1
|
Noble CCA, McDonald E, Nicholson S, Biering-Sørensen S, Pittet LF, Byrne AL, Croda J, Dalcolmo M, Lacerda MVG, Lucas M, Lynn DJ, Prat Aymerich C, Richmond PC, Warris A, Curtis N, Messina NL. Characterising the SARS-CoV-2 nucleocapsid (N) protein antibody response. J Infect 2025; 90:106436. [PMID: 39922387 DOI: 10.1016/j.jinf.2025.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVES SARS-CoV-2 nucleocapsid (N) protein antibodies can be used to identify the serological response to natural infection in those who have previously received a COVID-19 spike-based vaccine. Anti-N antibody responses can also be induced by inactivated whole SARS-CoV-2 virus vaccines, such as CoronaVac. We aimed to characterise antibody responses to the N protein following COVID-19 and following vaccination with CoronaVac. METHODS Using participants from an international randomised controlled trial, we investigated the evolution of anti-N antibody responses over time in two separate groups: adults following COVID-19, and in adults following vaccination with CoronaVac. RESULTS In 212 participants who had COVID-19, the anti-N seroconversion rate was 96.9% in those infected following an incomplete course of COVID-19 (spike-based) vaccinations and 88.2% in those infected following a complete course. Anti-N antibody indices were highly variable between participants, and higher in participants who had more severe COVID-19 symptoms, were aged ≥60 years, were unvaccinated, had comorbidities and those resident in Brazil. Most participants remained seropositive after 12 months. In 317 separate participants, the anti-N seroconversion rate was 63.5% following CoronaVac vaccination, with variable antibody indices. CONCLUSIONS Anti-N responses to COVID-19 and CoronaVac are highly variable but persistent. A prior complete course of COVID-19 spike-based vaccination reduced both anti-N seroconversion and antibody indices following COVID-19.
Collapse
Affiliation(s)
- C C A Noble
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - E McDonald
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - S Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| | - S Biering-Sørensen
- Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - L F Pittet
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Immunology, Vaccinology, Rheumatology and Infectious Diseases Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - A L Byrne
- St Vincent's Hospitals Sydney, Darlinghurst, New South Wales, Australia; Partners in Health, Socios En Salud, Peru; Thoracic Society of Australia & New Zealand (NSW/ACT Branch), Australia.
| | - J Croda
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Fiocruz Mato Grosso do Sul, Fundação Oswaldo Cruz, Campo Grande, Brazil; Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.
| | - M Dalcolmo
- Centro de Referência Professor Hélio Fraga, ENSP/FIOCRUZ (Fundação Oswaldo Cruz), Rio de Janeiro, Brazil.
| | - M V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas & Maria Deane, Oswaldo Cruz Foundation Ministry of Health, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA.
| | - M Lucas
- Department of Immunology, Pathwest, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia; Department of Immunology, Perth Children's Hospital, Nedlands, Western Australia, Australia; Department of Immunology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia.
| | - D J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia.
| | - C Prat Aymerich
- University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, the Netherlands; ECRAID, European Clinical Research Alliance on Infectious Diseases, Utrecht, the Netherlands.
| | - P C Richmond
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, Western Australia, Australia; Department of Immunology and General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia.
| | - A Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom; Department of Infectious Diseases, Great Ormond Street Hospital, London, United Kingdom.
| | - N Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Infectious Diseases, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia.
| | - N L Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Cohen CA, Leung NHL, Kaewpreedee P, Lee KWK, Jia JZ, Cheung AWL, Cheng SMS, Mori M, Ip DKM, Poon LLM, Peiris JSM, Cowling BJ, Valkenburg SA. Antibody Fc receptor binding and T cell responses to homologous and heterologous immunization with inactivated or mRNA vaccines against SARS-CoV-2. Nat Commun 2024; 15:7358. [PMID: 39191745 PMCID: PMC11350167 DOI: 10.1038/s41467-024-51427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Whole virion inactivated vaccine CoronaVac (C) and Spike (S) mRNA BNT162b2 (B) vaccines differ greatly in their ability to elicit neutralizing antibodies but have somewhat comparable effectiveness in protecting from severe COVID-19. We conducted further analyses for a randomized trial (Cobovax study, NCT05057169) of third dose homologous and heterologous booster vaccination, i.e. four interventions CC-C, CC-B, BB-C and BB-B. Here, we assess vaccine immunogenicity beyond neutralizing function, including S and non-S antibodies with Fc receptor (FcR) binding, antibody avidity and T cell specificity to 6 months post-vaccination. Ancestral and Omicron S-specific IgG and FcR binding are significantly higher by BNT162b2 booster than CoronaVac, regardless of first doses. Nucleocapsid (N) antibodies are only increased in homologous boosted CoronaVac participants (CC-C). CoronaVac primed participants have lower baseline S-specific CD4+ IFNγ+ cells, but are significantly increased by either CoronaVac or BNT162b2 boosters. Priming vaccine content defined T cell peptide specificity preference, with S-specific T cells dominating B primed groups and non-S structural peptides contributing more in C primed groups, regardless of booster type. S-specific CD4+ T cell responses, N-specific antibodies, and antibody effector functions via Fc receptor binding may contribute to protection and compensate for less potent neutralizing responses in CoronaVac recipients.
Collapse
Affiliation(s)
- Carolyn A Cohen
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Takemi Program in International Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Prathanporn Kaewpreedee
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelly W K Lee
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janice Zhirong Jia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Alan W L Cheung
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel M S Cheng
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Dennis K M Ip
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - J S Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
- Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
3
|
Cheng SMS, Mok CKP, Li JKC, Chan KKP, Luk KS, Lee BHW, Gu H, Chan KCK, Tsang LCH, Yiu KYS, Ling KKC, Tang YS, Luk LLH, Yu JKM, Pekosz A, Webby RJ, Cowling BJ, Hui DSC, Peiris M. Cross-neutralizing antibody against emerging Omicron subvariants of SARS-CoV-2 in infection-naïve individuals with homologous BNT162b2 or BNT162b2(WT + BA.4/5) bivalent booster vaccination. Virol J 2024; 21:70. [PMID: 38515117 PMCID: PMC10956325 DOI: 10.1186/s12985-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.
Collapse
Affiliation(s)
- Samuel M S Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris K P Mok
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Research Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John K C Li
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ken K P Chan
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kristine S Luk
- Princess Margaret Hospital, Hospital Authority, Hong Kong SAR, China
| | - Ben H W Lee
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karl C K Chan
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo C H Tsang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karen Y S Yiu
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ken K C Ling
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Sang Tang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Leo L H Luk
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer K M Yu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Cowling
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David S C Hui
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Research Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|