1
|
Zeng W, Jiang X, Chen Q, Zhang J, Fan C, Yang Z. Assessing the impact of low-temperature stress during anthesis stage on winter wheat grain development through computer vision and machine learning. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40353303 DOI: 10.1002/jsfa.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/15/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Extreme weather events, particularly spring low-temperature stress exacerbated by global warming, have become increasingly prevalent in the Huang-Huai-Hai Basin over the past 40 years, a key wheat-producing area in China. This study aims to assess the impact of low-temperature stress during the anthesis stage on the shape and texture parameters of RGB images of both superior and inferior grains of Jimai 22, utilizing computer vision and machine learning techniques. RESULTS Results showed that decreasing temperatures and extended durations led to significant reductions in shape parameters and increased uniformity in texture parameters. Superior grains exhibited greater sensitivity to low-temperature stress, with developmental delays postponing parameter extremums from 21 to 28 days after anthesis. A low-temperature stress index (Z) was constructed using principal component analysis and validated with grain weight, achieving coefficients of determination (R2) of over 0.93. Self-organizing maps clustering based on Z and grain weight indicated that increased treatment duration more significantly affected grain parameters than temperature decrease. CONCLUSION This research demonstrates that the combination of RGB imaging with machine learning techniques provides a methodology for assessing the severity of low-temperature stress in winter wheat grains. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyi Zeng
- Jiangsu Provincial University Key Laboratory of Agricultural and Ecological Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- Key Laboratory of Carbon Source and Sink-China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xiaodong Jiang
- Jiangsu Provincial University Key Laboratory of Agricultural and Ecological Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- Key Laboratory of Carbon Source and Sink-China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Qiuhui Chen
- Jiangsu Provincial University Key Laboratory of Agricultural and Ecological Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- Key Laboratory of Carbon Source and Sink-China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Jianqu Zhang
- Jiangsu Provincial University Key Laboratory of Agricultural and Ecological Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- Key Laboratory of Carbon Source and Sink-China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Chunnian Fan
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zaiqiang Yang
- Jiangsu Provincial University Key Laboratory of Agricultural and Ecological Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- Key Laboratory of Carbon Source and Sink-China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, China
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
2
|
Bashir L, Budhlakoti N, Pradhan AK, Mehmood A, Haque M, Jacob SR, Bhardwaj R, Gaikwad K, Mishra DC, Kaur S, Bhati PK, Singh GP, Kumar S. Unraveling the genetic basis of heat tolerance and yield in bread wheat: QTN discovery and Its KASP-assisted validation. BMC PLANT BIOLOGY 2025; 25:268. [PMID: 40021958 PMCID: PMC11871653 DOI: 10.1186/s12870-025-06285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Wheat (Triticum aestivum L.), a globally significant cereal crop and staple food, faces major production challenges due to abiotic stresses such as heat stress (HS), which pose a threat to global food security. To address this, a diverse panel of 126 wheat genotypes, primarily landraces, was evaluated across twelve environments in India, comprising of three locations, two years and two growing conditions. The study aimed to identify genetic markers associated with key agronomic traits in bread wheat, including germination percentage (GERM_PCT), ground cover (GC), days to booting (DTB), days to heading (DTHD), days to flowering (DTFL), days to maturity (DTMT), plant height (PH), grain yield (GYLD), thousand grain weight (TGW), and the normalized difference vegetation index (NDVI) under both timely and late-sown conditions using 35 K SNP genotyping assays. Multi-locus GWAS (ML-GWAS) was employed to detect significant marker-trait associations, and the identified markers were further validated using Kompetitive Allele Specific PCR (KASP). RESULTS Six ML-GWAS models were employed for this purpose, leading to the identification of 42 highly significant and consistent quantitative trait nucleotides (QTNs) under both timely and late sown conditions, controlled by 20 SNPs, explaining 3-58% of the total phenotypic variation. Among these, noteworthy QTNs were a major grain yield QTN (qtn_nbpgr_GYLD_3B) on chromosome 3B, a pleiotropic SNP AX-95018072 on chromosome 7A influencing phenology and NDVI, and robust TGW QTNs on chromosomes 2B (qtn_nbpgr_TGW_2B), 1A (qtn_nbpgr_TGW_1A), and 4B (qtn_nbpgr_TGW_4B). Furthermore, annotation revealed that candidate genes near these QTNs encoded stress-responsive proteins, such as chaperonins, glycosyl hydrolases, and signaling molecules. Additionally, three major SNPs AX-95018072 (7A), AX-94946941 (6B), and AX-95232570 (1B) were successfully validated using KASP assay. CONCLUSION Our study effectively uncovered novel QTNs and candidate genes linked to heat tolerance and yield-related traits in wheat through an extensive genetic approaches. These QTNs not only corresponded with previously identified QTLs and genes associated with yield traits but also highlighted several new loci, broadening the existing genetic understanding. These findings provide valuable insights into the genetic basis of heat tolerance in wheat and offer genomic resources, including validated markers that could accelerate marker-assisted breeding and the development of next-generation heat-resilient cultivars.
Collapse
Affiliation(s)
- Latief Bashir
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Neeraj Budhlakoti
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anjan Kumar Pradhan
- School of Plant, Environmental and Soil Science, LSU AgCenter, Louisiana State University, Baton Rouge, USA
| | - Azhar Mehmood
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Mahin Haque
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Sherry R Jacob
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Kiran Gaikwad
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Pradeep Kumar Bhati
- Borlaug Institute for South Asia (BISA, CIMMYT-India, BISA Farm Ladhowal, Ludhiana, Punjab, 141008, India
| | - G P Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
3
|
Ji W, Osman R, Ma J, Jiang X, Wang L, Xiao L, Tang L, Cao W, Zhu Y, Liu B, Liu L. Improving Process-Based Modelling to Simulate the Effects of Low-Temperature Stress During Pre-Anthesis on the Quality Characteristics of Wheat Grains. PLANT, CELL & ENVIRONMENT 2025; 48:1574-1593. [PMID: 39462898 DOI: 10.1111/pce.15217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Low temperatures in late spring pose a potential threat to the maintenance of grain yield and quality. Despite the importance of protein and starch in wheat quality, they are often overlooked in models addressing climate change effects. In this study, we conducted multiyear environment-controlled phytotron experiments and observed adverse effects resulting from low-temperature stress (LTS) on plant carbon and nitrogen dynamics, grain protein and starch formation, and sink capacity. We quantified the relationships between low temperature during the jointing and booting stages and plant nitrogen uptake, grain nitrogen accumulation, grain starch accumulation, grain setting, and potential grain weight using source-sink relationship-based methods. The LTS factor was introduced to account for the cultivar-specific to LTS at different growth stages. Compared with the original model, the improved model produced fewer errors when simulating aboveground nitrogen accumulation, grain protein concentration, grain starch concentration, grain starch yield, grain number, and grain weight under LTS, with reductions of 60%, 71%, 73%, 58%, 50% and 65%, respectively. The improvements in the model enhance its mechanism and applicability in assessing short-term successive frost effects on wheat grain quality. Furthermore, when using the improved model, special attention should be given to the low-temperature sensitivity parameters.
Collapse
Affiliation(s)
- Wenbin Ji
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Raheel Osman
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jifeng Ma
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xingtian Jiang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Longqin Wang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Liujun Xiao
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Liang Tang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Weixing Cao
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Leilei Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Wang J, Han Y, Li H, Bai H, Liang H, Zong Y, Zhang D, Shi X, Li P, Hao X. Elevated CO 2 Concentration Extends Reproductive Growth Period and Enhances Carbon Metabolism in Wheat Exposed to Increased Temperature. PLANT, CELL & ENVIRONMENT 2025; 48:1452-1467. [PMID: 39445788 DOI: 10.1111/pce.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Both elevated atmospheric CO2 concentration ([CO2]) and increased temperature exert notable influences on wheat (Triticum aestivum L.) growth and productivity when examined individually. Nevertheless, limited research comprehensively investigates the combined effects of both factors. Winter wheat was grown in environment-controlled chambers under two concentrations of CO2 (ambient CO2 concentration and ambient CO2 concentration plus 200 µmol mol-1) and two levels of temperature (ambient temperature and ambient temperature plus 2°C). The phenology, photosynthesis, carbohydrate and nitrogen metabolism, yield and quality responses of wheat were investigated. Elevated [CO2] did not counteract warming-induced shortening of wheat phenological period but prolonged grain filling. Even though photosynthetic adaptation occurred during the reproductive growth period, elevated [CO2] still significantly enhanced carbohydrate accumulation under warming, particularly at the grain filling stage, thereby increasing yield by 20.1% compared with the ambient control. However, elevated [CO2] inhibited nitrogen assimilation at the grain filling stage under increased temperature by downregulating the expression levels of TaNR, TaNIR, TaGS1 and TaGOGAT and reducing glutamine synthetase activity, which directly led to a significant decrease of 19.4% in grain protein content relative to the ambient control. These findings suggest that elevated [CO2] will likely increase yield but decrease grain nutritional quality for wheat under future global warming scenarios.
Collapse
Affiliation(s)
- Jiao Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yuyan Han
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Hongyan Li
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Haixia Bai
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Hui Liang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xinrui Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
5
|
Hassan AHA, Ahmed ES, Sheteiwy MS, Alhaj Hamoud Y, Okla MK, AlGarawi AM, Maridueña-Zavala MG, Alaraidh IA, Reyad AM, Abdelgawad H. Inoculation with Micromonospora sp. enhances carbohydrate and amino acid production, strengthening antioxidant metabolism to mitigate heat stress in wheat cultivars. FRONTIERS IN PLANT SCIENCE 2024; 15:1500894. [PMID: 39759234 PMCID: PMC11696539 DOI: 10.3389/fpls.2024.1500894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/15/2024] [Indexed: 01/07/2025]
Abstract
Introduction Heat stress caused by global warming adversely affects wheat yield through declining most nutritional quality attributes in grains, excluding grain protein content. Methods This research investigated the biochemical, physiological, and antioxidant responses of wheat plants under heat stress, focusing on the role of plant growth-promoting bacteria (Micromonospora sp.). Two wheat genotypes were studied: one heat-sensitive and one heat-tolerant, examining their responses to heat stress with and without bacterial inoculation. Results Under heat stress, the sensitive cultivar experienced significant reductions in photosynthesis rate, chlorophyll content, and RuBisCO activity (57-61%), while the tolerant cultivar had milder reductions (24-28%). Micromonospora sp. treatment notably improved these parameters in the sensitive cultivar (+48-78%), resulting in a substantial increase in biomass production (+43-53%), which was not seen in the tolerant cultivar. Additionally, oxidative stress markers (H2O2 and MDA) were elevated more in the sensitive cultivar (82% and 90% higher) compared to the tolerant one. Micromonospora sp. treatment effectively reduced these markers in the sensitive cultivar (-28% and -27%). Enhanced activity of antioxidant enzymes and ASC-GSH pathway enzymes was particularly evident in Micromonospora sp.-treated sensitive plants. Carbohydrate metabolism shifted, with increased soluble sugars and significant rises in sucrose content in Micromonospora sp.-treated plants under stress. Discussion The higher soluble sugar levels facilitated amino acid synthesis, contributing to biosynthesis of secondary metabolites, including flavonoids, polyphenols, and anthocyanins. This was reflected in increased activity of phenylalanine ammonia-lyase, cinnamate (CA) 4-hydroxylase, and chalcone synthase enzymes, indicating the activation of phenylpropanoid pathways. Overall, the findings suggest that Micromonospora sp. can mitigate heat stress effects by enhancing photosynthetic efficiency, antioxidant defense, and metabolic adaptations in heat-sensitive wheat cultivars.
Collapse
Affiliation(s)
- Abdelrahim H. A. Hassan
- School of Biotechnology, Nile University, Giza, Egypt
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Enas Shaban Ahmed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S. Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Yousef Alhaj Hamoud
- The National Key Laboratory of Water Disaster Prevention, College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal Mohamed AlGarawi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maria Gabriela Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Ibrahim A. Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada Abdelgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Abasi F, Raja NI, Mashwani ZUR, Ehsan M, Ali H, Shahbaz M. Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. Int J Biol Macromol 2024; 256:128379. [PMID: 38000583 DOI: 10.1016/j.ijbiomac.2023.128379] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.
Collapse
Affiliation(s)
- Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | | | - Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
7
|
Zhang D, Liu J, Li D, Batchelor WD, Wu D, Zhen X, Ju H. Future climate change impacts on wheat grain yield and protein in the North China Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166147. [PMID: 37562625 DOI: 10.1016/j.scitotenv.2023.166147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
The threat of global climate change on wheat production may be underestimated by the limited capacity of many crop models to predict grain quality and protein composition. This study aimed to integrate a wheat quality module of protein components into the CROPSIM-CERES-Wheat model to investigate the impact of climate change on wheat grain yield and protein quality in the North China Region (NCR) using five Global Climate Models (GCMs) from CMIP6 under three shared socioeconomic pathways. The CERES-Wheat model with a quality module was developed and calibrated and validated using data from several sites in the NCR. The results of the calibration and validation showed that the modified CERES-Wheat model can accurately predict grain yield, protein content and its components in field experiments. Compared with the baseline period (1981-2010), the annual mean temperature and annual cumulative precipitation increased in the NCR in the 2030's, 2050's and 2080's. The radiation was higher under the SSP126 and SSP585 scenarios, and lower under the SSP370 scenario compared to the baseline period. The anthesis and maturity date occurred earlier under the three future scenarios. The average grain yield increased by 13.3-30.9 % under three future scenarios. However, the regional average grain protein content of winter wheat in the future decreased by 2.0 %- 3.5 %. The reduction in wheat grain protein at the regional was less pronounced under SSP370 than that under SSP126 and SSP585. The structural protein content of winter wheat decreased under future climate conditions compared with the baseline period, but the storage protein content showed the opposite tendency. The model provided a useful tool to study the effects of future climate on grain quality and protein composition. These findings are important for developing agricultural practices and strategies to mitigate the potential impacts of climate change on wheat production and wheat quality in the future.
Collapse
Affiliation(s)
- Di Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China; Department of Biological Engineering, Yangling Vocational & Technical College, Xianyang 712000, China
| | - Jinna Liu
- Department of Biological Engineering, Yangling Vocational & Technical College, Xianyang 712000, China
| | - Dongxiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | | | - Dongxia Wu
- Natural Resources Institute Finland (Luke), Natural Resources, P.O. Box 68, FI-80100 Joensuu, Finland
| | - Xiaoxing Zhen
- Biosystems Engineering Department, Auburn University, Auburn, AL 36849, USA
| | - Hui Ju
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
8
|
Zhang W, Zhang A, Zhou Q, Fang R, Zhao Y, Li Z, Zhao J, Zhao M, Ma S, Fan Y, Huang Z. Low-temperature at booting reduces starch content and yield of wheat by affecting dry matter transportation and starch synthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1207518. [PMID: 37389289 PMCID: PMC10304014 DOI: 10.3389/fpls.2023.1207518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
With the continuous change of global climate, the frequency of low-temperature stress (LTS) in spring increased greatly, which led to the increase of wheat yield decline. The effects of LTS at booting on grain starch synthesis and yield were examined in two wheat varieties with differing low-temperature sensitivities (insensitive variety Yannong 19 and sensitive variety Wanmai 52). A combination of potted and field planting was employed. For LTS treatment at booting, the wheat plants were placed in a climate chamber for 24 h at -2°C, 0°C or 2°C from 19:00 to 07:00 then 5°C from 07:00 to 19:00. They were then returned to the experimental field. The effects of flag leaf photosynthetic characteristics, the accumulation and distribution of photosynthetic products, enzyme activity related to starch synthesis and relative expression, the starch content, and grain yield were determined. LTS at booting caused a significant reduction in the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of the flag leaves at filling. The development of starch grains in the endosperm is also hindere, there are obvious equatorial grooves observed on the surface of the A-type starch granules, and a reduction in the number of B-type starch granules. The abundance of 13C in the flag leaves and grains decreased significantly. LTS also caused a significant reduction in translocation amount of pre-anthesis stored dry matte from vegetative organs to grains and amount of post-anthesis transfer of accumulated dry matte into grains, and the distribution rate of dry matter in the grains at maturity. The grain filling time was shortened, and the grain filling rate decreased. A decrease in the activity and relative expression of enzymes related to starch synthesis was also observed, with a decrease in the total starch content. As a result, a decrease in the grain number per panicle and 1000-grain weight were also observed. These findings highlight the underlying physiological cause of decreased starch content and grain weight after LTS in wheat.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Anmin Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Qirui Zhou
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ranran Fang
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Yan Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zihong Li
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiawen Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Mengting Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Shangyu Ma
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Yonghui Fan
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhenglai Huang
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, The Ministry of Agriculture, Hefei, Anhui, China
- Department of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
9
|
Lama S, Leiva F, Vallenback P, Chawade A, Kuktaite R. Impacts of heat, drought, and combined heat-drought stress on yield, phenotypic traits, and gluten protein traits: capturing stability of spring wheat in excessive environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1179701. [PMID: 37275246 PMCID: PMC10235758 DOI: 10.3389/fpls.2023.1179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Wheat production and end-use quality are severely threatened by drought and heat stresses. This study evaluated stress impacts on phenotypic and gluten protein characteristics of eight spring wheat genotypes (Diskett, Happy, Bumble, SW1, SW2, SW3, SW4, and SW5) grown to maturity under controlled conditions (Biotron) using RGB imaging and size-exclusion high-performance liquid chromatography (SE-HPLC). Among the stress treatments compared, combined heat-drought stress had the most severe negative impacts on biomass (real and digital), grain yield, and thousand kernel weight. Conversely, it had a positive effect on most gluten parameters evaluated by SE-HPLC and resulted in a positive correlation between spike traits and gluten strength, expressed as unextractable gluten polymer (%UPP) and large monomeric protein (%LUMP). The best performing genotypes in terms of stability were Happy, Diskett, SW1, and SW2, which should be further explored as attractive breeding material for developing climate-resistant genotypes with improved bread-making quality. RGB imaging in combination with gluten protein screening by SE-HPLC could thus be a valuable approach for identifying climate stress-tolerant wheat genotypes.
Collapse
Affiliation(s)
- Sbatie Lama
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Fernanda Leiva
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ramune Kuktaite
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
10
|
Ru C, Hu X, Chen D, Wang W, Zhen J. Photosynthetic, antioxidant activities, and osmoregulatory responses in winter wheat differ during the stress and recovery periods under heat, drought, and combined stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111557. [PMID: 36481364 DOI: 10.1016/j.plantsci.2022.111557] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
There will be longer and more intense periods of heat and drought stress in the future for terrestrial ecosystems. Although the responses of wheat plants to heat and drought stress alone have been extensively investigated, little is known about the extent to which their recovery can be assured after stress relief. In this study, a winter wheat pot experiment was conducted to investigate the changes in photosynthetic performance, antioxidant activity, osmoregulation, and membrane lipid peroxidation under heat stress (36 °C), drought (45-55% of soil water holding capacity), and combined stress conditions. The results showed that heat and drought stress significantly reduced the photosynthetic rate and the contents of chlorophyll and carotenoid. Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR) activities were greatly activated by heat and drought stress to scavenge overproduced superoxide anion (O2-). Plants exhibited positive osmoregulation through the synthesis of soluble protein (SP), soluble sugar (SS), and proline (Pro) to improve membrane stability. Within a range of stress, combined heat and drought stress exhibited significant interactive effects in the above mentioned indicators. After stress relief, the majority of physiological processes were reversible, as indicated by the effective recovery of pigment contents, photosynthetic rate, antioxidant enzyme activities, osmoregulatory substance contents, and O2- production. Antioxidant enzyme activities tended to increase after recovering from 12 days of combined stress, whereas they were still not effective in mitigating oxidative damage. High levels of O2- and malondialdehyde (MDA) and a low relative growth rate during the recovery confirmed the irreversible damage caused by combined heat and drought stress. ROC (receiver operating characteristic) analysis indicated that GR and SS could accurately detect individual heat and drought stress that wheat plants were suffering or had suffered (AUC = 0.812-0.965), while POD and Pro had greater potential for diagnosing combined heat and drought stress (AUC = 0.871-0.958). Physiological indicators of stress tolerance were closely related to the photosynthetic rate during the stress, particularly Pro and GR. Collectively, the physiological processes of plants are reversible within a certain range of stress. POD, GR, Pro, and SS play vital roles in identifying and resisting heat, drought, and combined stress, and the recovery of these indicators contributed to improving photosynthesis and thereby increasing wheat growth. Our research contributes to the understanding of the underlying physiological mechanisms of plants in response to combined heat and drought stress and after stress relief.
Collapse
Affiliation(s)
- Chen Ru
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Xiaotao Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China.
| | - Dianyu Chen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Wene Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Jingbo Zhen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
11
|
Orzechowski S, Compart J, Zdunek-Zastocka E, Fettke J. Starch parameters and short-term temperature fluctuations - Important but not yet in focus? JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153902. [PMID: 36565529 DOI: 10.1016/j.jplph.2022.153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Plants are regularly challenged by unfavorable environmental conditions. As climate change continues, adverse situations such as drought, heat, and cold are expected to increase and become more severe. Most starchy crops are affected by such stresses. In recent years, researchers have made many new discoveries about starch metabolism in general and also on granule structure, including effects on starch following longer-term temperature stresses. However, in this study, we focus on short-term temperature stress on storage starch granule properties. Here our knowledge is less and it is likely that also short-term temperature stresses can affect various starch parameters. Therefore, we see a need for this type of analysis and discuss the matter in more detail and we conclude that a deeper knowledge particularly of starch granule parameters could allow targeted breeding of cultivars that exhibit different starch characteristics as a result of short-term stress. For these reasons, we are convinced that more comprehensive research on the effects of short-term temperature stress on starch granule characteristics is important, necessary, and timely.
Collapse
Affiliation(s)
- Sławomir Orzechowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany
| | - Edyta Zdunek-Zastocka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Parveen S, Rudra SG, Singh B, Anand A. Impact of High Night Temperature on Yield and Pasting Properties of Flour in Early and Late-Maturing Wheat Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223096. [PMID: 36432825 PMCID: PMC9693585 DOI: 10.3390/plants11223096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 05/27/2023]
Abstract
The inexorable process of climate change in terms of the rise in minimum (nighttime) temperature delineates its huge impact on crop plants. It can affect the yield and quality of various crops. We investigated the effect of high night temperature (HNT) (+2.3 °C over ambient) from booting to physiological maturity on the yield parameters, grain growth rate (GGR), starch content, composition, and flour rheological properties in early (HI 1544, HI 1563) and late-maturing (HD 2932) wheat genotypes. The change in yield under HNT was highly correlated with grain number per plant (r = 0.740 ***) and hundred-grain weight (r = 0.628 **), although the reduction in grain weight was not significantly different. This was also reflected as an insignificant change in starch content (except in HI 1544). Under HNT, late-sown genotypes (HI 1563 and HD 2932) maintained high GGR compared to the timely sown (HI 1544) genotype during the early period of grain growth (5 to 10 days after anthesis), which declined during the later phase of grain development. The increased rheological properties under HNT can be attributed to a significant reduction in the amylose to amylopectin (AMY/AMP) ratio in early-maturity genotypes (HI 1544 and HI 1563). The AMY/AMP ratio was positively correlated to flour rheological parameters (except setback from peak) under HNT. Our study reports the HNT-induced change in the amylose/amylopectin ratio in early maturing wheat genotypes, which determines the stability of flour starches for specific end-use products.
Collapse
Affiliation(s)
- Shamima Parveen
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Shalini Gaur Rudra
- Division of Post Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Bhupinder Singh
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| |
Collapse
|
13
|
Guo J, Qu L, Wei Q, Lu D. Effects of post-silking low temperature on the starch and protein metabolism, endogenous hormone contents, and quality of grains in waxy maize. FRONTIERS IN PLANT SCIENCE 2022; 13:988172. [PMID: 36407592 PMCID: PMC9673756 DOI: 10.3389/fpls.2022.988172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Waxy maize has many excellent characteristics in food and nonfood industries. However, post-silking low temperature (LT) has severe limitations on its grain yield and quality. In this study, field and pot trials were conducted to investigate the effects of post-silking LT on the physiological, biochemical, and functional characteristics of two waxy maize grains. The field and pot trials were performed with sowing date and artificial climate chamber, respectively, for LT treatment from silking stage to maturity. Results in pot trial were used to explain and validate the findings in field trial. Compared with the ambient treatment, the LT treatment significantly reduced kernel weight during the grain filling stage (P < 0.05). LT treatment in both environments resulted in an average decrease in dry weight of SYN5 and YN7 at maturity by 36.6% and 42.8%, respectively. Enzymatic activities related to starch and protein biosynthesis decreased under the LT treatment during the filling stage, accompanied by a decrease in the accumulation amounts and contents of soluble sugar and starch, and a decrease in protein accumulation amount. Meanwhile, the contents of abscisic acid, indole-3-acetic acid, and gibberellin 3 in grains decreased under the LT treatment during the filling stage. Peak, trough, breakdown, final, and setback viscosities of grains decreased by LT. LT treatment decreased the gelatinization enthalpy of grains and increased the retrogradation percentage. In conclusion, post-silking LT stress altered the content of grain components by inhibiting the production of phytohormones and down-regulating the enzymatic activities involved in starch and protein metabolism, which resulted in the deterioration of grain pasting and thermal properties.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
| | - Qi Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Habib-ur-Rahman M, Ahmad A, Raza A, Hasnain MU, Alharby HF, Alzahrani YM, Bamagoos AA, Hakeem KR, Ahmad S, Nasim W, Ali S, Mansour F, EL Sabagh A. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. FRONTIERS IN PLANT SCIENCE 2022; 13:925548. [PMID: 36325567 PMCID: PMC9621323 DOI: 10.3389/fpls.2022.925548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Agricultural production is under threat due to climate change in food insecure regions, especially in Asian countries. Various climate-driven extremes, i.e., drought, heat waves, erratic and intense rainfall patterns, storms, floods, and emerging insect pests have adversely affected the livelihood of the farmers. Future climatic predictions showed a significant increase in temperature, and erratic rainfall with higher intensity while variability exists in climatic patterns for climate extremes prediction. For mid-century (2040-2069), it is projected that there will be a rise of 2.8°C in maximum temperature and a 2.2°C in minimum temperature in Pakistan. To respond to the adverse effects of climate change scenarios, there is a need to optimize the climate-smart and resilient agricultural practices and technology for sustainable productivity. Therefore, a case study was carried out to quantify climate change effects on rice and wheat crops and to develop adaptation strategies for the rice-wheat cropping system during the mid-century (2040-2069) as these two crops have significant contributions to food production. For the quantification of adverse impacts of climate change in farmer fields, a multidisciplinary approach consisted of five climate models (GCMs), two crop models (DSSAT and APSIM) and an economic model [Trade-off Analysis, Minimum Data Model Approach (TOAMD)] was used in this case study. DSSAT predicted that there would be a yield reduction of 15.2% in rice and 14.1% in wheat and APSIM showed that there would be a yield reduction of 17.2% in rice and 12% in wheat. Adaptation technology, by modification in crop management like sowing time and density, nitrogen, and irrigation application have the potential to enhance the overall productivity and profitability of the rice-wheat cropping system under climate change scenarios. Moreover, this paper reviews current literature regarding adverse climate change impacts on agricultural productivity, associated main issues, challenges, and opportunities for sustainable productivity of agriculture to ensure food security in Asia. Flowing opportunities such as altering sowing time and planting density of crops, crop rotation with legumes, agroforestry, mixed livestock systems, climate resilient plants, livestock and fish breeds, farming of monogastric livestock, early warning systems and decision support systems, carbon sequestration, climate, water, energy, and soil smart technologies, and promotion of biodiversity have the potential to reduce the negative effects of climate change.
Collapse
Affiliation(s)
- Muhammad Habib-ur-Rahman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science Group, University of Bonn, Bonn, Germany
- Department of Agronomy, MNS-University of Agriculture, Multan, Pakistan
| | - Ashfaq Ahmad
- Asian Disaster Preparedness Center, Islamabad, Pakistan
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ahsan Raza
- Institute of Crop Science and Resource Conservation (INRES), Crop Science Group, University of Bonn, Bonn, Germany
| | | | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yahya M. Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif A. Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| | - Saeed Ahmad
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
- Department of Agronomy, The Islamia University, Bahwalpur, Pakistan
| | - Wajid Nasim
- Department of Agronomy, The Islamia University, Bahwalpur, Pakistan
| | - Shafaqat Ali
- Department of Environmental Science and Engineering, Government College University, Faisalabad, Pakistan
| | - Fatma Mansour
- Department of Economics, Business and Economics Faculty, Siirt University, Siirt, Turkey
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|