(s)
- Mohamed Ali Ouadhene
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | | | | | | - Peter J. Cotty
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Paola Battilani
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
3
|
Molnár K, Rácz C, Dövényi-Nagy T, Bakó K, Pusztahelyi T, Kovács S, Adácsi C, Pócsi I, Dobos A. The Effect of Environmental Factors on Mould Counts and AFB1 Toxin Production by Aspergillus flavus in Maize. Toxins (Basel) 2023; 15:227. [PMID: 36977118 PMCID: PMC10055717 DOI: 10.3390/toxins15030227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The toxins produced by Aspergillus flavus can significantly inhibit the use of maize. As a result of climate change, toxin production is a problem not only in tropical and subtropical areas but in an increasing number of European countries, including Hungary. The effect of meteorological factors and irrigation on mould colonization and aflatoxin B1 (AFB1) mycotoxin production by A. flavus were investigated in natural conditions, as well as the inoculation with a toxigenic isolate in a complex field experiment for three years. As a result of irrigation, the occurrence of fungi increased, and toxin production decreased. The mould count of fungi and toxin accumulation showed differences during the examined growing seasons. The highest AFB1 content was found in 2021. The main environmental factors in predicting mould count were temperature (Tavg, Tmax ≥ 30 °C, Tmax ≥ 32 °C, Tmax ≥ 35 °C) and atmospheric drought (RHmin ≤ 40%). Toxin production was determined by extremely high daily maximum temperatures (Tmax ≥ 35 °C). At natural contamination, the effect of Tmax ≥ 35 °C on AFB1 was maximal (r = 0.560-0.569) in the R4 stage. In the case of artificial inoculation, correlations with environmental factors were stronger (r = 0.665-0.834) during the R2-R6 stages.
Collapse
Affiliation(s)
- Krisztina Molnár
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Csaba Rácz
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Tamás Dövényi-Nagy
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Károly Bakó
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Cintia Adácsi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H4032 Debrecen, Hungary
| | - Attila Dobos
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| |
Collapse
|
4
|
Swetha PDP, Nikitha A, Shenoy MM, Shim YB, Prasad KS. Ni/Ni(OH) 2-rGO nanocomposites sensor for the detection of long forgotten mycotoxin, xanthomegnin. Talanta 2023; 253:123953. [PMID: 36179558 DOI: 10.1016/j.talanta.2022.123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/17/2022] [Indexed: 12/13/2022]
Abstract
Xanthomegnin, a known fungal toxin, secondary metabolite, and pigment diffuses from the dermatophytes has gained attention as local virulence factor because of the mutagenicity, toxicity, cytocidal, and immunosuppressive properties. Not only as a dermatophyte in skin related disorders, the production of xanthomegnin is implicated as a powerful diagnostic marker in patients suffering from ocular mycoses. Incidentally also attributed to death in livestock's majorly by exposing themselves to food-borne fungi like Aspergillus and Penicillium. The production of xanthomegnin in dermetophytic species Trichophyton rubrum, found commonly in infected skin and nails. In this study nickel/nickel hydroxide nanoparticles decorated reduced graphene oxide (Ni/Ni(OH)2-rGO) modified glassy carbon electrode has been successfully used for non-enzymatic detection of xanthomegnin. The Ni/Ni(OH)2-rGO composites were synthesized through a simple microwave assisted technique with less harmful reducing agent. The UV-visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and electrochemical investigations demonstrated the robust formation of the sensor. The sensor exhibited improved electrochemical properties with enhanced electrochemical active area and excellent electrochemical behavior towards xanthomegnin detection with a limit of detection of 0.12 μM. The selectivity, stability, and analytical recovery studies proved the potential use of the sensor for the detection of xanthomegnin in real samples. Further, the sensor successfully detected xanthomegnin produced by the Trichophyton rubrum, the most common superficial fungus, accounting for at least 60% of all superficial fungal infections in humans. Validation studies showed satisfiable and quantifiable amount of xanthomegnin in comparison with common bench mark UV-Vis studies meant for fungal mycotoxin detection.
Collapse
Affiliation(s)
- P D Priya Swetha
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - A Nikitha
- Department of Dermatology,Venereology and Leprosy, Yenepoya Medical College, Deralakatte, Mangalore, 575018, India
| | - M Manjunath Shenoy
- Department of Dermatology,Venereology and Leprosy, Yenepoya Medical College, Deralakatte, Mangalore, 575018, India
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
5
|
Pre-harvest strategy for reducing aflatoxin accumulation during storage of maize in Argentina. Int J Food Microbiol 2022; 380:109887. [DOI: 10.1016/j.ijfoodmicro.2022.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
|
6
|
Fusarium verticillioides and Aspergillus flavus Co-Occurrence Influences Plant and Fungal Transcriptional Profiles in Maize Kernels and In Vitro. Toxins (Basel) 2021; 13:toxins13100680. [PMID: 34678972 PMCID: PMC8537323 DOI: 10.3390/toxins13100680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Climate change will increase the co-occurrence of Fusarium verticillioides and Aspergillus flavus, along with their mycotoxins, in European maize. In this study, the expression profiles of two pathogenesis-related (PR) genes and four mycotoxin biosynthetic genes, FUM1 and FUM13, fumonisin pathway, and aflR and aflD, aflatoxin pathway, as well as mycotoxin production, were examined in kernels and in artificial medium after a single inoculation with F. verticillioides or A. flavus or with the two fungi in combination. Different temperature regimes (20, 25 and 30 °C) over a time-course of 21 days were also considered. In maize kernels, PR genes showed the strongest induction at 25 °C in the earlier days post inoculation (dpi)with both fungi inoculated singularly. A similar behaviour was maintained with fungi co-occurrence, but with enhanced defence response at 9 dpi under 20 °C. Regarding FUM genes, in the kernels inoculated with F. verticillioides the maximal transcript levels occurred at 6 dpi at 25 °C. At this temperature regime, expression values decreased with the co-occurrence of A. flavus, where the highest gene induction was detected at 20 °C. Similar results were observed in fungi grown in vitro, whilst A. flavus presence determined lower levels of expression along the entire time-course. As concerns afl genes, considering both A. flavus alone and in combination, the most elevated transcript accumulation occurred at 30 °C during all time-course both in infected kernels and in fungi grown in vitro. Regarding mycotoxin production, no significant differences were found among temperatures for kernel contamination, whereas in vitro the highest production was registered at 25 °C for aflatoxin B1 and at 20 °C for fumonisins in the case of single inoculation. In fungal co-occurrence, both mycotoxins resulted reduced at all the temperatures considered compared to the amount produced with single inoculation.
Collapse
|
7
|
Camardo Leggieri M, Mazzoni M, Battilani P. Machine Learning for Predicting Mycotoxin Occurrence in Maize. Front Microbiol 2021; 12:661132. [PMID: 33897675 PMCID: PMC8062859 DOI: 10.3389/fmicb.2021.661132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Meteorological conditions are the main driving variables for mycotoxin-producing fungi and the resulting contamination in maize grain, but the cropping system used can mitigate this weather impact considerably. Several researchers have investigated cropping operations' role in mycotoxin contamination, but these findings were inconclusive, precluding their use in predictive modeling. In this study a machine learning (ML) approach was considered, which included weather-based mechanistic model predictions for AFLA-maize and FER-maize [predicting aflatoxin B1 (AFB1) and fumonisins (FBs), respectively], and cropping system factors as the input variables. The occurrence of AFB1 and FBs in maize fields was recorded, and their corresponding cropping system data collected, over the years 2005-2018 in northern Italy. Two deep neural network (DNN) models were trained to predict, at harvest, which maize fields were contaminated beyond the legal limit with AFB1 and FBs. Both models reached an accuracy >75% demonstrating the ML approach added value with respect to classical statistical approaches (i.e., simple or multiple linear regression models). The improved predictive performance compared with that obtained for AFLA-maize and FER-maize was clearly demonstrated. This coupled to the large data set used, comprising a 13-year time series, and the good results for the statistical scores applied, together confirmed the robustness of the models developed here.
Collapse
Affiliation(s)
| | | | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
8
|
Warnatzsch EA, Reay DS, Camardo Leggieri M, Battilani P. Climate Change Impact on Aflatoxin Contamination Risk in Malawi's Maize Crops. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.591792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Malawi is one of the poorest countries in the world, with high levels of malnutrition and little domestic mycotoxin regulation. Domestically grown maize is the largest single source of calories in the country and a large contributor to the economy. This research uses Regional Climate Models (RCMs) to determine the climatic conditions in the three regions of Malawi (Northern, Central and Southern) in 2035 (2020–2049) and 2055 (2040–2069) as compared to the baseline climate of 1971–2000. This climatic data is then used as inputs to the Food and Agriculture Organization's (FAO) AquaCrop model to assess the impact on the growth cycle of two maize varieties grown in each region and sown at three different times during the planting season. Finally, AFLA-maize, a mechanistic model, is applied to determine the impact of these projected changes on the aflatoxin B1 (AFB1) contamination risk. We find that Malawi's climate is projected to get warmer (by 1–2.5°C) and drier (reduction of 0–4% in annual rainfall levels) in all regions, although some uncertainty remains around the changes in precipitation levels. These climatic changes are expected to shorten the growing season for maize, bringing the harvest date forward by between 10 and 25 days for the short-development variety and between 25 and 65 days for the long-development variety. These changes are also projected to make the pre-harvest conditions for Malawian maize more favorable for AFB1 contamination and risk maps for the studied conditions were drawn. Exceedances of EU safety thresholds are expected to be possible in all regions, with the risk of contamination moving northwards in a warming climate.
Collapse
|
9
|
Evaluation of citrus flavonoids against Aspergillus parasiticus in maize: Aflatoxins reduction and ultrastructure alterations. Food Chem 2020; 318:126414. [DOI: 10.1016/j.foodchem.2020.126414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 01/06/2023]
|
10
|
Pfliegler WP, Pócsi I, Győri Z, Pusztahelyi T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front Microbiol 2020; 10:2921. [PMID: 32117074 PMCID: PMC7029702 DOI: 10.3389/fmicb.2019.02921] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature. However, to understand the factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal interactions into account. The Aspergilli may switch between saprophytic and pathogenic lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary according to these fungal ways of life. Recent studies highlighted the complex ecological network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions with the soil microbiota and soil macro-organisms determine the role of secondary metabolite production to a great extent. While, upon infection of plants, metabolic communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. In this review, the role of mycotoxin producing Aspergillus species and their interactions in the ecosystem are discussed. We intend to highlight the complexity of the roles of the main toxic secondary metabolites as well as their fate in natural environments and agriculture, a field that still has important knowledge gaps.
Collapse
Affiliation(s)
- Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Leggieri MC, Lanubile A, Dall’Asta C, Pietri A, Battilani P. The impact of seasonal weather variation on mycotoxins: maize crop in 2014 in northern Italy as a case study. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2475] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The occurrence of mycotoxins differs greatly from year to year and this variation has been attributed to climate variability. The aim of this study was to consider the variability of fungal infection and mycotoxin contamination on a small geographic scale as a possible result of local weather conditions. The presence of Fusarium spp. and Aspergillus spp. and their related mycotoxins was investigated in 51 maize fields grown in 2014 in the Emilia Romagna region, in northern Italy; information regarding the cropping system was collected for all the fields. Samples collected at harvest were analysed for fumonisins, aflatoxins and trichothecenes. Hourly meteorological data were collected from nine stations and fields were clustered with the stations based on the shortest distance principle. Fusarium spp. and Aspergillus spp. incidence varied between 17.6-46.0% and 0.6-6.3%, respectively. Fumonisins ranged between 1,718 and 106,054 μg/kg and aflatoxin B1 between <limit of quantification and 93.8 μg/kg, with a wide variability also with short distanced fields. Deoxynivalenol was detected with a considerable incidence (59%), but only three samples exceeded 1,750 μg/kg. Therefore, climate variability and related uncertainties, commonly stressed on a large scale, are not only a matter for policymakers, but also for farmers facing every day the impact on fungi and mycotoxin occurrence.
Collapse
Affiliation(s)
- M. Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - A. Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - C. Dall’Asta
- Department of Food Science, Università di Parma, Viale della Scienza 17/A, 43124 Parma, Italy
| | - A. Pietri
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - P. Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
12
|
García-Díaz M, Gil-Serna J, Vázquez C, Botia MN, Patiño B. A Comprehensive Study on the Occurrence of Mycotoxins and Their Producing Fungi during the Maize Production Cycle in Spain. Microorganisms 2020; 8:E141. [PMID: 31968531 PMCID: PMC7023295 DOI: 10.3390/microorganisms8010141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
Mycotoxin contamination is one of the main problems affecting corn production, due to its significant risk to human and animal health. The Fusarium and Aspergillus species are the main producers of mycotoxins in maize, infecting both pre-harvest and during storage. In this work, we evaluated the presence of mycotoxins and their producing species along maize production cycles in three different stages (anthesis, harvest, and storage) during three consecutive seasons (2016-2018). Fungal occurrences were studied using species-specific PCR protocols, whereas mycotoxin levels were determined by LC-MS/MS. Fumonisin-producing Fusarium species (F. verticillioides and F. proliferatum), as well as the aflatoxin producer Aspergillus flavus, were the most predominant species at all stages; although, during some seasons, the presence of F. graminearum and A. niger aggregate species were also identified. Contrastingly, fumonisins were the only mycotoxins detected and levels were always under legal regulations. The results presented here demonstrate that even when fungal contamination occurs at the early stages of the maize production cycle, the application of good agricultural and storage practices might be crucial to ensure mycotoxin-free grains.
Collapse
Affiliation(s)
- Marta García-Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (C.V.); (B.P.)
| | - Jéssica Gil-Serna
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (C.V.); (B.P.)
| | - Covadonga Vázquez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (C.V.); (B.P.)
| | | | - Belén Patiño
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (C.V.); (B.P.)
| |
Collapse
|
13
|
Sarrocco S, Mauro A, Battilani P. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins (Basel) 2019; 11:E701. [PMID: 31810316 PMCID: PMC6950288 DOI: 10.3390/toxins11120701] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Among plant fungal diseases, those affecting cereals represent a huge problem in terms of food security and safety. Cereals, such as maize and wheat, are very often targets of mycotoxigenic fungi. The limited availability of chemical plant protection products and physical methods to control mycotoxigenic fungi and to reduce food and feed mycotoxin contamination fosters alternative approaches, such as the use of beneficial fungi as an active ingredient of biological control products. Competitive interactions, including both exploitation and interference competition, between pathogenic and beneficial fungi, are generally recognized as mechanisms to control plant pathogens populations and to manage plant diseases. In the present review, two examples concerning the use of competitive beneficial filamentous fungi for the management of cereal diseases are discussed. The authors retrace the history of the well-established use of non-aflatoxigenic isolates of Aspergillus flavus to prevent aflatoxin contamination in maize and give an overview of the potential use of competitive beneficial filamentous fungi to manage Fusarium Head Blight on wheat and mitigate fusaria toxin contamination. Although important steps have been made towards the development of microorganisms as active ingredients of plant protection products, a reasoned revision of the registration rules is needed to significantly reduce the chemical based plant protection products in agriculture.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy;
| | - Antonio Mauro
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaam, Tanzania;
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
14
|
Camardo Leggieri M, Giorni P, Pietri A, Battilani P. Aspergillus flavus and Fusarium verticillioides Interaction: Modeling the Impact on Mycotoxin Production. Front Microbiol 2019; 10:2653. [PMID: 31781087 PMCID: PMC6861442 DOI: 10.3389/fmicb.2019.02653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/30/2019] [Indexed: 11/13/2022] Open
Abstract
The influence of climate change on agricultural systems has been generally accepted as having a considerable impact on food security and safety. It is believed that the occurrence of mycotoxins will be greatly affected by future climate scenarios and this has been confirmed by recent data. Temperature (T) and CO2 increases, variation in rain intensity and distribution, as well as extreme weather events, affect the dominant fungal species in different ways, depending on their ecological needs. Therefore, the aim of this work was to study Aspergillus flavus (Af) and Fusarium verticillioides (Fv) co-occurrence in vitro in order to collect quantitative data on the effect of fungal interaction on growth and mycotoxin production and develop functions for their description. Experimental trials were organized with the cited fungi grown alone or together. They were incubated at different T regimes (10-40°C, step 5°C) for 21 days. Fungal growth was measured weekly, while AFs and FBs were quantified at the end of the incubation period. Temperature and incubation time significantly affected fungal growth both for Af and Fv (p ≤ 0.01), and a significant interaction between T and the presence of one versus both fungi influenced the amount of AFs and FBs produced. Each fungus was affected by the presence of the other fungus; in particular, Af and Fv showed a decrease in colony diameter of 10 and 44%, respectively, when they were grown together, compared to alone. The same influence was not found for mycotoxin production. In fact, the dynamics of toxin production in different temperature regimes followed a comparable trend with fungi grown alone or together, but a significant impact of inoculum × temperature interaction was highlighted. Fungal growth and toxin production in different T regimes were well described, both for AFs and FBs, by a Bete function. These results are the first attempt to model mycotoxigenic fungal co-occurrence under several T regimes; this is essential in order to improve effective prediction of growth and mycotoxin production by such fungi.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paola Giorni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Amedeo Pietri
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
15
|
Gómez JV, Tarazona A, Mateo F, Jiménez M, Mateo EM. Potential impact of engineered silver nanoparticles in the control of aflatoxins, ochratoxin A and the main aflatoxigenic and ochratoxigenic species affecting foods. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Giorni P, Bertuzzi T, Battilani P. Impact of Fungi Co-occurrence on Mycotoxin Contamination in Maize During the Growing Season. Front Microbiol 2019; 10:1265. [PMID: 31244797 PMCID: PMC6563760 DOI: 10.3389/fmicb.2019.01265] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
Maize is a possible host of many fungi, some of them able to produce different mycotoxins. Few studies exist on co-occurring fungi and resulting multi-mycotoxin contamination in field; for this reason, in field trials were conducted in two consecutive years to verify fungal incidence and mycotoxin production in the case of the co-occurrence of the three main mycotoxigenic fungi of maize in Italy: Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum able to produce, respectively, aflatoxin B1 (AFB1), fumonisins (FBs), and deoxynivalenol (DON). Artificial inoculation was done after silk emergence of maize and samples were collected with a 2 week schedule up to harvest time (four samplings). Fungal interaction resulted as playing a role for both fungal incidence and mycotoxins production, as did weather conditions too. Main interactions were noted between A. flavus and F. verticillioides, and between F. verticillioides and F. graminearum. In particular, as a result of fungal co-occurrence, AFB1 resulted stimulated by F. graminearum presence while no effects were noted in FBs and DON in case of F. verticillioides-F. graminearum co-occurrence. Interestingly, the co-presence of A. flavus significantly reduced both FB and DON production.
Collapse
Affiliation(s)
- Paola Giorni
- Department of Sustainable Crop Production (Di.Pro.Ve.S), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Terenzio Bertuzzi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production (Di.Pro.Ve.S), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
17
|
Gonçalves A, Gkrillas A, Dorne JL, Dall'Asta C, Palumbo R, Lima N, Battilani P, Venâncio A, Giorni P. Pre- and Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain. Compr Rev Food Sci Food Saf 2019; 18:441-454. [PMID: 33336939 DOI: 10.1111/1541-4337.12420] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023]
Abstract
Rice is part of many people's diet around the world, being the main energy source in some regions. Although fewer reports exist on the occurrence of mycotoxins in rice compared to other cereals, fungal contamination and the associated production of toxic metabolites, even at lower occurrence levels compared to other crops, are of concern because of the high consumption of rice in many countries. Due to the diversity of fungi that may contaminate the rice food chain, the co-occurrence of mycotoxins is frequent. Specific strategies to overcome these problems may be applied at the preharvest part of the crop chain, while assuring good practices at harvest and postharvest stages, since different fungi may find suitable conditions to grow at the various stages of the production chain. Therefore, the aim of this review is to present the state-of-the-art knowledge on such strategies in an integrated way, from the field to the final products, to reduce mycotoxin contamination in rice.
Collapse
Affiliation(s)
- A Gonçalves
- CEB - Centre of Biological Engineering, Univ. of Minho, 4710-057, Braga, Portugal
| | - A Gkrillas
- Univ. degli studi di Parma, Via Università 12, 43121, Parma, Italy
| | - J L Dorne
- European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126, Parma, Italy
| | - C Dall'Asta
- Univ. degli studi di Parma, Via Università 12, 43121, Parma, Italy
| | - R Palumbo
- Faculty of Agriculture, Univ. Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100, Piacenza, Italy
| | - N Lima
- CEB - Centre of Biological Engineering, Univ. of Minho, 4710-057, Braga, Portugal
| | - P Battilani
- Faculty of Agriculture, Univ. Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100, Piacenza, Italy
| | - A Venâncio
- CEB - Centre of Biological Engineering, Univ. of Minho, 4710-057, Braga, Portugal
| | - P Giorni
- Faculty of Agriculture, Univ. Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100, Piacenza, Italy
| |
Collapse
|
18
|
Mateo EM, Gómez JV, Montoya N, Mateo-Castro R, Gimeno-Adelantado JV, Jiménez M, Doménech-Carbó A. Electrochemical identification of toxigenic fungal species using solid-state voltammetry strategies. Food Chem 2018; 267:91-100. [DOI: 10.1016/j.foodchem.2017.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 11/30/2022]
|
19
|
Giorni P, Pietri A, Bertuzzi T, Soldano M, Piccinini S, Rossi L, Battilani P. Fate of mycotoxins and related fungi in the anaerobic digestion process. BIORESOURCE TECHNOLOGY 2018; 265:554-557. [PMID: 29861299 DOI: 10.1016/j.biortech.2018.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
In this study, the possibility to manage maize contaminated with aflatoxins and fumonisins for the production of biogas was considered. This is a priority in the climate change scenario that is expected to increase the occurrence of aflatoxins in maize. The results clearly underline how the anaerobic digestion process used in biogas plants is able to reduce aflatoxin contamination, mainly when highly contaminated maize is used for feeding the biodigestors without affecting the efficiency of methane production. In particular, the higher aflatoxin contamination is, the higher is mycotoxin reduction during biodigestion, with reductions up to 95% in digestate. The co-occurring mycotoxins, fumonisins, were also reduced by around 15%. The vitality of mycotoxin producing fungi was also significantly reduced. Biogas production is therefore suggested as a good alternative use for uncompliant maize.
Collapse
Affiliation(s)
- Paola Giorni
- Department of Sustainable Crop Production (Di.Pro.Ve.S), Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Amedeo Pietri
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Terenzio Bertuzzi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Mariangela Soldano
- Research Centre on Animal Production (CRPA), Viale Timavo 43/2, 42121 Reggio Emilia, Italy.
| | - Sergio Piccinini
- Research Centre on Animal Production (CRPA), Viale Timavo 43/2, 42121 Reggio Emilia, Italy
| | - Lorella Rossi
- CIB, Italian Biogas Consortium, via Einstein s.n.c., loc. Cascina Codazza, 26900 Lodi, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production (Di.Pro.Ve.S), Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
20
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|
21
|
Bernáldez V, Córdoba JJ, Delgado J, Bermúdez E, Rodríguez A. Gene expression analysis to predict aflatoxins B1 and G1 contamination in some plant origin foods. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|