1
|
de Paula Farias V, Ascheri DPR, Ascheri JLR. Substituting corn starch with wolf's fruit and butterfly lily starches in thermopressed films: Physicochemical, mechanical, and biodegradation properties. Int J Biol Macromol 2024; 281:136378. [PMID: 39383906 DOI: 10.1016/j.ijbiomac.2024.136378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The industrial use of corn starch competes with food supplies, encouraging the investigation of native starches as an alternative for its partial replacement. This study aimed to analyze the effects of replacing corn starch (CS) with wolf's fruit (WFS) and butterfly lily (BLS) starches on the physicochemical, mechanical, and biodegradation properties of starch-based films. Plasticized (with glycerin and citric acid) and unplasticized films were prepared with a microwave (10 s) and by thermopressing (1.5 t/120 °C/2 min) and were analyzed for amylose, scanning electron microscopy, X-ray diffraction, and paste properties. Furthermore, the biodegradability of films was tested in two soils over 42 days. Our results show that BLS is not a suitable raw material to replace corn starch. WFS with 27.5 % apparent amylose content and granule size of 12.5 μm produced films with thickness, permeability, tensile strength, and elongation of ~110 μm, ~4.8 g (m.s.Pa)-1, ~2.5 MPa, and ~2.9 %, respectively, similar to CS. The biodegradability of WFS film showed greater resistance (≤61.4 %), increasing with the addition of plasticizers (89-93 % for WFS302) or partial replacement of CS (73-91 % for CSWFS303). These findings indicate that WFS can partially or fully replace CS in thermopressed films.
Collapse
Affiliation(s)
- Viviane de Paula Farias
- Rondonópolis Federal of University, Bachelor's Degree in Animal Science, Rondonópolis, Mato Grosso, Brazil
| | | | - José Luis Ramirez Ascheri
- Embrapa Food Technology, Physical Properties and Food Extrusion Laboratory, Guaratiba, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Shao GQ, Zhang H, Xu D, Wu FF, Jin YM, Yang N, Yu KJ, Xu XM. Insights into starch-based gels: Selection, fabrication, and application. Int J Biol Macromol 2024; 258:128864. [PMID: 38158059 DOI: 10.1016/j.ijbiomac.2023.128864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Starch a natural polymer, has made significant advancements in recent decades, offering superior performance and versatility compared to synthetic materials. This review discusses up-to-date diverse applications of starch gels, their fabrication techniques, and their advantages over synthetic materials. Starch gels renewability, biocompatibility, biodegradability, scalability, and affordability make them attractive. Also, advanced theoretical foundations and emerging industrial technologies could further expand their scope and functions inspiring new applications.
Collapse
Affiliation(s)
- Guo-Qiang Shao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Huang Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Henan University of Animal Husbandry and Economics, 6 Longzihu North Road, Zhengzhou, 450046, PR China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Feng-Feng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Ya-Mei Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Na Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Ke-Jing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xue-Ming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Teoh RW, Ting ASY, Thoo YY. Characterization and modeling of diffusion kinetics of rosemary oleoresin extract from gellan gum-based film. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2978-2989. [PMID: 37786603 PMCID: PMC10542068 DOI: 10.1007/s13197-023-05826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023]
Abstract
Fresh food products are highly prone to oxidation and microbial attack, rendering them unsuitable for consumption. Thus, active food packaging was developed to protect and prolong food shelf-life. Zein/gellan gum (GG) based active film is developed by incorporating rosemary oleoresin extract (ROE) (0-20%). The films were characterized by their barrier and antioxidant properties. The release behavior of ROE in fatty and hydrophilic food stimulants was investigated via mathematical modeling. The active films incorporated with 20% ROE have significantly higher oxygen barrier and oxygen transfer is reduced by 20% compared to the control. A tortuous path is created with ROE, which impedes oxygen movement across the film. ROE addition improved water resistance performance by reducing the active film swelling ratio by 31%. This improvement is attributed to the hydrophobic nature of ROE. FTIR shows that the interaction between ROE and the active film is primarily hydrogen bonding and electrostatic interactions. Active film exhibits excellent antioxidant activity, with high TPC, DPPH scavenging activity, and FRAP. Mathematical modeling revealed a higher diffusivity (D) of ROE in fatty food stimulants at 24 °C, attributed to high polarity and solubility in fatty food stimulants. Overall, this active film has an excellent antioxidant effect and could potentially be used as food packaging for high-fat food products to prevent oxidation. Graphical abstract
Collapse
Affiliation(s)
- Ru Wei Teoh
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Malaysia
| | - Yin Yin Thoo
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
4
|
Cheng X, Yang S, Fang Q, Dai S, Peng X, Sun M, Lian Z, Liu Y, Yang J, Xu J, Wang H, Jiang L. Biomacromolecule assembly of soy glycinin-potato starch complexes: Focus on structure, function, and applications. Carbohydr Polym 2023; 317:121101. [PMID: 37364963 DOI: 10.1016/j.carbpol.2023.121101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
The effect of the cross-linking mechanism and functional properties of soy glycinin (11S)-potato starch (PS) complexes was investigated in this study. The results showed that the binding effecting and spatial network structure of 11S-PS complexes via heated-induced cross-linking were adjusted by biopolymer ratios. In particular, 11S-PS complexes with the biopolymer ratios of 2:15, had a strongest intermolecular interaction through hydrogen bonds and hydrophobic force. Moreover, 11S-PS complexes at the biopolymer ratios of 2:15 exhibited a finer three-dimensional network structure, which was used as film-forming solution to enhance the barrier performance and mitigate the exposure to the environment. In addition, the 11S-PS complexes coating was effective in moderating the loss of nutrients, thereby extending their storage life in truss tomato preservation experiments. This study provides helpful to insights into the cross-linking mechanism of the 11S-PS complexes and the potential application of food-grade biopolymer composite coatings in food preservation.
Collapse
Affiliation(s)
- Xiaoyi Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Fang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shicheng Dai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinhui Peng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingyue Sun
- College of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150066, China
| | - ZiTeng Lian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanwei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - JinJie Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
5
|
Lan X, Zhang X, Wang L, Wang H, Hu Z, Ju X, Yuan Y. A review of food preservation based on zein: The perspective from application types of coating and film. Food Chem 2023; 424:136403. [PMID: 37244188 DOI: 10.1016/j.foodchem.2023.136403] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 04/30/2023] [Indexed: 05/29/2023]
Abstract
The application of zein in food preservation was discussed from a unique perspective of application types, including coating and film. For the study of coating, edibility is considered because the coating adheres to the surface of food directly. For the study of film, plasticizers improve their mechanical properties, while barrier performance and antibacterial performance are achieved by nanoparticles; the incorporation of polyphenols is mainly due to their antibacterial and antioxidant properties; other biopolymers realize the complementarity between zein and biopolymers within films. In the future, the interaction between the edible coating and food matrix needs to be concerned. The mechanism of various exogenous additives and zein in the film should be noticed. Importantly, food safety and the possibility of large-scale application should be followed. Additionally, the intelligent response is one of the key development directions of zein-based film in the future.
Collapse
Affiliation(s)
- Xiang Lan
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Xinyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lei Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Haiyan Wang
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Zhe Hu
- Hisense Ronshen (Guangdong) Refrigerator Co., Ltd., Foshan 528303, China
| | - Xiaochen Ju
- Hisense Home Appliance Group Co., Ltd., Qingdao 266100, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Luz RF, Ferreira RDR, Silva CNS, Miranda BM, Piccoli RH, Silva MS, Paula LC, Leles MIG, Fernandes KF, Cruz MV, Batista KA. Development of a Halochromic, Antimicrobial, and Antioxidant Starch-Based Film Containing Phenolic Extract from Jaboticaba Peel. Foods 2023; 12:653. [PMID: 36766181 PMCID: PMC9914361 DOI: 10.3390/foods12030653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, the antioxidant, antimicrobial, mechanical, optical, and barrier attributes of Solanum lycocarpum starch bio-based edible films incorporated with a phenolic extract from jaboticaba peel were investigated. Aiming to determine the effect of the polymers and the phenolic extract on the properties of the films, a three-factor simplex-lattice design was employed, and the formulation optimization was based on the produced films' antioxidant potential. The optimized formulation of the starch-PEJP film showed a reddish-pink color with no cracks or bubbles and 91% antioxidant activity against DPPH radical. The optimized starch-PEJP film showed good transparency properties and a potent UV-blocking action, presenting color variation as a function of the pH values. The optimized film was also considerably resistant and highly flexible, showing a water vapor permeability of 3.28 × 10-6 g m-1 h-1 Pa-1. The microbial permeation test and antimicrobial evaluation demonstrated that the optimized starch-PEJP film avoided microbial contamination and was potent in reducing the growth of Escherichia coli, Staphylococcus aureus, and Salmonella spp. In summary, the active starch-PEJP film showed great potential as an environmentally friendly and halochromic material, presenting antioxidant and antimicrobial properties and high UV-protecting activity.
Collapse
Affiliation(s)
- Rafaela F. Luz
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | | | - Cassio N. S. Silva
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Bruna M. Miranda
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Roberta H. Piccoli
- Food Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Monique S. Silva
- Food Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Ladyslene C. Paula
- Department of Food Engineering, Federal University of Rondônia, Ariquemes 76870-000, RO, Brazil
| | - Maria Inês G. Leles
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Kátia F. Fernandes
- Federal University of Goias, Samambaia Campus, Goiânia 74690-900, GO, Brazil
| | - Maurício V. Cruz
- Federal Institute for Education, Science, and Technology of Goias, Goiânia 74270-040, GO, Brazil
| | - Karla A. Batista
- Federal Institute for Education, Science, and Technology of Goias, Goiânia 74270-040, GO, Brazil
| |
Collapse
|
7
|
Fabrication of biodegradable blend plastic from konjac glucomannan/zein/ PVA and understanding its multi-scale structure and physicochemical properties. Int J Biol Macromol 2023; 225:172-184. [PMID: 36309233 DOI: 10.1016/j.ijbiomac.2022.10.199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
Exploration and synthesis of degradable plastics can alleviate and avoid environmental pollution induced by petroleum-based plastics. In this study, a konjac glucomannan (KGM)/zein/PVA ternary blend plastic was successfully prepared by casting. The results showed that, despite the presence of particle aggregation from incompatible components in blend plastic, the addition of KGM and zein improved its compatibility which is consistent with the formation of continuous dark regions and the reduction of roughness average (Ra) results in the AFM characterization. Also, XRD and FT-IR results indicated that the addition of KGM and zein disrupted the molecular and crystalline structure of PVA, induced stretching vibration of alcohol and hydroxyl groups, and crystallinity reduction. In addition, KGM deacetylation (d-KGM) reduced the intramolecular hydroxyl groups, reduced the water absorption and water vapor transmission rate of the blend plastics, and increased the crystallization temperature (Tc) and melting temperature (Tm). Furthermore, the blended plastics exhibited the best tensile strength (TS), elongation at break (E), and elastic modulus (EM) when the proportion of KGM to zein was 9:1. Notably, the blended plastic with KGM and zein added displayed more pores and cracks after soil burial, implying that the lack of degradability of pure PVA plastic was improved.
Collapse
|
8
|
Tyagi V, Wang Y, Bhattacharya B. Development of ionic liquid plasticized high‐tensile starch‐protein‐sorghum bran composite films with antimicrobial activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Varee Tyagi
- Department of Basic and Applied Sciences National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry McGill University Ste Anne de Bellevue Québec Canada
| | - Bhaswati Bhattacharya
- Department of Basic and Applied Sciences National Institute of Food Technology Entrepreneurship and Management Sonipat India
| |
Collapse
|
9
|
Boonsuk P, Sukolrat A, Chantarak S, Kelarakis A, Chaibundit C. Poly(vinyl alcohol)/modified cassava starch blends plasticized with glycerol and sorbitol. J Appl Polym Sci 2022. [DOI: 10.1002/app.52362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Phetdaphat Boonsuk
- Division of Physical Science, Faculty of Science Prince of Songkla University Hat Yai Songkhla Thailand
| | - Apinya Sukolrat
- Office of Scientific Instrument and Testing Prince of Songkla University Hat Yai Songkhla Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science Prince of Songkla University Hat Yai Songkhla Thailand
| | - Antonios Kelarakis
- UCLan Research Centre for Smart Materials, School of Natural Sciences University of Central Lancashire Preston UK
| | - Chiraphon Chaibundit
- Division of Physical Science, Faculty of Science Prince of Songkla University Hat Yai Songkhla Thailand
| |
Collapse
|
10
|
Masanabo MA, Ray SS, Emmambux MN. Properties of thermoplastic maize starch-zein composite films prepared by extrusion process under alkaline conditions. Int J Biol Macromol 2022; 208:443-452. [PMID: 35304201 DOI: 10.1016/j.ijbiomac.2022.03.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 11/05/2022]
Abstract
This work investigates the effect of the addition of NaOH on the compatibility and material properties of thermoplastic starch-zein composite films produced by a twin-screw extruder. Thermoplastic starch-zein composite films were produced by melt extrusion of glycerol-plasticized starch and zein (3:1 ratio) treated with different concentrations of sodium hydroxide (NaOH) (0 M, 0.05 M, 0.1 M, and 0.2 M NaOH). Scanning Electron Microscope and Confocal laser Scanning Microscope revealed that the composite without NaOH formed a phase-separated morphology with large zein aggregates within the starch matrix. However, the increase in NaOH concentration reduced the size of zein aggregates within the starch-zein composite films, with 0.2 M NaOH having the smallest size of zein aggregates. Dynamic mechanical analysis showed a decrease in glass transition temperature (Tg) and storage modulus (E'), suggesting more molecular chain mobility and efficient plasticization of starch and zein. This efficient plasticization was also confirmed by Fourier-Transform Infrared spectroscopy (FTIR). As a result, there was an optimal increase of 28% in elongation at break in the starch-zein composite film with 0.2 M NaOH. In conclusion, compatible thermoplastic starch-zein composite films with improved elongation at break can be produced with a twin-screw extruder by adding 0.2 M NaOH.
Collapse
Affiliation(s)
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| | - M Naushad Emmambux
- Consumer and Food Sciences, University of Pretoria, Private bag x20, Hatfield 0028, South Africa.
| |
Collapse
|
11
|
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021; 10:foods10092181. [PMID: 34574290 PMCID: PMC8467936 DOI: 10.3390/foods10092181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on "starch food packaging" is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films' properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites.
Collapse
|
12
|
Preparation and Characterization of Biodegradable Composited Films Based on Potato Starch/Glycerol/Gelatin. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6633711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of plastics is resisted worldwide. Therefore, finding alternatives to plastic packaging products is an urgent issue. This work was dedicated to the preparation of biodegradable composited films with potato starch, glycerol, and gelatin. The formulation of the biodegradable film was first optimized via response surface methodology combined with the multi-index comprehensive evaluation method that considered physical properties (thickness, water solution (WS), tensile strength (TS) and elongation at break (E%)) and barrier property (light transmittance (T%)). Results indicated that the optimal conditions were 2.5% starch, 2.0% glycerol, and 1.5% gelatin (based on water). The optimized film presented excellent properties with TS of 4.47 MPa, E% of 109.91%, WS of 43.64%, and T% of 41.21% at 500 nm, and the comprehensive evaluation score of the composite film was 28.68. Moreover, a model verification experiment was further conducted, which proved that the predicted value highly matched experimental values, indicting the credibility and accuracy of the model. The resulting films were further characterized on the basis of rheological measurements, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The rheological measurements proved that the film-forming solution exhibited low shear viscosity and non-Newtonian fluid behavior. FTIR and SEM revealed excellent compatibility among starch, glycerol, and gelatin. Hence, the resulting optimized film may be expected to provide theoretical basis and technical support for the food packing industry.
Collapse
|