1
|
Abdulla HA, Al-Ghouti MA, Soubra L. Arsenic contamination in rice: a DPSIR analysis with a focus on top rice producers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179425. [PMID: 40245509 DOI: 10.1016/j.scitotenv.2025.179425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Arsenic contamination in rice poses significant risks to public health and food security. While previous reviews have examined specific aspects of this issue, they often lack a comprehensive analysis linking human activities to arsenic contamination and its broader consequences. This review applies the DPSIR (Driving Forces-Pressures-States-Impacts-Responses) framework to elucidate the cause-and-effect relationships of arsenic contamination in rice, with a focus on top rice producers. It also synthesizes current knowledge on the environmental sources, fate, and transport of arsenic across different environmental compartments, illustrating its movement from emission sources to accumulation in rice while highlighting the complex interplay between environmental conditions, rice varieties, and contamination levels. The DPSIR analysis revealed that socioeconomic factors, including population growth and industrialization, were the primary driving forces behind arsenic contamination in rice. These factors increased pressures such as reliance on arsenic-contaminated irrigation water, historical pesticide use, and industrial pollution, which contributed to arsenic accumulation in rice-growing environments. Consequently, the soil, water, and rice were contaminated with arsenic at various levels, posing serious risks to human health. The impacts extend beyond health concerns to disruptions in global rice trade and threats to food security. In response, various mitigation strategies have been implemented, including regulation, sustainable agricultural practices, water and soil remediation, and public guidance. However, challenges persist, requiring an integrated approach that incorporates scientific advancements, policy interventions, and improved agricultural techniques. Key research priorities include developing arsenic-resistant rice varieties, assessing health risks for vulnerable populations, quantifying economic losses, and determining arsenic-related foodborne diseases burden.
Collapse
Affiliation(s)
- Hasa Ali Abdulla
- Biological and environmental sciences department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Biological and environmental sciences department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Lama Soubra
- Biological and environmental sciences department, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Luu PD, Bui MHT, Doan TD, Quan TC, Vu TX, Dang MT. Lead, cadmium and arsenic species in spices from markets in Hanoi, Vietnam. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025:1-13. [PMID: 40277135 DOI: 10.1080/19393210.2025.2472229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 04/26/2025]
Abstract
Spices are essential to cooking and include health benefits. Nevertheless, information regarding the prevalence of heavy metals (Pb, Cd and As) and As species in spices is limited. Consequently, 254 samples from 6 varieties of commercially available branded and non-branded spices were examined for heavy metal and As species content. The analytical results were ranked as Pb > As > Cd (p < 0.05), with red chilli and garlic exhibiting the highest and lowest levels, respectively. A significant difference in heavy metal levels was observed between branded and non-branded samples (p < 0.05), suggesting that processing and trade influence the initial metal levels. Arsenite was the predominant form in spices, but dimethylarsinic acid and monomethylarsonic acid primarily accumulated in spices from the Zingiberaceae (p < 0.05). No carcinogenic risk to human health from heavy metals in spices was identified (HIs < 1).
Collapse
Affiliation(s)
- Phuong Duc Luu
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Mo Hong Thi Bui
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Tien Duy Doan
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thuy Cam Quan
- Department of Analytical Engineering, Viet Tri University of Industry (VUI), Viet Tri, Vietnam
| | - Thuy Xuan Vu
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Mai Thi Dang
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
3
|
Cao X, Chen X, Liu E, Wang C, Li X, Yue L, White JC, Wang Z, Xing B. Metalloid Nanomaterials Alleviate Arsenic Phytotoxicity and Grain Accumulation in Rice: Mechanisms of Abiotic Stress Tolerance and Rhizosphere Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6049-6060. [PMID: 39988829 DOI: 10.1021/acs.est.4c11413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Nanoenabled agriculture technology exhibits potential in reducing arsenic uptake in rice; however, a systematic understanding of the rice-soil-microorganism process of nanomaterials (NMs) is lacking. Soil amendment of metalloid NMs, including SiO2, hydroxyapatite, S0, and Se0 at 10-100 (0.1-5.0 for Se NMs) mg/kg, increased rice biomass by 76.1-135.8% in arsenic-contaminated soil (17.0 mg/kg) and decreased arsenic accumulation in plant tissues by 9.3-78.2%. The beneficial effects were nanoscale-specific and NMs type- and concentration-dependent; 5 mg/kg Se NMs showed the greatest growth promotion and decrease in As accumulation. Mechanistically, (1) Se NMs optimized the soil bacterial community structure, enhancing the abundance of arsM by 104.2% and subsequently increasing arsenic methylation by 276.1% in rhizosphere compared to arsenic-alone treatments; (2) metabolomic analyses showed that Se NMs upregulated the biosynthesis pathway of abscisic acid, jasmonic acid, and glutathione, with subsequent downregulation of the arsenic transporter-related gene expression in roots by 42.2-73.4%, decreasing the formation of iron plaque by 87.6%, and enhancing the arsenic detoxification by 50.0%. Additionally, amendment of metalloid NMs significantly enhanced arsenic-treated rice yield by 66.9-91.4% and grain nutritional quality. This study demonstrates the excellent potential of metalloid NMs for an effective and sustainable strategy to increase food quality and safety.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Chen
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Enyuan Liu
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Nguyen QT, Nguyen TT, Le VN, Nguyen NT, Truong NM, Hoang MT, Pham TPT, Bui QM. Towards a Standardized Approach for the Geographical Traceability of Plant Foods Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Principal Component Analysis (PCA). Foods 2023; 12:1848. [PMID: 37174386 PMCID: PMC10177964 DOI: 10.3390/foods12091848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
This paper presents a systematic literature review focused on the use of inductively coupled plasma mass spectrometry (ICP-MS) combined with PCA, a multivariate technique, for determining the geographical origin of plant foods. Recent studies selected and applied the ICP-MS analytical method and PCA in plant food geographical traceability. The collected results from many previous studies indicate that ICP-MS with PCA is a useful tool and is widely used for authenticating and certifying the geographic origin of plant food. The review encourages scientists and managers to discuss the possibility of introducing an international standard for plant food traceability using ICP-MS combined with PCA. The use of a standard method will reduce the time and cost of analysis and improve the efficiency of trade and circulation of goods. Furthermore, the main steps needed to establish the standard for this traceability method are reported, including the development of guidelines and quality control measures, which play a pivotal role in providing authentic product information through each stage of production, processing, and distribution for consumers and authority agencies. This might be the basis for establishing the standards for examination and controlling the quality of foods in the markets, ensuring safety for consumers.
Collapse
Affiliation(s)
- Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
- Institute of Environmental Science and Public Health, Vietnam Union of Science and Technology Association, Hanoi 11353, Vietnam;
| | - Thanh Thao Nguyen
- Institute of Environmental Science and Public Health, Vietnam Union of Science and Technology Association, Hanoi 11353, Vietnam;
| | - Van Nhan Le
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
- Faculty of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam
| | - Ngoc Tung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| | - Ngoc Minh Truong
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| | - Minh Tao Hoang
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| | - Thi Phuong Thao Pham
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| | - Quang Minh Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| |
Collapse
|
5
|
Kobayashi T, Phuoc Tri P. Effect of High-Power Ultrasound Washing on Arsenic-Polluted Soil. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.22we027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takaomi Kobayashi
- Department of Science and Technology Innovation, Nagaoka University of Technology, Japan
| | - Phan Phuoc Tri
- Department of Science and Technology Innovation, Nagaoka University of Technology, Japan
| |
Collapse
|