1
|
Safari S, Eidi A, Mehrabani M, Fatemi MJ, Sharifi AM. Conditioned Medium of Adipose-Derived Mesenchymal Stem Cells as a Promising Candidate to Protect High Glucose-Induced Injury in Cultured C28I2 Chondrocytes. Adv Pharm Bull 2021; 12:632-640. [PMID: 35935054 PMCID: PMC9348542 DOI: 10.34172/apb.2022.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/25/2021] [Accepted: 08/15/2021] [Indexed: 11/09/2022] Open
Abstract
Purpose: The aim of this study was to evaluate the protective effect of conditioned medium derived from human adipose mesenchymal stem cells (CM-hADSCs) on C28I2 chondrocytes against oxidative stress and mitochondrial apoptosis induced by high glucose (HG).
Methods: C28I2 cells were pre-treated with CM-hADSCs for 24 hours followed by HG exposure (75 mM) for 48 hours. MTT assay was used to assess the cell viability. Reactive oxygen species (ROS) and lipid peroxidation were determined by 2,7-dichlorofluorescein diacetate (DCFHDA) and thiobarbituric acid reactive substances (TBARS) assays, respectively. Expressions of glutathione peroxidase 3 (GPX 3), heme oxygenase-1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) were analyzed by RT-PCR. Finally, western blot analysis was used to measure Bax, Bcl-2, cleaved caspase-3, and Nrf-2 expression at protein levels.
Results: CM-hADSCs pretreatment mitigated the cytotoxic effect of HG on C28I2 viability. Treatment also markedly reduced the levels of ROS, lipid peroxidation, and augmented the expression of HO-1, NQO1, and GPx3 genes in HG-exposed group. CM-ADSCs enhanced Nrf-2 protein expression and reduced mitochondrial apoptosis through reducing Bax/Bcl-2 ratio and Caspase-3 activation.
Conclusion: MSCs, probably through its paracrine effects, declined the deleterious effect of HG on chondrocytes. Hence, therapies based on MSCs secretomes appear to be a promising therapeutic approaches to prevent joint complications in diabetic patients.
Collapse
Affiliation(s)
- Sedighe Safari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Fatemi
- Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and Regenerative Medicine research center, Iran University of Medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem Cell-Derived Exosomes: a New Strategy of Neurodegenerative Disease Treatment. Mol Neurobiol 2021; 58:3494-3514. [PMID: 33745116 PMCID: PMC7981389 DOI: 10.1007/s12035-021-02324-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Short-term symptomatic treatment and dose-dependent side effects of pharmacological treatment for neurodegenerative diseases have forced the medical community to seek an effective treatment for this serious global health threat. Therapeutic potential of stem cell for treatment of neurodegenerative disorders was identified in 1980 when fetal nerve tissue was used to treat Parkinson's disease (PD). Then, extensive studies have been conducted to develop this treatment strategy for neurological disease therapy. Today, stem cells and their secretion are well-known as a therapeutic environment for the treatment of neurodegenerative diseases. This new paradigm has demonstrated special characteristics related to this treatment, including neuroprotective and neurodegeneration, remyelination, reduction of neural inflammation, and recovery of function after induced injury. However, the exact mechanism of stem cells in repairing nerve damage is not yet clear; exosomes derived from them, an important part of their secretion, are introduced as responsible for an important part of such effects. Numerous studies over the past few decades have evaluated the therapeutic potential of exosomes in the treatment of various neurological diseases. In this review, after recalling the features and therapeutic history, we will discuss the latest stem cell-derived exosome-based therapies for these diseases.
Collapse
Affiliation(s)
- Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Rahmani-Kukia N, Abbasi A, Abtahi Froushani SM, Shahgaldi S, Mokarram P. The effects of 17 Beta-Estradiol primed mesenchymal stem cells on the biology of co-cultured neutrophil. Int Immunopharmacol 2020; 84:106602. [PMID: 32417655 DOI: 10.1016/j.intimp.2020.106602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) can influence immune effector cells. It is proved that MSCs respond to various Toll-like receptor (TLR) ligands, which could ultimately result in changes in their immunomodulatory effects. Neutrophils play an essential role in the first line defense system and their function can be regulated by MSCs. Estrogen is a female hormone that contributes to sex differences in several immune-related diseases. With regard to the stated facts, this research aims to elucidate the effects of estrogen treatment on the ability of TLR4-primed MSCs to regulate neutrophil functions. METHODS Following isolation and characterization, MSCs were stimulated with LPS as a TLR4 ligand and subsequently incubated with different concentrations (0, 10, 20 and 40 nM) of estrogen for 48 hrs. Then, MSCs were co-cultured with neutrophils to investigate the vitality and function of the co-cultured neutrophils. RESULTS Our results indicated that TLR4-primed MSCs could decrease the viability and neutral red uptake potential of co-cultured neutrophils. Furthermore, neutrophils co-cultured with TLR4-primed MSCs exhibited a decrease in the respiratory burst intensity after being challenged with opsonized yeast. Interestingly, treating TLR4-primed MSCs with estrogen reversed the observed alterations in neutrophil functions. CONCLUSION It appears that estrogen can alter the interaction between MSCs and neutrophils.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Department of biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Heidari Barchi Nezhad R, Asadi F, Abtahi Froushani SM, Hassanshahi G, Kaeidi A, Khanamani Falahati-Pour S, Hashemi Z, Mirzaei MR. The effects of transplanted mesenchymal stem cells treated with 17-b estradiol on experimental autoimmune encephalomyelitis. Mol Biol Rep 2019; 46:6135-6146. [PMID: 31555971 DOI: 10.1007/s11033-019-05048-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
The present study was conducted aimed at exploring the modulatory effects of 17-b estradiol (17-bED) on mesenchymal stem cells (MSCs) in the EAE (experimental autoimmune encephalomyelitis) animal model of multiple sclerosis (MS). Following the isolation of bone marrow-derived MSCs from the bilateral femurs and tibias of the male Wistar rats, the cells were harvested and cultured in the presence of 100 nM 17-bED for 24 h. EAE was induced in male Wistar rats (8-12 weeks old) using guinea pig spinal cord homogenate, in combination with the complete Freund's adjuvant. The MSC therapy was triggered when all of the animals obtained a disability score. The symptoms were monitored on a daily basis throughout the study until the rats were euthanized. The mRNA expression of cytokines, including IL-17, IFN-γ, TNF-α, IL-10, IL-4, and TGF-β together with MMP8 and MMP9 as the family members of matrix metalloproteinases (MMPs) in the brain and spinal cord tissues were examined using real-time PCR. The levels of splenocytes-originated IL-10 and IFN-γ cytokines were also measured by ELISA. The MTT-based research findings showed that the infiltration of lymphocytes into the spleen decreased considerably. It was also observed that the mRNA expression of proinflammatory cytokines decreased significantly, while the mRNA levels of anti-inflammatory cytokines increased remarkably. It was also found that the mRNA levels of the examined matrix metalloproteinases (MMP8 and MMP9) were downregulated significantly. The findings of the present study indicated that the administration of 17-bED enhanced the efficacy of MSCs transplantation and modulated immune responses relatively in the EAE model, via the regulation of either pro- or anti-inflammatory cytokines and matrix metalloproteinases.
Collapse
Affiliation(s)
- Rahim Heidari Barchi Nezhad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Fateme Asadi
- Department of Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Zahra Hashemi
- Department of General Subjects, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911, Iran.
| |
Collapse
|
5
|
Zhu H, Wang X, Han Y, Zhang W, Xin W, Zheng X, Zhang J. Icariin promotes the migration of bone marrow stromal cells via the SDF-1α/HIF-1α/CXCR4 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4023-4031. [PMID: 30538428 PMCID: PMC6254989 DOI: 10.2147/dddt.s179989] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose In this study, a series of in vitro experiments were performed to investigate the molecular mechanisms underlying cell migration promoted by icariin (ICA) at low concentrations. Materials and methods Bone marrow stromal cells (BMSCs) were cultured with different concentrations of ICA to verify whether it can enhance the efficiency of BMSCs migration. Western blot was employed to measure the expression of hypoxia-inducible factor-1α (HIF-1α) and C-X-C chemokine receptor type 4 (CXCR4) at different time points in BMSCs treated with ICA. Subsequently, we evaluated the function of HIF-1α in the expression of CXCR4 and the migration of cells by transfecting plasmid HIF-1α small interfering RNA (siHIF-1α) into BMSCs model. Results Our data indicated that different concentrations of ICA (10, 1, and 0.1 µM) further enhanced the chemotactic capability of SDF-1α, and the most prominent cell migration stimulatory effect was observed with 1 µM ICA. Furthermore, ICA significantly enhanced the protein levels of CXCR4 and HIF-1α, and this effect was blocked by ICI 12,780 (estrogen receptor antagonis). Moreover, transfection of BMSCs with siHIF-1α reduced CXCR4 expression, suggesting that HIF-1α can regulate the migration of cells by influencing the expression of CXCR4. Conclusion ICA promoted BMSCs migration via the activation of HIF-1α and further regulated the expression of CXCR4, suggesting that ICA might have beneficial effects in stem cell therapy.
Collapse
Affiliation(s)
- Haiyan Zhu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China, .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, China, .,Department of Stomatology, Weihai Municipal Hospital, Weihai, Shandong Province, China
| | - Xuxia Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China, .,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Yuanyuan Han
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China, .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, China,
| | - Wenjuan Zhang
- Department of Stomatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Wei Xin
- Department of Stomatology, Weihai Municipal Hospital, Weihai, Shandong Province, China
| | - Xiaotao Zheng
- Department of Stomatology, Weihai Municipal Hospital, Weihai, Shandong Province, China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, China, .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, China,
| |
Collapse
|
6
|
Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 2018; 7:651-663. [PMID: 30070053 PMCID: PMC6127224 DOI: 10.1002/sctm.18-0024] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
The development of mesenchymal stem cells (MSCs) as cell‐based drug delivery vectors for numerous clinical indications, including cancer, has significant promise. However, a considerable challenge for effective translation of these approaches is the limited tumor tropism and broad biodistribution observed using conventional MSCs, which raises concerns for toxicity to nontarget peripheral tissues (i.e., the bad). Consequently, there are a variety of synthetic engineering platforms in active development to improve tumor‐selective targeting via increased homing efficiency and/or specificity of drug activation, some of which are already being evaluated clinically (i.e., the good). Unfortunately, the lack of robust quantification and widespread adoption of standardized methodologies with high sensitivity and resolution has made accurate comparisons across studies difficult, which has significantly impeded progress (i.e., the ugly). Herein, we provide a concise review of active and passive MSC homing mechanisms and biodistribution postinfusion; in addition to in vivo cell tracking methodologies and strategies to enhance tumor targeting with a focus on MSC‐based drug delivery strategies for cancer therapy. Stem Cells Translational Medicine2018;1–13
Collapse
Affiliation(s)
- Timothy E G Krueger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel L J Thorek
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA
| | - Samuel R Denmeade
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - W Nathaniel Brennen
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Esmaili Gourvarchin Galeh H, Meysam Abtahi Froushani S, Afzale Ahangaran N, Hadai SN. Effects of Educated Monocytes with Xenogeneic Mesenchymal Stem Cell-Derived Conditioned Medium in a Mouse Model of Chronic Asthma. Immunol Invest 2018; 47:504-520. [PMID: 29671652 DOI: 10.1080/08820139.2018.1458108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study was conducted to determine the potential of the monocytes educated with rat bone marrow mesenchymal stem cell-derived conditioned medium (MCM) in ameliorating animal model of asthma. METHODS Chronic asthma was induced in the BALB/c mice using ovalbumin (OVA) sensitization. The monocytes were isolated from blood of mice and supplemented with 50% MCM or negative control media. After 24 h, the cells were designated as "non-educated or educated". Fourteen weeks after the onset of the study, animals were treated with educated or non-educated monocytes twice with a 1-week interval. RESULTS The educated monocytes showed a reduction in the potential production of the respiratory burst and nitric oxide and the secretion of IL-12 and IL-4 compared to non-educated monocytes. Conversely, these monocytes exhibited a significant increase in the production of IL-10 and TGF-?. Also, the levels of CD68+/CD206+ cells significantly increased in the population of educated monocytes. More importantly, the severity of histopathological lesions, NF-?B p65 mRNA level in lung tissues, total serum IgE and the total cell count, as well as the eosinophil count in the bronchoalveolar lavage fluid, were significantly decreased in OVA-inhaled mice treated with educated monocytes compared to OVA-sensitized group receiving non-educated monocytes. With no advantage in up-regulation of Foxp3 Treg cells, the treatment with educated monocytes reduced the secretion of IL-5 and IL-13 by splenocytes of asthma mice more than splenocytes of the asthma mice treated with non-educated monocytes. CONCLUSION The educated monocytes with MCM may be as a promising strategy for cell-based therapies of asthma.
Collapse
Affiliation(s)
| | | | | | - Siamak Naji Hadai
- b Department of Pathology, Faculty of Medicine , Urmia University of Medical Science , Urmia , Iran
| |
Collapse
|
8
|
Lim RZL, Li L, Yong EL, Chew N. STAT-3 regulation of CXCR4 is necessary for the prenylflavonoid Icaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation. Biochim Biophys Acta Gen Subj 2018; 1862:1680-1692. [PMID: 29679717 DOI: 10.1016/j.bbagen.2018.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
Mesenchymal stem cell (MSC) dysfunction has been implicated in the pathogenesis of osteoporosis. MSCs derived from osteoporotic subjects demonstrate significant impairment in proliferation, adhesion and chemotaxis, and osteogenic differentiation, leading to reduced functional bone-forming osteoblasts and ultimately nett bone loss and osteoporosis. Epimedium herbs and its active compound Icaritin (ICT) have been used in Chinese ethnopharmacology for the treatment of metabolic bone diseases. Using an in-vitro cell culture model, we investigated the benefits of ICT treatment in enhancing MSC proliferation, migration and osteogenic differentiation, and provide novel data to describe its mechanism of action. ICT enhances MSC proliferation, chemotaxis to stromal cell-derived factor-1 (SDF-1) and osteogenic differentiation through the activation of signal transduction activator transcription factor 3 (STAT-3), with a consequential up-regulation in the expression and activity of cysteine (C)-X-C motif chemokine receptor 4 (CXCR4). These findings provide a strong basis for future clinical studies to confirm the therapeutic potential of ICT for the prevention and treatment of osteoporosis and fragility fractures.
Collapse
Affiliation(s)
- R Z L Lim
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - L Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - E L Yong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - N Chew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, National University Hospital, Singapore.
| |
Collapse
|
9
|
Song K, Cai H, Zhang D, Huang R, Sun D, He Y. Effects of human adipose-derived mesenchymal stem cells combined with estrogen on regulatory T cells in patients with premature ovarian insufficiency. Int Immunopharmacol 2018; 55:257-262. [DOI: 10.1016/j.intimp.2017.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/09/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023]
|
10
|
Peyvandi AA, Roozbahany NA, Peyvandi H, Abbaszadeh HA, Majdinasab N, Faridan M, Niknazar S. Critical role of SDF-1/CXCR4 signaling pathway in stem cell homing in the deafened rat cochlea after acoustic trauma. Neural Regen Res 2018; 13:154-160. [PMID: 29451220 PMCID: PMC5840981 DOI: 10.4103/1673-5374.224382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous animal studies have shown that stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling pathway plays an important role in the targeted migration of bone marrow-derived mesenchymal stem cells (BMSCs) to the injured area. In the present study, we aimed to investigate the potential role of chemotactic SDF-1/CXCR4 signaling pathway in the homing of transplanted BMSCs to the injured cochlea after noise-induced hearing loss (NIHL) in a rat model. White noise exposure (110 dB) paradigm was used for hearing loss induction in male rats for 6 hours in 5 days. Distortion-product otoacoustic emission (DPOAE) responses were recorded before the experiment and post noise exposure. Hoechst 33342-labeled BMSCs and CXCR4 antagonist (AMD3100)-treated BMSCs were injected into the rat cochlea through the round window. SDF-1 protein expression in the cochlear tissue was assayed using western blot assay. The number of labeled BMSCs reaching the endolymph was determined after 24 hours. SDF-1 was significantly increased in the cochlear tissue of rats in the noise exposure group than in the control group. The number of Hoechst 33342-labeled BMSCs reaching the endolymph of the cochlea was significantly smaller in the AMD3100-treated BMSCs group than in the normal BMSCs group. Our present findings suggest that the SDF-1/CXCR4 signaling pathway has a critical role in BMSCs migration to the injured cochlea in a rat model of noise-induced hearing loss.
Collapse
Affiliation(s)
- Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; G. Raymond Chang School, Ryerson University, Toronto, Canada
| | - Hassan Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Yale University, New Haven, CT, USA
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Majdinasab
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faridan
- Department of Occupational Health Engineering, School of Health, Loorestan University of Medical Sciences, Khorramabad, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Sajadi A, Amiri I, Gharebaghi A, Komaki A, Asadbegi M, Shahidi S, Mehdizadeh M, Soleimani Asl S. Treadmill exercise alters ecstasy- induced long- term potentiation disruption in the hippocampus of male rats. Metab Brain Dis 2017; 32:1603-1607. [PMID: 28612273 DOI: 10.1007/s11011-017-0046-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
3, 4-methylenedioxymethamphetamine (MDMA) or ecstasy is a derivative of amphetamine that leads to long term potentiation (LTP) disruption in the hippocampal dentate gyrus (DG). Exercise has been accepted as a treatment for the improvement of neurodegenerative disease. Herein, the effects of exercise on the MDMA- induced neurotoxicity were assessed. Male Wistar rats received intraperitoneal injection of MDMA (10 mg/kg) and exercised for one month on a treadmill (Simultaneously or asynchronously with MDMA). LTP and expression of BDNF were assessed using electrophysiology and western blotting methods, respectively. MDMA attenuated the field excitatory post-synaptic potential (fEPSP) slope in comparison with the control group, whereas treadmill exercise increased this parameter when compared to MDMA group. Furthermore, BDNF expression significantly decreased in MDMA group and treadmill exercise could increase that. In conclusion, results of this study suggest that synchronous exercise is able to improve MDMA-induced LTP changes through increase of BDNF expression in the hippocampus of rats.
Collapse
Affiliation(s)
- Azam Sajadi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Asadbegi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical sciences, Tehran, Iran
| | - Sara Soleimani Asl
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Heirani-Tabasi A, Toosi S, Mirahmadi M, Mishan MA, Bidkhori HR, Bahrami AR, Behravan J, Naderi-Meshkin H. Chemokine Receptors Expression in MSCs: Comparative Analysis in Different Sources and Passages. Tissue Eng Regen Med 2017; 14:605-615. [PMID: 30603514 DOI: 10.1007/s13770-017-0069-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
MSC-based therapy is providing a cure for degenerative diseases with unmet medical need and usually iliac crest bone marrow (ICBM) are being applied in clinics. Alternative sources, including adipose tissue and reamer/irrigator/aspirator hold great potential for isolating MCSs. Here, we compared original MSCs features of adipose tissue (Ad-MSCs) and bone marrow of long-bone (RIA-MSCs) or iliac crest, and the expression of chemokine receptors (including CXCR4, CX3CR1, CXCR6, CXCR2, CCR1 and CCR7) in these three sources, which are important in the context of homing. We further investigated the role of SDF-1/CXCR4 axis as a key player in motility of different population of MSCs using Transwell migration assay. All cells exhibited typical MSCs characteristics. However, different MSCs sources expressed different levels of chemokine receptors. Generally, the expression of these chemokine receptors was decreased with increasing passage (P) number from 2 to 3. Interestingly, it was observed that the CXCR4 expression and migration capacity in Ad-MSCs is significantly higher than ICBM and RIA-MSCs in P2. Although our data showed that CXCR4 had highest expression in P2 Ad-MSCs, but it dramatically declined following sub-culturing in the P3. Hence, to improve homing of MSCs by means of chemokine/their receptors axis, the source of isolation and passage number should be considered for clinical applications.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| | - Shirin Toosi
- 2Department of Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 917751436 Iran
| | - Mahdi Mirahmadi
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| | - Mohammad Amir Mishan
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| | - Hamid Reza Bidkhori
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| | - Ahmad Reza Bahrami
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
- 3Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 917751436 Iran
| | - Javad Behravan
- 2Department of Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 917751436 Iran
| | - Hojjat Naderi-Meshkin
- Department of stem Cells and Regenerative Medicine Research, ACECR-Khorasan Razavi Branch Institute, Mashhad, 917751436 Iran
| |
Collapse
|
13
|
Pourjafar M, Saidijam M, Mansouri K, Malih S, Ranjbar Nejad T, Shabab N, Najafi R. Cytoprotective effects of endothelin-1 on mesenchymal stem cells: an in vitro study. Clin Exp Pharmacol Physiol 2017; 43:769-76. [PMID: 27161651 DOI: 10.1111/1440-1681.12590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
Stem cell-based therapies is a promising approach for regenerative therapy in various diseases. Some obstacles remain to be solved before clinical application of the cell therapy is realized, including increasing the survival of transplanted stem cells, reducing loss of transplanted cells, and maintaining adequate vascular supply. Recently, stem cell preconditioning with chemical and pharmacological agents has been shown to increase therapeutic efficacy. The present study investigated the effect of endothelin-1 (ET-1) on survival, angiogenesis, and migration of mesenchymal stem cells (MSCs), in vitro. MSCs were treated with various concentrations of ET-1 and the expression of cyclooxygenase-2 (COX-2), hypoxia-inducible factor-1 (HIF-1), C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 2 (CCR2), vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), angiopoietin-4 (Ang-4) and matrix metalloproteinase-2 (MMP-2) were examined. Caspase 3 activity and prostaglandin E2 (PGE2) were determined by ELISA assay. MSCs migration and tube formation potential were assessed using scratch test and three dimensional vessel formation assay. ET-1 enhanced the MSCs viability. In ET-1- treated MSCs, expression of COX-2, HIF-1, CXCR4, CCR2, VEGF, Ang-2, Ang-4 and MMP-2 were increased compared to control groups. Elevation of all these genes were reversed by celecoxib (50 μmol/L), a selective COX-2 inhibitor. PGE2 generation, MSCs migration and tube formation were enhanced by ET-1 conditioning, whereas caspase-3 activity was reduced in these cells, compared to the control group. The results presented here reveal that preconditioning of MSCs with ET-1 has strong cytoprotective effects through activation of survival signalling molecules and trophic factors.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamran Mansouri
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Malih
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tayebeh Ranjbar Nejad
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nooshin Shabab
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Centre for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Endometrium and Endometriosis Research Centre, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Pourjafar M, Saidijam M, Etemadi K, Najafi R. All-trans retinoic acid enhances in vitro mesenchymal stem cells migration by targeting matrix metalloproteinases 2 and 9. Biotechnol Lett 2017; 39:1263-1268. [PMID: 28488074 DOI: 10.1007/s10529-017-2350-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To investigate the effect of all-trans retinoic acid (ATRA) on caspase 3 activity, matrix metalloproteinase 2 (MMP-2), and MMP-9 expression and activity as well as in vitro rat bone marrow-derived mesenchymal stem cells (MSCs) migration. RESULTS The expression of the MMP-2/-9 was at least five times higher in ATRA-treated MSCs (P < 0.001), and MMP-2/-9 activity was enhanced with increasing doses compared to the control MSCs. The caspase three activity was attenuated by ATRA preconditioning. Scratch test showed that ATRA could promote the migration capacity of the MSCs compared to the untreated MSCs in a dose-dependent manner. CONCLUSION ATRA increases the in vitro migration capacity of the MSCs through stimulating the expression and activity of MMP-2/-9 and inhibiting caspase three enzyme activity.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamedan, Iran.,Department of Immunology, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Katayoon Etemadi
- Department of Molecular Medicine and Genetic, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamedan, Iran. .,Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
The Effect of miR-200c Inhibition on Chemosensitivity (5- FluoroUracil) in Colorectal Cancer. Pathol Oncol Res 2017; 24:145-151. [DOI: 10.1007/s12253-017-0222-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
16
|
Hosseinzadeh A, Jafari D, Kamarul T, Bagheri A, Sharifi AM. Evaluating the Protective Effects and Mechanisms of Diallyl Disulfide on Interlukin-1β-Induced Oxidative Stress and Mitochondrial Apoptotic Signaling Pathways in Cultured Chondrocytes. J Cell Biochem 2017; 118:1879-1888. [DOI: 10.1002/jcb.25907] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Azam Hosseinzadeh
- RAZI Drug Research Center; Iran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Davood Jafari
- Department of Orthopedics Surgery; Bone and Cartilage Reconstruction Joint Research Center; Shafa Orthopedic Hospital; Iran University of Medical Sciences; Tehran Iran
| | - Tunku Kamarul
- Tissue Engineering Group (NOCERAL); Faculty of Medicine; Department of Orthopedic Surgery; University of Malaya; Kuala Lumpur Malaysia
| | - Abolfazll Bagheri
- Department of Orthopedics Surgery; Bone and Cartilage Reconstruction Joint Research Center; Shafa Orthopedic Hospital; Iran University of Medical Sciences; Tehran Iran
| | - Ali M. Sharifi
- RAZI Drug Research Center; Iran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
- Tissue Engineering Group (NOCERAL); Faculty of Medicine; Department of Orthopedic Surgery; University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
17
|
Levy O, Brennen WN, Han E, Rosen DM, Musabeyezu J, Safaee H, Ranganath S, Ngai J, Heinelt M, Milton Y, Wang H, Bhagchandani SH, Joshi N, Bhowmick N, Denmeade SR, Isaacs JT, Karp JM. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials 2016; 91:140-150. [PMID: 27019026 DOI: 10.1016/j.biomaterials.2016.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/21/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
Despite considerable advances in prostate cancer research, there is a major need for a systemic delivery platform that efficiently targets anti-cancer drugs to sites of disseminated prostate cancer while minimizing host toxicity. In this proof-of-principle study, human mesenchymal stem cells (MSCs) were loaded with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulate the macromolecule G114, a thapsigargin-based prostate specific antigen (PSA)-activated prodrug. G114-particles (∼950 nm in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from loaded cells. Moreover, G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting PCa cell line, LNCaP. Finally, G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 PCa xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in-vitro or in-vivo. This study demonstrates a potentially promising approach to assemble a cell-based drug delivery platform, which inhibits cancer growth in-vivo without the need of genetic engineering. We envision that upon achieving efficient homing of systemically infused MSCs to cancer sites, this MSC-based platform may be developed into an effective, systemic 'Trojan Horse' therapy for targeted delivery of therapeutic agents to sites of metastatic PCa.
Collapse
Affiliation(s)
- Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - W Nathaniel Brennen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States
| | - Edward Han
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - David Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States
| | - Juliet Musabeyezu
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Helia Safaee
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Sudhir Ranganath
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Jessica Ngai
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Martina Heinelt
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Yuka Milton
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Hao Wang
- Department of Oncology, Division of Biostatistics at the Sidney Kimmel Comprehensive Cancer Center, United States
| | - Sachin H Bhagchandani
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Nitin Joshi
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Neil Bhowmick
- The Samuel Oschin Comprehensive Cancer Institute at the Cedars-Sinai Medical Center, United States
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States.
| | - John T Isaacs
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States.
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States.
| |
Collapse
|
18
|
Mehrabani M, Najafi M, Kamarul T, Mansouri K, Iranpour M, Nematollahi MH, Ghazi-Khansari M, Sharifi AM. Deferoxamine preconditioning to restore impaired HIF-1α-mediated angiogenic mechanisms in adipose-derived stem cells from STZ-induced type 1 diabetic rats. Cell Prolif 2015; 48:532-49. [PMID: 26332145 DOI: 10.1111/cpr.12209] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Both excessive and insufficient angiogenesis are associated with progression of diabetic complications, of which poor angiogenesis is an important feature. Currently, adipose-derived stem cells (ADSCs) are considered to be a promising source to aid therapeutic neovascularization. However, functionality of these cells is impaired by diabetes which can result from a defect in hypoxia-inducible factor-1 (HIF-1), a key mediator involved in neovascularization. In the current study, we sought to explore effectiveness of pharmacological priming with deferoxamine (DFO) as a hypoxia mimetic agent, to restore the compromised angiogenic pathway, with the aid of ADSCs derived from streptozotocin (STZ)-induced type 1 diabetic rats ('diabetic ADSCs'). MATERIALS AND METHODS Diabetic ADSCs were treated with DFO and compared to normal and non-treated diabetic ADSCs for expression of HIF-1α, VEGF, FGF-2 and SDF-1, at mRNA and protein levels, using qRT-PCR, western blotting and ELISA assay. Activity of matrix metalloproteinases -2 and -9 were measured using a gelatin zymography assay. Angiogenic potential of conditioned media derived from normal, DFO-treated and non-treated diabetic ADSCs were determined by in vitro (in HUVECs) and in vivo experiments including scratch assay, three-dimensional tube formation testing and surgical wound healing models. RESULTS DFO remarkably enhanced expression of noted genes by mRNA and protein levels and restored activity of matrix metalloproteinases -2 and -9. Compromised angiogenic potential of conditioned medium derived from diabetic ADSCs was restored by DFO both in vitro and in vivo experiments. CONCLUSION DFO preconditioning restored neovascularization potential of ADSCs derived from diabetic rats by affecting the HIF-1α pathway.
Collapse
Affiliation(s)
- M Mehrabani
- Razi Drug Research Center, Department of pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - M Najafi
- Department of Biochemistry, Iran University of Medical Sciences, Tehran, Iran
| | - T Kamarul
- Tissue Engineering Group (TEG) & Research, National Orthopedic Centre of Excellence in Research & Learning (NOCERAL), Department of Orthopedics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - K Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - M Iranpour
- Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran
| | - M H Nematollahi
- Department of Biochemistry, Kerman University of Medical Sciences, Kerman, Iran
| | - M Ghazi-Khansari
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - A M Sharifi
- Razi Drug Research Center, Department of pharmacology, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|