1
|
Shewry PR, Prins A, Kosik O, Lovegrove A. Challenges to Increasing Dietary Fiber in White Flour and Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13513-13522. [PMID: 38834187 PMCID: PMC11191685 DOI: 10.1021/acs.jafc.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
Increasing the intake of dietary fiber from staple foods is a key strategy to improve the health of consumers. White bread is an attractive vehicle to deliver increased fiber as it is widely consumed and available to all socio-economic groups. However, fiber only accounts for about 4% of the dry weight of white flour and bread compared to 10-15% in whole grain bread and flour. We therefore discuss the challenges and barriers to developing and exploiting new types of wheat with high fiber content in white flour. These include defining and quantifying individual fiber components and understanding how they are affected by genetic and environmental factors. Rapid high throughput assays suitable for determining fiber content during plant breeding and in grain-utilizing industries are urgently required, while the impact of fiber amount and composition on flour processing quality needs to be understood. Overcoming these challenges should have significant effects on human health.
Collapse
Affiliation(s)
| | - Anneke Prins
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
| | - Ondrej Kosik
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K.
| | | |
Collapse
|
2
|
Sehgal D, Rathan ND, Özdemir F, Keser M, Akin B, Dababat AA, Koc E, Dreisigacker S, Morgounov A. Genomic wide association study and selective sweep analysis identify genes associated with improved yield under drought in Turkish winter wheat germplasm. Sci Rep 2024; 14:8431. [PMID: 38600135 PMCID: PMC11006659 DOI: 10.1038/s41598-024-57469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
A panel comprising of 84 Turkish winter wheat landraces (LR) and 73 modern varieties (MV) was analyzed with genome wide association study (GWAS) to identify genes/genomic regions associated with increased yield under favorable and drought conditions. In addition, selective sweep analysis was conducted to detect signatures of selection in the winter wheat genome driving the differentiation between LR and MV, to gather an understanding of genomic regions linked to adaptation and yield improvement. The panel was genotyped with 25 K wheat SNP array and phenotyped for agronomic traits for two growing seasons (2018 and 2019) in Konya, Turkey. Year 2018 was treated as drought environment due to very low precipitation prior to heading whereas year 2019 was considered as a favorable season. GWAS conducted with SNPs and haplotype blocks using mixed linear model identified 18 genomic regions in the vicinities of known genes i.e., TaERF3-3A, TaERF3-3B, DEP1-5A, FRIZZY PANICLE-2D, TaSnRK23-1A, TaAGL6-A, TaARF12-2A, TaARF12-2B, WAPO1, TaSPL16-7D, TaTGW6-A1, KAT-2B, TaOGT1, TaSPL21-6B, TaSBEIb, trs1/WFZP-A, TaCwi-A1-2A and TaPIN1-7A associated with grain yield (GY) and yield related traits. Haplotype-based GWAS identified five haplotype blocks (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124), with the favorable haplotypes showing a yield increase of > 700 kg/ha in the drought season. SNP-based GWAS, detected only one larger effect genomic region on chromosome 7B, in common with haplotype-based GWAS. On an average, the percentage variation (PV) explained by haplotypes was 8.0% higher than PV explained by SNPs for all the investigated traits. Selective sweep analysis detected 39 signatures of selection between LR and MV of which 15 were within proximity of known functional genes controlling flowering (PRR-A1, PPR-D1, TaHd1-6B), GY and GY components (TaSus2-2B, TaGS2-B1, AG1-1A/WAG1-1A, DUO-A1, DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaSnRK210-4A, FBP, TaLAX1, TaPIL1 and AP3-1-7A/WPA3-7A) and 10 regions underlying various transcription factors and regulatory genes. The study outcomes contribute to utilization of LR in breeding winter wheat.
Collapse
Affiliation(s)
- Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mex-Veracruz, El Batan, CP 56237, Veracruz, Mexico.
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | | | - Fatih Özdemir
- Bahri Dagdas International Agricultural Research Institute, Konya, Turkey
| | - Mesut Keser
- International Center for Agricultural Research in Dry Areas (ICARDA), Ankara, Turkey
| | - Beyhan Akin
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | | | - Emrah Koc
- International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mex-Veracruz, El Batan, CP 56237, Veracruz, Mexico
| | - Alexey Morgounov
- Scientific Production Center of Grain, Shortandy, Astana reg., 010000, Kazakhstan.
| |
Collapse
|
3
|
Li C, Dhital S, Gidley MJ. High amylose wheat foods: A new opportunity to improve human health. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Impact of storage on starch digestibility and texture of a high-amylose wheat bread. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Effect of Three Bakery Products Formulated with High-Amylose Wheat Flour on Post-Prandial Glycaemia in Healthy Volunteers. Foods 2023; 12:foods12020319. [PMID: 36673410 PMCID: PMC9857412 DOI: 10.3390/foods12020319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Both Glycaemic index (GI) and Glycaemic Load (GL) were introduced to measure the impact of a carbohydrate-containing food on blood glucose. From this perspective, high-amylose (HA) flours, with a higher percentage of resistant starch (RS), may represent a suitable raw material to improve the glycaemic response. The present work aims to investigate the GI of HA bakery products (biscuits, taralli and bread) compared to products obtained from conventional flour. Ten healthy volunteers were enrolled and their capillary blood glucose was measured every 15 min for 2 h after the consumption of HA and control products containing 50 g of available carbohydrates. On average, in the three bakery products, the amount of total starch replaced by RS was equal to 12%. HA biscuits and HA bread showed significantly lower GI than their control counterparts (p = 0.0116 and p = 0.011, respectively) and better glycaemic control. From the survey to assess liking and willingness to pay on HA snacks, HA packages received an average premium of €0.66 compared to control products. Although HA flour results in lower GI in both biscuits and bread, further studies are needed to evaluate the correct composition of HA products to have beneficial effects on post-prandial glycaemia.
Collapse
|
6
|
Zafeiriou P, Savva GM, Ahn-Jarvis JH, Warren FJ, Pasquariello M, Griffiths S, Seung D, Hazard BA. Mining the A.E. Watkins Wheat Landrace Collection for Variation in Starch Digestibility Using a New High-Throughput Assay. Foods 2023; 12:266. [PMID: 36673358 PMCID: PMC9858048 DOI: 10.3390/foods12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Breeding for less digestible starch in wheat can improve the health impact of bread and other wheat foods. The application of forward genetic approaches has lately opened opportunities for the discovery of new genes that influence the digestibility of starch, without the burden of detrimental effects on yield or on pasta and bread-making quality. In this study we developed a high-throughput in vitro starch digestibility assay (HTA) for use in forward genetic approaches to screen wheat germplasm. The HTA was validated using standard maize and wheat starches. Using the HTA we measured starch digestibility in hydrothermally processed flour samples and found wide variation among 118 wheat landraces from the A. E. Watkins collection and among eight elite UK varieties (23.5 to 39.9% and 31.2 to 43.5% starch digested after 90 min, respectively). We further investigated starch digestibility in fractions of sieved wholemeal flour and purified starch in a subset of the Watkins lines and elite varieties and found that the matrix properties of flour rather than the intrinsic properties of starch granules conferred lower starch digestibility.
Collapse
|
7
|
Baenziger PS, Frels K, Greenspan S, Jones J, Lovegrove A, Rose D, Shewry P, Wallace R. A stealth health approach to dietary fibre. NATURE FOOD 2023; 4:5-6. [PMID: 37118563 DOI: 10.1038/s43016-022-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
| | | | - Steve Greenspan
- Foundation for Innovation in Healthy Food, Wilmington, DE, USA
| | - Julie Jones
- College of St. Catherine, Emeritus, St. Paul, MN, USA
| | | | - Devin Rose
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Rod Wallace
- Foundation for Innovation in Healthy Food, Wilmington, DE, USA
| |
Collapse
|
8
|
Li C, Dhital S, Gidley MJ. High-amylose wheat tortillas with reduced in vitro digestion and enhanced resistant starch content. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Pfister B, Shields JM, Kockmann T, Grossmann J, Abt MR, Stadler M, Zeeman SC. Tuning heterologous glucan biosynthesis in yeast to understand and exploit plant starch diversity. BMC Biol 2022; 20:207. [PMID: 36153520 PMCID: PMC9509603 DOI: 10.1186/s12915-022-01408-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Starch, a vital plant-derived polysaccharide comprised of branched glucans, is essential in nutrition and many industrial applications. Starch is often modified post-extraction to alter its structure and enhance its functionality. Targeted metabolic engineering of crops to produce valuable and versatile starches requires knowledge of the relationships between starch biosynthesis, structure, and properties, but systematic studies to obtain this knowledge are difficult to conduct in plants. Here we used Saccharomyces cerevisiae as a testbed to dissect the functions of plant starch biosynthetic enzymes and create diverse starch-like polymers. Results We explored yeast promoters and terminators to tune the expression levels of the starch-biosynthesis machinery from Arabidopsis thaliana. We systematically modulated the expression of each starch synthase (SS) together with a branching enzyme (BE) in yeast. Protein quantification by parallel reaction monitoring (targeted proteomics) revealed unexpected effects of glucan biosynthesis on protein abundances but showed that the anticipated broad range of SS/BE enzyme ratios was maintained during the biosynthetic process. The different SS/BE ratios clearly influenced glucan structure and solubility: The higher the SS/BE ratio, the longer the glucan chains and the more glucans were partitioned into the insoluble fraction. This effect was irrespective of the SS isoform, demonstrating that the elongation/branching ratio controls glucan properties separate from enzyme specificity. Conclusions Our results provide a quantitative framework for the in silico design of improved starch biosynthetic processes in plants. Our study also exemplifies a workflow for the rational tuning of a complex pathway in yeast, starting from the selection and evaluation of expression modules to multi-gene assembly and targeted protein monitoring during the biosynthetic process. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01408-x.
Collapse
|
10
|
Fahy B, Gonzalez O, Savva GM, Ahn-Jarvis JH, Warren FJ, Dunn J, Lovegrove A, Hazard BA. Loss of starch synthase IIIa changes starch molecular structure and granule morphology in grains of hexaploid bread wheat. Sci Rep 2022; 12:10806. [PMID: 35752653 PMCID: PMC9233681 DOI: 10.1038/s41598-022-14995-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Starch synthase III plays a key role in starch biosynthesis and is highly expressed in developing wheat grains. To understand the contribution of SSIII to starch and grain properties, we developed wheat ssIIIa mutants in the elite cultivar Cadenza using in silico TILLING in a mutagenized population. SSIIIa protein was undetectable by immunoblot analysis in triple ssIIIa mutants carrying mutations in each homoeologous copy of ssIIIa (A, B and D). Loss of SSIIIa in triple mutants led to significant changes in starch phenotype including smaller A-type granules and altered granule morphology. Starch chain-length distributions of double and triple mutants indicated greater levels of amylose than sibling controls (33.8% of starch in triple mutants, and 29.3% in double mutants vs. 25.5% in sibling controls) and fewer long amylopectin chains. Wholemeal flour of triple mutants had more resistant starch (6.0% vs. 2.9% in sibling controls) and greater levels of non-starch polysaccharides; the grains appeared shrunken and weighed ~ 11% less than the sibling control which was partially explained by loss in starch content. Interestingly, our study revealed gene dosage effects which could be useful for fine-tuning starch properties in wheat breeding applications while minimizing impact on grain weight and quality.
Collapse
Affiliation(s)
| | - Oscar Gonzalez
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - George M Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | | | - Frederick J Warren
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | | | | | - Brittany A Hazard
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
| |
Collapse
|
11
|
Biswas S, Ibarra O, Shaphek M, Molina-Risco M, Faion-Molina M, Bellinatti-Della Gracia M, Thomson MJ, Septiningsih EM. Increasing the level of resistant starch in 'Presidio' rice through multiplex CRISPR-Cas9 gene editing of starch branching enzyme genes. THE PLANT GENOME 2022:e20225. [PMID: 35713092 DOI: 10.1002/tpg2.20225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa L.) is an excellent source of starch, which is composed of amylopectin and amylose. Resistant starch (RS) is a starch product that is not easily digestible and absorbed in the stomach or small intestine and instead is passed on directly to the large intestine. Cereals high in RS may be beneficial to improve human health and reduce the risk of diet-related chronic diseases. It has been reported through chemical mutagenesis and RNA interference studies that starch branching enzymes (SBEs) play a major role in contributing to higher levels of RS in cereal crops. In this study, we used multiplex clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated protein 9 (Cas9) genome editing to simultaneously target all four SBE genes in rice using the endogenous transfer RNA (tRNA)-processing system for expressing the single-guide RNAs (sgRNAs) targeting these genes. The CRISPR-Cas9 vector construct with four SBE gene sgRNAs was transformed into the U.S. rice cultivar Presidio using Agrobacterium-mediated transformation. Knockout mutations were identified at all four SBE genes across eight transgene-positive T0 plants. Transgene-free T1 lines with different combinations of disrupted SBE genes were identified, with several SBE-edited lines showing significantly increased RS content up to 15% higher than the wild-type (WT) cultivar Presidio. Although further efforts are needed to fix all of the mutant alleles as homozygous, our study demonstrated the potential of multiplex genome editing to develop high-RS lines.
Collapse
Affiliation(s)
- Sudip Biswas
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | - Oneida Ibarra
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
- Avance Biosciences Inc., Houston, TX, 77040, USA
| | - Mariam Shaphek
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
- Dep. of Biochemistry and Biophysics, Texas A&M Univ., College Station, TX, 77843, USA
| | - Marco Molina-Risco
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | - Mayra Faion-Molina
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | | | - Michael J Thomson
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | | |
Collapse
|
12
|
Li C, Dhital S, Gidley MJ. High-amylose wheat bread with reduced in vitro digestion rate and enhanced resistant starch content. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
De Arcangelis E, Trivisonno MC, Angelicola M, Quiquero M, Di Nardo V, Falasca L, Sestili F, Messia MC, Marconi E. Milling and rheological properties of high amylose wheat. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Botticella E, Savatin DV, Sestili F. The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High Fiber Grains. FRONTIERS IN PLANT SCIENCE 2021; 12:745579. [PMID: 34594354 PMCID: PMC8477015 DOI: 10.3389/fpls.2021.745579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Cereals represent an important source of beneficial compounds for human health, such as macro- and micronutrients, vitamins, and bioactive molecules. Generally, the consumption of whole-grain products is associated with significant health benefits, due to the elevated amount of dietary fiber (DF). However, the consumption of whole-grain foods is still modest compared to more refined products. In this sense, it is worth focusing on the increase of DF fractions inside the inner compartment of the seed, the endosperm, which represents the main part of the derived flour. The main components of the grain fiber are arabinoxylan (AX), β-glucan (βG), and resistant starch (RS). These three components are differently distributed in grains, however, all of them are represented in the endosperm. AX and βG, classified as non-starch polysaccharides (NSP), are in cell walls, whereas, RS is in the endosperm, being a starch fraction. As the chemical structure of DFs influences their digestibility, the identification of key actors involved in their metabolism can pave the way to improve their function in human health. Here, we reviewed the main achievements of plant biotechnologies in DFs manipulation in cereals, highlighting new genetic targets to be exploited, and main issues to face to increase the potential of cereals in fighting malnutrition.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
15
|
Wang R, Wei X, Wang H, Zhao L, Zeng C, Wang B, Zhang W, Liu L, Xu Y. Development of Attenuated Total Reflectance Mid-Infrared (ATR-MIR) and Near-Infrared (NIR) Spectroscopy for the Determination of Resistant Starch Content in Wheat Grains. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:5599388. [PMID: 34336359 PMCID: PMC8298176 DOI: 10.1155/2021/5599388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The chemical method for the determination of the resistant starch (RS) content in grains is time-consuming and labor intensive. Near-infrared (NIR) and attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy are rapid and nondestructive analytical techniques for determining grain quality. This study was the first report to establish and compare these two spectroscopic techniques for determining the RS content in wheat grains. Calibration models with four preprocessing techniques based on the partial least squares (PLS) algorithm were built. In the NIR technique, the mean normalization + Savitzky-Golay smoothing (MN + SGS) preprocessing technique had a higher coefficient of determination (R c 2 = 0.672; R p 2 = 0.552) and a relative lower root mean square error value (RMSEC = 0.385; RMSEP = 0.459). In the ATR-MIR technique, the baseline preprocessing method exhibited a better performance regarding to the values of coefficient of determination (R c 2 = 0.927; R p 2 = 0.828) and mean square error value (RMSEC = 0.153; RMSEP = 0.284). The validation of the developed best NIR and ATR-MIR calibration models showed that the ATR-MIR best calibration model has a better RS prediction ability than the NIR best calibration model. Two high grain RS content wheat mutants were screened out by the ATR-MIR best calibration model from the wheat mutant library. There was no significant difference between the predicted values and chemical measured values in the two high RS content mutants. It proved that the ATR-MIR model can be a perfect substitute in RS measuring. All the results indicated that the ATR-MIR spectroscopy with improved screening efficiency can be used as a fast, rapid, and nondestructive method in high grain RS content wheat breeding.
Collapse
Affiliation(s)
- Rong Wang
- Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland and Hubei Collaborative Innovation Centre for Grain Industry and Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xia Wei
- Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland and Hubei Collaborative Innovation Centre for Grain Industry and Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei 434025, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hongpan Wang
- Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland and Hubei Collaborative Innovation Centre for Grain Industry and Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei 434025, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cengli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, China
| | - Bingrui Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430064, China
| | - Wenying Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland and Hubei Collaborative Innovation Centre for Grain Industry and Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei 434025, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
16
|
Chen J, Hawkins E, Seung D. Towards targeted starch modification in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102013. [PMID: 33677239 DOI: 10.1016/j.pbi.2021.102013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Genetic approaches to modify starch in crops have been limited by our knowledge of starch biosynthesis. Recent advances in Arabidopsis have revealed key genetic components determining the size, shape and number of granules in a plastid. This has opened the doors to new discoveries on granule initiation in crop species. In parallel, advances in genomic resources and gene editing technologies allow targeted manipulation of starch biosynthesis genes in isogenic crop backgrounds. Such technologies have been successfully deployed to alter starch composition, and can now be used to modify other starch traits. This will allow the complex relationships between starch structure and physicochemical properties to be elucidated, which will facilitate the rational manipulation of starches in crops.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
17
|
Arp CG, Correa MJ, Ferrero C. Improving quality: Modified celluloses applied to bread dough with high level of resistant starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Wang Z, Ma S, Sun B, Wang F, Huang J, Wang X, Bao Q. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. Int J Biol Macromol 2021; 177:474-484. [PMID: 33636262 DOI: 10.1016/j.ijbiomac.2021.02.175] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Starch and gluten, the most important macromolecules in wheat flour, vary in thermal properties. The thermal behavior of starch, gluten and their complexes during the manufacture and quality control of flour products need to be accurately understood. However, the high complexity of starch-gluten systems impedes the accurate description of their interactions. When heated within varying temperature ranges and when water molecules are involved, the behaviors of amylose and amylopectin change, and the properties of the starch are modified. Moreover, important indicators of starch granules such as gelatinization temperature, peak viscosity, and so on, which are encapsulated by the gluten matrix, are altered. Meanwhile, the high-temperature environment induces the opening of the intrachain disulfide bonds of gliadin, leading to an increase in the probability of interchain disulfide bond formation in the gluten network system. These behaviors are notable and may provide insights into this complex interaction. In this review, the relationship between the thermal behavior of wheat starch and gluten and the quality of flour products is analyzed. Several methods used to investigate the thermal characteristics of wheat and its flour products are summarized, and some thermal interaction models of starch and gluten are proposed.
Collapse
Affiliation(s)
- Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Fengcheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
19
|
Guo J, Li H, Liu J, Liu A, Cao X, Liu C, Cheng D, Zhao Z, Song J. Genome-Wide Identification and Expression Profiling of Starch-Biosynthetic Genes in Common Wheat. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542012008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Petropoulou K, Salt LJ, Edwards CH, Warren FJ, Garcia-Perez I, Chambers ES, Alshaalan R, Khatib M, Perez-Moral N, Cross KL, Kellingray L, Stanley R, Koev T, Khimyak YZ, Narbad A, Penney N, Serrano-Contreras JI, Charalambides MN, Miguens Blanco J, Castro Seoane R, McDonald JAK, Marchesi JR, Holmes E, Godsland IF, Morrison DJ, Preston T, Domoney C, Wilde PJ, Frost GS. A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans. NATURE FOOD 2020; 1:693-704. [PMID: 37128029 DOI: 10.1038/s43016-020-00159-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/02/2020] [Indexed: 11/09/2022]
Abstract
Elevated postprandial glucose (PPG) is a significant risk factor for non-communicable diseases globally. Currently, there is a limited understanding of how starch structures within a carbohydrate-rich food matrix interact with the gut luminal environment to control PPG. Here, we use pea seeds (Pisum sativum) and pea flour, derived from two near-identical pea genotypes (BC1/19RR and BC1/19rr) differing primarily in the type of starch accumulated, to explore the contribution of starch structure, food matrix and intestinal environment to PPG. Using stable isotope 13C-labelled pea seeds, coupled with synchronous gastric, duodenal and plasma sampling in vivo, we demonstrate that maintenance of cell structure and changes in starch morphology are closely related to lower glucose availability in the small intestine, resulting in acutely lower PPG and promotion of changes in the gut bacterial composition associated with long-term metabolic health improvements.
Collapse
Affiliation(s)
- Katerina Petropoulou
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | - Isabel Garcia-Perez
- Computational and Systems Medicine, Division of Integrated Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Rasha Alshaalan
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Clinical Nutrition Program, Department of Health, College of Health and Rehabilitation Sciences, Princess Noura Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mai Khatib
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Faculty of Applied Medical Sciences, Department of Clinical Nutrition, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | | | - Todor Koev
- Quadram Institute Bioscience, Norwich, UK
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | | | | - Nicholas Penney
- Computational and Systems Medicine, Division of Integrated Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Jose Ivan Serrano-Contreras
- Computational and Systems Medicine, Division of Integrated Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Jesus Miguens Blanco
- Division of Integrative Systems Medicine and Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Rocio Castro Seoane
- Division of Integrative Systems Medicine and Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Julie A K McDonald
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Julian R Marchesi
- Division of Integrative Systems Medicine and Digestive Disease, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Elaine Holmes
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Computational and Systems Medicine, Division of Integrated Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Centre for Computational & Systems Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Ian F Godsland
- Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, UK
| | - Tom Preston
- Scottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, UK
| | | | | | - Gary S Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
21
|
High-amylose wheat starch: Structural basis for water absorption and pasting properties. Carbohydr Polym 2020; 245:116557. [DOI: 10.1016/j.carbpol.2020.116557] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023]
|
22
|
Hazard B, Trafford K, Lovegrove A, Griffiths S, Uauy C, Shewry P. Strategies to improve wheat for human health. NATURE FOOD 2020; 1:475-480. [PMID: 37128081 DOI: 10.1038/s43016-020-0134-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/17/2020] [Indexed: 05/03/2023]
Abstract
Despite their economic importance and growing demand, concerns are emerging around wheat-based foods and human health. Most wheat-based foods are made from refined white flour rather than wholemeal flour, and the overconsumption of these products may contribute to the increasing global prevalence of chronic diseases, particularly type 2 diabetes and obesity. Here, we review how the amount, composition and interactions of starch and cell wall polysaccharides, the major carbohydrate components in refined wheat products, impact human health. We discuss strategies and challenges to manipulate these components for improved diet and health using newly developed wheat genomics tools and resources. Commercial foods developed from these novel approaches must be produced without adverse effects on cost, consumer acceptability and processing properties.
Collapse
|
23
|
Tuncel A, Corbin KR, Ahn‐Jarvis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM. Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2259-2271. [PMID: 31033104 PMCID: PMC6835119 DOI: 10.1111/pbi.13137] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 05/20/2023]
Abstract
We investigated whether Cas9-mediated mutagenesis of starch-branching enzymes (SBEs) in tetraploid potatoes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium-mediated transformation or by PEG-mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homoeoalleles of SBE genes and lines in which homoeoalleles carried several different mutations. DNA delivery into protoplasts resulted in mutants with no detectable Cas9 gene, suggesting the absence of foreign DNA. Selected mutants with starch granule abnormalities had reductions in tuber SBE1 and/or SBE2 protein that were broadly in line with expectations from genotype analysis. Strong reduction in both SBE isoforms created an extreme starch phenotype, as reported previously for low-SBE potato tubers. HPLC-SEC and 1 H NMR revealed a decrease in short amylopectin chains, an increase in long chains and a large reduction in branching frequency relative to wild-type starch. Mutants with strong reductions in SBE2 protein alone had near-normal amylopectin chain-length distributions and only small reductions in branching frequency. However, starch granule initiation was enormously increased: cells contained many granules of <4 μm and granules with multiple hila. Thus, large reductions in both SBEs reduce amylopectin branching during granule growth, whereas reduction in SBE2 alone primarily affects numbers of starch granule initiations. Our results demonstrate that Cas9-mediated mutagenesis of SBE genes has the potential to generate new, potentially valuable starch properties without integration of foreign DNA into the genome.
Collapse
Affiliation(s)
| | | | | | - Suzanne Harris
- Quadram Institute BioscienceNorwich Research ParkNorwichUK
| | | | | | | | | | | | | |
Collapse
|
24
|
Hogg AC, Giroux MJ. Milling and baking quality of hexaploid spring wheat starch synthase IIa ( ssIIa) mutants with elevated amylose content. Cereal Chem 2019. [DOI: 10.1002/cche.10153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew C. Hogg
- Department of Plant Sciences and Plant Pathology Montana State University Bozeman Montana
| | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology Montana State University Bozeman Montana
| |
Collapse
|
25
|
Botticella E, Sestili F, Sparla F, Moscatello S, Marri L, Cuesta‐Seijo JA, Falini G, Battistelli A, Trost P, Lafiandra D. Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1723-1734. [PMID: 29499105 PMCID: PMC6131419 DOI: 10.1111/pbi.12908] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 05/19/2023]
Abstract
Modifications to the composition of starch, the major component of wheat flour, can have a profound effect on the nutritional and technological characteristics of the flour's end products. The starch synthesized in the grain of conventional wheats (Triticum aestivum) is a 3:1 mixture of the two polysaccharides amylopectin and amylose. Altering the activity of certain key starch synthesis enzymes (GBSSI, SSIIa and SBEIIa) has succeeded in generating starches containing a different polysaccharide ratio. Here, mutagenesis, followed by a conventional marker-assisted breeding exercise, has been used to generate three mutant lines that produce starch with an amylose contents of 0%, 46% and 79%. The direct and pleiotropic effects of the multiple mutation lines were identified at both the biochemical and molecular levels. Both the structure and composition of the starch were materially altered, changes which affected the functionality of the starch. An analysis of sugar and nonstarch polysaccharide content in the endosperm suggested an impact of the mutations on the carbon allocation process, suggesting the existence of cross-talk between the starch and carbohydrate synthesis pathways.
Collapse
Affiliation(s)
| | - Francesco Sestili
- Department of Agriculture and Forestry ScienceUniversity of TusciaViterboItaly
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology FABITUniversity of BolognaBolognaItaly
| | - Stefano Moscatello
- National Research Council CNR‐Istituto di Biologia Agroambientale e ForestalePoranoTerniItaly
| | - Lucia Marri
- Carlsberg Research LaboratoryCopenhagenDenmark
| | | | - Giuseppe Falini
- Department of Chemistry ‘G. Ciamician’University of BolognaBolognaItaly
| | - Alberto Battistelli
- National Research Council CNR‐Istituto di Biologia Agroambientale e ForestalePoranoTerniItaly
| | - Paolo Trost
- Department of Pharmacy and Biotechnology FABITUniversity of BolognaBolognaItaly
| | - Domenico Lafiandra
- Department of Agriculture and Forestry ScienceUniversity of TusciaViterboItaly
| |
Collapse
|
26
|
Kumar R, Mukherjee S, Ayele BT. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: A comprehensive review. Biotechnol Adv 2018; 36:954-967. [PMID: 29499342 DOI: 10.1016/j.biotechadv.2018.02.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/27/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
Wheat is one of the most important crops globally, and its grain is mainly used for human food, accounting for 20% of the total dietary calories. It is also used as animal feed and as a raw material for a variety of non-food and non-feed industrial products such as a feedstock for the production of bioethanol. Starch is the major constituent of a wheat grain, as a result, it is considered as a critical determinant of wheat yield and quality. The amount and composition of starch deposited in wheat grains is controlled primarily by sucrose transport from source tissues to the grain and its conversion to starch. Therefore, elucidation of the molecular mechanisms regulating these physiological processes provides important opportunities to improve wheat starch yield and quality through biotechnological approaches. This review comprehensively discusses the current understanding of the molecular aspects of sucrose transport and sucrose-to-starch metabolism in wheat grains. It also highlights the advances and prospects of starch biotechnology in wheat.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shalini Mukherjee
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
27
|
Alvarez JB, Guzmán C. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:225-251. [PMID: 29285597 DOI: 10.1007/s00122-017-3042-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/17/2017] [Indexed: 05/27/2023]
Abstract
The hybridization events with wild relatives and old varieties are an alternative source for enlarging the wheat quality variability. This review describes these process and their effects on the technological and nutritional quality. Wheat quality and its end-uses are mainly based on variation in three traits: grain hardness, gluten quality and starch. In recent times, the importance of nutritional quality and health-related aspects has increased the range of these traits with the inclusion of other grain components such as vitamins, fibre and micronutrients. One option to enlarge the genetic variability in wheat for all these components has been the use of wild relatives, together with underutilised or neglected wheat varieties or species. In the current review, we summarise the role of each grain component in relation to grain quality, their variation in modern wheat and the alternative sources in which wheat breeders have found novel variation.
Collapse
Affiliation(s)
- Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071, Córdoba, Spain.
| | - Carlos Guzmán
- CIMMYT, Global Wheat Program, Km 45 Carretera México-Veracruz, El Batán, C.P. 56130, Texcoco, Estado de México, Mexico
| |
Collapse
|
28
|
Hogg AC, Martin JM, Giroux MJ. Novel ssIIa Alleles Produce Specific Seed Amylose Levels in Hexaploid Wheat. Cereal Chem 2017. [DOI: 10.1094/cchem-06-17-0124-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andrew C. Hogg
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| | - John M. Martin
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| |
Collapse
|