1
|
Farag A, Ngeun SK, Kaneda M, Aboubakr M, Elhaieg A, Hendawy H, Tanaka R. Exploring the Potential Effects of Cryopreservation on the Biological Characteristics and Cardiomyogenic Differentiation of Rat Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:9908. [PMID: 39337396 PMCID: PMC11432599 DOI: 10.3390/ijms25189908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is essential for the broad clinical application of mesenchymal stem cells (MSCs), yet its impact on their cellular characteristics and cardiomyogenic differentiation potential remains a critical concern in translational medicine. This study aimed to evaluate the effects of cryopreservation on the biological properties and cardiomyogenic capacity of rat adipose-derived MSCs (AD-MSCs). We examined their cellular morphology, surface marker expression (CD29, CD90, CD45), trilineage differentiation potential (adipogenic, osteogenic, chondrogenic), and gene expression profiles for the pluripotency marker REX1 and immunomodulatory markers TGFβ1 and IL-6. After inducing cardiomyocyte differentiation, we assessed cardiac-specific gene expressions (Troponin I, MEF2c, GSK-3β) using quantitative RT-qPCR, along with live/dead cell staining and immunofluorescence for cardiac-specific proteins (Troponin T, α-actinin, Myosin Heavy Chain). Cryopreserved AD-MSCs preserved their morphology, surface markers, and differentiation potential, but exhibited a reduced expression of REX1, TGFβ1, and IL-6. Additionally, cryopreservation diminished cardiomyogenic differentiation, as indicated by the lower levels of Troponin I, MEF2c, and GSK-3β seen compared to non-cryopreserved cells. Despite this, high cell viability (>90%) and maintained cardiac protein expression were observed post-cryopreservation. These findings highlight the necessity of optimizing cryopreservation protocols to ensure the full therapeutic potential of AD-MSCs, particularly in applications related to cardiac regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Farag
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Asmaa Elhaieg
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Chacon Alberty L, King M, Mesquita FCP, Hochman-Mendez C. Quality Assessment of Long-Term Cryopreserved Human Bone-Derived Marrow Mesenchymal Stromal Cell Samples: Experience from the Texas Heart Institute Biorepository and Biospecimen Profiling Core. Biopreserv Biobank 2024. [PMID: 39253842 DOI: 10.1089/bio.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
In biomedical research, biorepositories are pivotal resources that safeguard and supply clinical samples for scientific investigators. Proper long-term cryopreservation conditions are essential to maintain biospecimen quality. In this study, we analyzed the efficacy of sample cryopreservation at the Texas Heart Institute Biorepository and Biospecimen Profiling Core (THI-BRC). Our assessments included a thorough review of internal processes, quality reports, and both internal and external audit outcomes. We examined the integrity of human bone marrow-derived multipotent mesenchymal stromal cells (BM-MSCs) that were cryopreserved for over 5 years. These samples originated from randomly selected clinical trial participants or commercially sourced cell lines. Parameters such as cell viability, DNA and RNA integrity, population doubling time, sterility, and BM-MSC-specific attributes such as surface antigen expression and differentiation potential were studied. BM-MSC samples cryopreserved for ∼6 months served as our control. Our results demonstrated that the 5-year cryopreserved samples maintained their integrity compared with the shorter-term stored control samples. Moreover, THI-BRC has met accreditation agency standards and has not received any repeated deficiencies over 7 years. Collectively, our findings affirm that THI-BRC's biospecimen storage protocols align with accepted standards as confirmed by the quality assessment of long-term stored clinical samples.
Collapse
Affiliation(s)
- Lourdes Chacon Alberty
- Biorepository and Biospecimen Profiling Core, The Texas Heart Institute, Houston, Texas, USA
- Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas, USA
| | - Madelyn King
- Biorepository and Biospecimen Profiling Core, The Texas Heart Institute, Houston, Texas, USA
| | | | - Camila Hochman-Mendez
- Biorepository and Biospecimen Profiling Core, The Texas Heart Institute, Houston, Texas, USA
- Regenerative Medicine Research, The Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
3
|
Katzerke C, Schaffrath J, Lützkendorf J, Janssen M, Merbach AK, Nerger K, Binder M, Baum C, Lauer K, Rohde C, Willscher E, Müller-Tidow C, Müller LP. Reduced proliferation of bone marrow MSC after allogeneic stem cell transplantation is associated with clinical outcome. Blood Adv 2023; 7:2811-2824. [PMID: 36763527 PMCID: PMC10279553 DOI: 10.1182/bloodadvances.2022008510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Engraftment and differentiation of donor hematopoietic stem cells is decisive for the clinical success of allogeneic stem cell transplantation (alloSCT) and depends on the recipient's bone marrow (BM) niche. A damaged niche contributes to poor graft function after alloSCT; however, the underlying mechanisms and the role of BM multipotent mesenchymal stromal cells (MSC) are ill-defined. Upon multivariate analysis in 732 individuals, we observed a reduced presence of proliferation-capable MSC in BM aspirates from patients (N = 196) who had undergone alloSCT. This was confirmed by paired analysis in 30 patients showing a higher frequency of samples with a lack of MSC presence post-alloSCT compared with pre-alloSCT. This reduced MSC presence was associated with reduced survival of patients after alloSCT and specifically with impaired graft function. Post-alloSCT MSC showed diminished in vitro proliferation along with a transcriptional antiproliferative signature, upregulation of epithelial-mesenchymal transition and extracellular matrix pathways, and altered impact on cytokine release upon contact with hematopoietic cells. To avoid in vitro culture bias, we isolated the CD146+/CD45-/HLA-DR- BM cell fraction, which comprised the entire MSC population. The post-alloSCT isolated native CD146+MSC showed a similar reduction in proliferation capacity and shared the same antiproliferative transcriptomic signature as for post-alloSCT colony-forming unit fibroblast-derived MSC. Taken together, our data show that alloSCT confers damage to the proliferative capacity of native MSC, which is associated with reduced patient survival after alloSCT and impaired engraftment of allogeneic hematopoiesis. These data represent the basis to elucidate mechanisms of BM niche reconstitution after alloSCT and its therapeutic manipulation.
Collapse
Affiliation(s)
- Christiane Katzerke
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Judith Schaffrath
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Jana Lützkendorf
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Maike Janssen
- Klinik für Innere Medizin V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Anne-Kathrin Merbach
- Klinik für Innere Medizin V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Katrin Nerger
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Mascha Binder
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Cornelia Baum
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Kirstin Lauer
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Christian Rohde
- Klinik für Innere Medizin V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Edith Willscher
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| | - Carsten Müller-Tidow
- Klinik für Innere Medizin V, Universitätsklinikum Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory-Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Lutz P. Müller
- Universitätsklinik und Poliklinik für Innere Medizin IV, Universitätsklinikum Halle, Halle (Saale), Germany
| |
Collapse
|
4
|
Alcayaga-Miranda F, Dutra Silva J, Parada N, Andrade da Silva LH, Ferreira Cruz F, Utreras Y, Hidalgo Y, Cádiz MI, Tapia Limonchi R, Espinoza F, Bruhn A, Khoury M, R. M. Rocco P, Cuenca J. Safety and efficacy of clinical-grade, cryopreserved menstrual blood mesenchymal stromal cells in experimental acute respiratory distress syndrome. Front Cell Dev Biol 2023; 11:1031331. [PMID: 36793446 PMCID: PMC9923023 DOI: 10.3389/fcell.2023.1031331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Background: Treatment for critical care conditions, such as acute respiratory distress syndrome (ARDS), requires ready-to-administer injectable mesenchymal stromal cells (MSCs). A validated cryopreserved therapy based on MSCs derived from menstrual blood (MenSCs) is an attractive option that offers advantages over freshly cultured cells and allows its use as an off-the-shelf therapy in acute clinical conditions. The main goal of this study is to provide evidence on the impact of cryopreservation on different biological functions of MenSCs and to determine the optimal therapeutic dose, safety, and efficacy profile of clinical-grade, cryopreserved (cryo)-MenSCs in experimental ARDS. Methods: Biological functions of fresh versus cryo-MenSCs were compared in vitro. The effects of cryo-MenSCs therapy were evaluated in vivo in ARDS-induced (Escherichia coli lipopolysaccharide) C57BL/6 mice. After 24 h, the animals were treated with five doses ranging from 0.25×105 to 1.25×106 cells/animal. At 2 and 7 days after induction of ARDS, safety and efficacy were evaluated. Results: Clinical-grade cryo-MenSCs injections improved lung mechanics and reduced alveolar collapse, tissue cellularity, and remodelling, decreasing elastic and collagen fiber content in alveolar septa. In addition, administration of these cells modulated inflammatory mediators and promoted pro-angiogenic and anti-apoptotic effects in lung-injured animals. More beneficial effects were observed with an optimal dose of 4×106 cells/Kg than with higher or lower doses. Conclusion: From a translational perspective, the results showed that clinical-grade cryopreserved MenSCs retain their biological properties and exert a therapeutic effect in mild to moderate experimental ARDS. The optimal therapeutic dose was well-tolerated, safe, and effective, favouring improved lung function. These findings support the potential value of an off-the-shelf MenSCs-based product as a promising therapeutic strategy for treating ARDS.
Collapse
Affiliation(s)
- Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile,Cells for Cells, Santiago, Chile,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicol Parada
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Luisa Helena Andrade da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Yildy Utreras
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Yessia Hidalgo
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Ignacia Cádiz
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile,Cells for Cells, Santiago, Chile
| | - Rafael Tapia Limonchi
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile,Cells for Cells, Santiago, Chile
| | - Francisco Espinoza
- Cells for Cells, Santiago, Chile,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile,Cells for Cells, Santiago, Chile,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile,Cells for Cells, Santiago, Chile,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile,*Correspondence: Jimena Cuenca,
| |
Collapse
|
5
|
Febre M, Saulnier N, Roux P, Boutoille F, Girard N, Robert C, Rakic R, Rosset E, Maddens S. Placenta‐derived mesenchymal stromal cells as a treatment for refractory chronic gingivostomatitis in cats: eight cases (2018). J Small Anim Pract 2022; 64:296-305. [PMID: 36573276 DOI: 10.1111/jsap.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The aim of this case series was to collect preliminary data on safety and efficacy of treating cats suffering from refractory feline chronic gingivostomatitis with a single intravenous therapy of cryopreserved placenta-derived mesenchymal stromal cells. MATERIALS AND METHODS We planned the prospective inclusion of cats suffering from refractory chronic gingivostomatitis in three veterinary clinics. All cats received a single infusion of 10×106 cryopreserved cells. Follow-up evaluations were done at day 15 and at 2-, 3- and 6-months following infusion. Clinical disease severity was evaluated by dental specialists using a published stomatitis disease activity index scoring system coupled with an owners' assessment questionnaire. RESULTS All eight cats attended all follow up visits. Cryopreserved ready-to-use placenta-derived cells administered systemically were safe and resulted in notable clinical improvement in all cats as reported by stomatitis disease activity index scoring and owner's survey. CLINICAL SIGNIFICANCE Infusion of cryopreserved freshly thawed placenta-derived mesenchymal stromal cells appears to promote clinical and consequently behavioural benefits in cats with refractory chronic gingivostomatitis after having undergone full-mouth or premolar-molar tooth extraction. Future randomised studies are required to confirm safety and efficacy of this treatment.
Collapse
Affiliation(s)
- M. Febre
- Vetbiobank SASMarcy‐l'ÉtoileFrance
| | | | - P. Roux
- DentovetLausanne, SuisseSwitzerland
| | | | | | | | - R. Rakic
- Vetbiobank SASMarcy‐l'ÉtoileFrance
| | - E. Rosset
- CHUVAC—VetAgro sup‐campus vétérinaireMarcy‐l'ÉtoileFrance
| | | |
Collapse
|
6
|
Dave C, Mei SHJ, McRae A, Hum C, Sullivan KJ, Champagne J, Ramsay T, McIntyre L. Comparison of freshly cultured versus cryopreserved mesenchymal stem cells in animal models of inflammation: A pre-clinical systematic review. eLife 2022; 11:75053. [PMID: 35838024 PMCID: PMC9286731 DOI: 10.7554/elife.75053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/05/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are multipotent cells that demonstrate therapeutic potential for the treatment of acute and chronic inflammatory-mediated conditions. Although controversial, some studies suggest that MSCs may lose their functionality with cryopreservation which could render them non-efficacious. Hence, we conducted a systematic review of comparative pre-clinical models of inflammation to determine if there are differences in in vivo measures of pre-clinical efficacy (primary outcomes) and in vitro potency (secondary outcomes) between freshly cultured and cryopreserved MSCs. Methods: A systematic search on OvidMEDLINE, EMBASE, BIOSIS, and Web of Science (until January 13, 2022) was conducted. The primary outcome included measures of in vivo pre-clinical efficacy; secondary outcomes included measures of in vitro MSC potency. Risk of bias was assessed by the SYRCLE ‘Risk of Bias’ assessment tool for pre-clinical studies. Results: Eighteen studies were included. A total of 257 in vivo pre-clinical efficacy experiments represented 101 distinct outcome measures. Of these outcomes, 2.3% (6/257) were significantly different at the 0.05 level or less; 2 favoured freshly cultured and 4 favoured cryopreserved MSCs. A total of 68 in vitro experiments represented 32 different potency measures; 13% (9/68) of the experiments were significantly different at the 0.05 level or less, with seven experiments favouring freshly cultured MSC and two favouring cryopreserved MSCs. Conclusions: The majority of preclinical primary in vivo efficacy and secondary in vitro potency outcomes were not significantly different (p<0.05) between freshly cultured and cryopreserved MSCs. Our systematic summary of the current evidence base may provide MSC basic and clinical research scientists additional rationale for considering a cryopreserved MSC product in their pre-clinical studies and clinical trials as well as help identify research gaps and guide future related research. Funding: Ontario Institute for Regenerative Medicine
Collapse
Affiliation(s)
- Chintan Dave
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Andrea McRae
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christine Hum
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa, Ottawa, Canada
| | - Katrina J Sullivan
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Josee Champagne
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Tim Ramsay
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Lauralyn McIntyre
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Srinivasan A, Sathiyanathan P, Yin L, Liu TM, Lam A, Ravikumar M, Smith RAA, Loh HP, Zhang Y, Ling L, Ng SK, Yang YS, Lezhava A, Hui J, Oh S, Cool SM. Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion. Cytotherapy 2022; 24:456-472. [PMID: 35227601 DOI: 10.1016/j.jcyt.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Therapies using mesenchymal stromal cells (MSCs) to treat immune and inflammatory conditions are now at an exciting stage of development, with many MSC-based products progressing to phase II and III clinical trials. However, a major bottleneck in the clinical translation of allogeneic MSC therapies is the variable immunomodulatory properties of MSC products due to differences in their tissue source, donor heterogeneity and processes involved in manufacturing and banking. This variable functionality of MSC products likely contributes to the substantial inconsistency observed in the clinical outcomes of phase III trials of MSC therapies; several trials have failed to reach the primary efficacy endpoint. In this review, we discuss various strategies to consistently maintain or enhance the immunomodulatory potency of MSCs during ex vivo expansion, which will enable the manufacture of allogeneic MSC banks that have high potency and low variability. Biophysical and biochemical priming strategies, the use of culture additives such as heparan sulfates, and genetic modification can substantially enhance the immunomodulatory properties of MSCs during in vitro expansion. Furthermore, robust donor screening, the use of biomarkers to select for potent MSC subpopulations, and rigorous quality testing to improve the release criteria for MSC banks have the potential to reduce batch-to-batch heterogeneity and enhance the clinical efficacy of the final MSC product. Machine learning approaches to develop predictive models of individual patient response can enable personalized therapies and potentially establish correlations between in vitro potency measurements and clinical outcomes in human trials.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Lu Yin
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Tong Ming Liu
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Alan Lam
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Maanasa Ravikumar
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | - Han Ping Loh
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Ying Zhang
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Ling Ling
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, A*STAR, Singapore
| | | | - Alexander Lezhava
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - James Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR, Singapore.
| | - Simon M Cool
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
8
|
Impact of Cryopreservation and Freeze-Thawing on Therapeutic Properties of Mesenchymal Stromal/Stem Cells and Other Common Cellular Therapeutics. CURRENT STEM CELL REPORTS 2022; 8:72-92. [PMID: 35502223 PMCID: PMC9045030 DOI: 10.1007/s40778-022-00212-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Purpose of Review Cryopreservation and its associated freezing and thawing procedures–short “freeze-thawing”–are among the final steps in economically viable manufacturing and clinical application of diverse cellular therapeutics. Translation from preclinical proof-of-concept studies to larger clinical trials has indicated that these processes may potentially present an Achilles heel to optimal cell product safety and particularly efficacy in clinical trials and routine use. Recent Findings We review the current state of the literature on how cryopreservation of cellular therapies has evolved and how the application of this technique to different cell types is interlinked with their ability to engraft and function upon transfer in vivo, in particular for hematopoietic stem and progenitor cells (HSPCs), their progeny, and therapeutic cell products derived thereof. We also discuss pros and cons how this may differ for non-hematopoietic mesenchymal stromal/stem cell (MSC) therapeutics. We present different avenues that may be crucial for cell therapy optimization, both, for hematopoietic (e.g., effector, regulatory, and chimeric antigen receptor (CAR)-modified T and NK cell based products) and for non-hematopoietic products, such as MSCs and induced pluripotent stem cells (iPSCs), to achieve optimal viability, recovery, effective cell dose, and functionality of the cryorecovered cells. Summary Targeted research into optimizing the cryopreservation and freeze-thawing routines and the adjunct manufacturing process design may provide crucial advantages to increase both the safety and efficacy of cellular therapeutics in clinical use and to enable effective market deployment strategies to become economically viable and sustainable medicines.
Collapse
|
9
|
Ringdén O, Moll G, Gustafsson B, Sadeghi B. Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Front Immunol 2022; 13:839844. [PMID: 35371003 PMCID: PMC8973075 DOI: 10.3389/fimmu.2022.839844] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) possess profound immunomodulatory and regenerative properties that are of clinical use in numerous clinical indications with unmet medical need. Common sources of MSCs include among others, bone marrow (BM), fat, umbilical cord, and placenta-derived decidua stromal cells (DSCs). We here summarize our more than 20-years of scientific experience in the clinical use of MSCs and DSCs in different clinical settings. BM-MSCs were first explored to enhance the engraftment of autografts in hematopoietic cell transplantation (HCT) and osteogenesis imperfecta around 30 years ago. In 2004, our group reported the first anti-inflammatory use of BM-MSCs in a child with grade IV acute graft-versus-host disease (GvHD). Subsequent studies have shown that MSCs appear to be more effective in acute than chronic GvHD. Today BM-MSC-therapy is registered for acute GvHD in Japan and for GvHD in children in Canada and New Zeeland. MSCs first home to the lung following intravenous injection and exert strong local and systemic immunomodulatory effects on the host immune system. Thus, they were studied for ameliorating the cytokine storm in acute respiratory distress syndrome (ARDS). Both, MSCs and DSCs were used to treat SARS-CoV-2 coronavirus-induced disease 2019 (COVID-19)-induced ARDS. In addition, they were also used for other novel indications, such as pneumomediastinum, colon perforation, and radiculomyelopathy. MSC and DSCs trigger coagulation and were thus explored to stop hemorrhages. DSCs appear to be more effective for acute GvHD, ARDS, and hemorrhages, but randomized studies are needed to prove superiority. Stromal cell infusion is safe, well tolerated, and only gives rise to a slight fever in a limited number of patients, but no major side effects have been reported in multiple safety studies and metaanalysis. In this review we summarize current evidence from in vitro studies, animal models, and importantly our clinical experience, to support stromal cell therapy in multiple clinical indications. This encloses MSC's effects on the immune system, coagulation, and their safety and efficacy, which are discussed in relation to prominent clinical trials within the field.
Collapse
Affiliation(s)
- Olle Ringdén
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | - Guido Moll
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, All Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britt Gustafsson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research Group, Department of Clinical Sciences, Intervention and Technology (CLNTEC), Division of Pediatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Semenova E, Grudniak MP, Bocian K, Chroscinska-Krawczyk M, Trochonowicz M, Stepaniec IM, Murzyn M, Szablowska-Gadomska I, Boruczkowski D, Oldak T, Machaj EK. Banking of AT-MSC and its Influence on Their Application to Clinical Procedures. Front Bioeng Biotechnol 2021; 9:773123. [PMID: 34917599 PMCID: PMC8670380 DOI: 10.3389/fbioe.2021.773123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Processing of MSCs to obtain a therapeutic product consists of two main steps: 1) the in vitro expansion of the cells until an appropriate number of them is obtained, and 2) freezing and storage of the expanded cells. The last step is critical and must be optimized so that after thawing the cells retain all their physiological properties including the secretory function. In this paper, we evaluated physiological parameters of AT-MSC's after a full cycle of their processing, particularly freezing and storing at the liquid nitrogen vapor temperature. Based on the recovered proliferative and secretory capacities of the thawed cells, we have designed the optimal technique for processing of MSCs for clinical applications. In our work, we tried to select the best DMSO-based cryoprotectant mixture on the base of post thawing fully retain their properties. We have demonstrated the effectiveness of the use of DMSO in various configurations of the constituent cryoprotective fluids. We have also shown that AT-MSCs that show control levels in most standard tests (viability, shape, culture behaviour, and proliferative properties) after thawing, may show transient variations in some important physiological properties, such as the level of secreted growth factors. Obtained results let us to indicate how to optimize the AT-MSC preparation process for clinical applications. We suggest that before their clinical application the cells should be cultured for at least one passage to recover their physiological stability and thus assure their optimal therapeutic potential.
Collapse
Affiliation(s)
| | | | - Katarzyna Bocian
- Polish Stem Cell Bank, FamiCord Group, Warsaw, Poland.,Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | | - Magdalena Murzyn
- Polish Stem Cell Bank, FamiCord Group, Warsaw, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Tomasz Oldak
- Polish Stem Cell Bank, FamiCord Group, Warsaw, Poland
| | | |
Collapse
|
11
|
Nguyen MQ, Bui HTH, Tuyet ANT, Nhung TTH, Hoang DM, Liem NT, Hoang VT. Comparative Bioactivity Analysis for Off-the-Shelf and Culture-Rescued Umbilical Cord-Derived Mesenchymal Stem/Stromal Cells in a Xeno- and Serum-Free Culture System. Cell Transplant 2021; 30:9636897211039441. [PMID: 34538123 PMCID: PMC8718162 DOI: 10.1177/09636897211039441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We recently reported a standardized xeno- and serum-free culture platform to isolate and expand umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs). Comparing populations from the same passage, cells that were cryopreserved and culture-rescued exhibited characteristics similar to those of their fresh counterparts, continuously cultured cells without interim cryopreservation. The culture rescue after thawing allowed for the cells to be fully recovered. However, since it would be more cost-effective and timesaving if cryopreserved cells can be used as an off-the-shelf product, we set out to compare the bioactivity of freshly thawed UC-MSCs versus culture-rescued UC-MSCs of the same batch that were recultured for an additional passage under our xeno- and serum-free protocol. UC-MSCs showed high viability in both the freshly thawed and the re-cultured group. Both populations displayed a similar proliferation capacity which is indicated by a comparable population doubling time and colony-forming ability. Both freshly thawed and culture-rescued UC-MSCs expressed the characteristic immunophenotype and were capable of differentiating into osteocytes, chondrocytes, and adipocytes. On the other hand, culture-rescued cells appeared to be more potent in immunosuppression than freshly thawed cells. In conclusion, freshly thawed and culture-rescued cell products share comparable bioactivity in cell growth and proliferation, immunophenotype, and differentiation potential. However, the culture-rescued cells that were allowed to grow for an additional passage appear to display a more favorable immunomodulatory potential when compared to their freshly thawed parent cells.
Collapse
Affiliation(s)
- Minh Quang Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam.,VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Hue T H Bui
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam.,Vinmec Institute of Applied Science and Regenerative Medicine (VIASRM), Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh Nguyen Thi Tuyet
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam.,Vinmec Institute of Applied Science and Regenerative Medicine (VIASRM), Vinmec Healthcare System, Hanoi, Vietnam
| | - Trinh Thi Hong Nhung
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam.,Vinmec Institute of Applied Science and Regenerative Medicine (VIASRM), Vinmec Healthcare System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam
| | - Nguyen Thanh Liem
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
12
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Goals and Challenges of Stem Cell-Based Therapy for Corneal Blindness Due to Limbal Deficiency. Pharmaceutics 2021; 13:pharmaceutics13091483. [PMID: 34575560 PMCID: PMC8466237 DOI: 10.3390/pharmaceutics13091483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal failure is a highly prevalent cause of blindness. One special cause of corneal failure occurs due to malfunction or destruction of the limbal stem cell niche, upon which the superficial cornea depends for homeostatic maintenance and wound healing. Failure of the limbal niche is referred to as limbal stem cell deficiency. As the corneal epithelial stem cell niche is easily accessible, limbal stem cell-based therapy and regenerative medicine applied to the ocular surface are among the most highly advanced forms of this novel approach to disease therapy. However, the challenges are still great, including the development of cell-based products and understanding how they work in the patient's eye. Advances are being made at the molecular, cellular, and tissue levels to alter disease processes and to reduce or eliminate blindness. Efforts must be coordinated from the most basic research to the most clinically oriented projects so that cell-based therapies can become an integrated part of the therapeutic armamentarium to fight corneal blindness. We undoubtedly are progressing along the right path because cell-based therapy for eye diseases is one of the most successful examples of global regenerative medicine.
Collapse
|
14
|
Horiuchi K, Ozeki N, Endo K, Mizuno M, Katano H, Akiyama M, Tsuji K, Koga H, Sekiya I. Thawed cryopreserved synovial mesenchymal stem cells show comparable effects to cultured cells in the inhibition of osteoarthritis progression in rats. Sci Rep 2021; 11:9683. [PMID: 33958682 PMCID: PMC8102597 DOI: 10.1038/s41598-021-89239-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Intra-articular injections of mesenchymal stem cells (MSCs) can inhibit the progression of osteoarthritis (OA). Previous reports have used cultured MSCs, but the ability to use thawed cryopreserved MSC stocks would be highly advantageous. Our purpose was to elucidate whether thawed cryopreserved MSCs show comparable inhibitory effects on OA progression in rats to those obtained with cultured MSCs. Cultured rat synovial MSCs or thawed MSCs were compared for in vitro viability and properties. The inhibitory effect of thawed MSCs on OA progression was evaluated by injecting cryopreservation fluid and thawed MSCs in meniscectomized rats. Cartilage degeneration was assessed using gross finding and histological scores. Cultured MSCs were then injected into one knee and thawed MSCs into the contralateral knee of the same individual to compare their effects. Cultured MSCs and MSCs thawed after cryopreservation had comparable in vitro colony formation and chondrogenic potentials. In the rat OA model, the gross finding and histological scores were significantly lower in the thawed MSC group than in the cryopreservation fluid group at 8 weeks. Finally, cartilage degeneration did not differ significantly after injection of cultured and thawed MSCs. In conclusion, thawed MSCs showed comparable inhibitory effects on OA progression to cultured MSCs.
Collapse
Affiliation(s)
- Kiyotaka Horiuchi
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
15
|
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021; 9:650664. [PMID: 33796536 PMCID: PMC8007911 DOI: 10.3389/fcell.2021.650664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano García-Arranz
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Rosa M Yáñez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Rosario Hervás-Salcedo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Alfonso Cortés
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Fernández-García
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Óscar Quintana-Bustamante
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Juan A Bueren
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Damián García-Olmo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - José C Segovia
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Agustín G Zapata
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
16
|
Dave C, McRae A, Doxtator E, Mei SHJ, Sullivan K, Wolfe D, Champagne J, McIntyre L. Comparison of freshly cultured versus freshly thawed (cryopreserved) mesenchymal stem cells in preclinical in vivo models of inflammation: a protocol for a preclinical systematic review and meta-analysis. Syst Rev 2020; 9:188. [PMID: 32814560 PMCID: PMC7437051 DOI: 10.1186/s13643-020-01437-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/29/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent cells that demonstrate therapeutic potential for the treatment of acute and chronic inflammatory-mediated conditions. Especially for acute conditions, it is critical to have a readily available freshly thawed (cryopreserved) MSC product for rapid administration. Although controversial, some studies suggest that MSCs may lose their functionality with cryopreservation which in turn could render them non-efficacious. OBJECTIVE In controlled preclinical in vivo models of inflammation, to determine if there are differences in surrogate measures of preclinical efficacy between freshly cultured and freshly thawed MSCs METHODS/DESIGN: A systematic search for pre-clinical in vivo inflammatory model studies will compare freshly cultured to freshly thawed MSCs from any source. The primary outcomes will include measures of in vivo preclinical efficacy; secondary outcomes will include measures of in vitro MSC potency. Electronic searches for MEDLINE and EMBASE will be constructed and reviewed by the Peer Review of Electronic Search Strategies (PRESS) process. If applicable, study outcomes will be meta-analyzed using a random effects model. Risk of bias will be assessed by the SYRCLE "Risk of Bias" assessment tool for preclinical in vivo studies. DISCUSSION The results of this systematic review will provide translational scientists, clinical trialists, health regulators, and the clinical and public community with the current pre-clinical evidence base related to the efficacy and potency of freshly cultured versus freshly thawed MSCs, help identify evidence gaps, and guide future related research. SYSTEMATIC REVIEW REGISTRATION Protocol is submitted to PROSPERO for registration (pending confirmation) and will be submitted to Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) for public posting.
Collapse
Affiliation(s)
- Chintan Dave
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Andrea McRae
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Emily Doxtator
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Shirley H J Mei
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Katrina Sullivan
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dianna Wolfe
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Josee Champagne
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lauralyn McIntyre
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada. .,Division of Critical Care, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Chinnadurai R, Forsberg MH, Kink JA, Hematti P, Capitini CM. Use of MSCs and MSC-educated macrophages to mitigate hematopoietic acute radiation syndrome. CURRENT STEM CELL REPORTS 2020; 6:77-85. [PMID: 32944493 DOI: 10.1007/s40778-020-00176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Innovative and minimally toxic treatment approaches are sorely needed for the prevention and treatment of hematopoietic acute radiation syndrome (H-ARS). Cell therapies have been increasingly studied for their potential use as countermeasures for accidental and intentional ionizing radiation exposures which can lead to fatal ARS. Mesenchymal stem/stromal cells (MSCs) are a cell therapy that have shown promising results in preclinical studies of ARS, and are being developed in clinical trials specifically for H-ARS. MSCs, MSC-educated macrophages (MEMs) and MSC-exosome educated macrophages (EEMs) all have the potential to be used as adoptive cell therapies for H-ARS. Here we review how MSCs have been reported to mitigate inflammation from radiation injury while also stimulating hematopoiesis during ARS. Recent findings We discuss emerging work with immune cell subsets educated by MSCs, including MEMs and EEMs, in promoting hematopoiesis in xenogeneic models of ARS. We also discuss the first placental-derived MSC product to enter phase I trials, PLX-R18, and the challenges faced by bringing MSC and other cell therapies into the clinic for treating ARS. Summary Although MSCs, MEMs and EEMs are potential cell therapy candidates in promoting hematopoietic HRS, challenges persist in translational clinical development of these products to the clinic. Whether any of these cellular therapies will be sufficient as stand-alone therapies to mitigate H-ARS or if they will be a bridging therapy that insures survival until a curative allogeneic hematopoietic stem cell transplant can be performed are the key questions that will have to be answered.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - John A Kink
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
18
|
Pinto DS, Ahsan T, Serra J, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. J Cell Physiol 2020; 235:7224-7238. [PMID: 32037550 DOI: 10.1002/jcp.29622] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been widely exploited for the treatment of several conditions due to their intrinsic regenerative and immunomodulatory properties. MSC have demonstrated to be particularly relevant for the treatment of ischemic diseases, where MSC-based therapies can stimulate angiogenesis and induce tissue regeneration. Regardless of the condition targeted, recent analyses of MSC-based clinical trials have demonstrated limited benefits indicating a need to improve the efficacy of this cell product. Preconditioning MSC ex vivo through microenvironment modulation was found to improve MSC survival rate and thus prolong their therapeutic effect. This workstudy aims at enhancing the in vitro angiogenic capacity of a potential MSC-based medicinal product by comparing different sources of MSC and culture conditions. MSC from three different sources (bone marrow [BM], adipose tissue [AT], and umbilical cord matrix [UCM]) were cultured with xenogeneic-/serum-free culture medium under static conditions and their angiogenic potential was studied. Results indicated a higher in vitro angiogenic capacity of UCM MSC, compared with cells derived from BM and AT. Physicochemical preconditioning of UCM MSC through a microcarrier-based culture platform and low oxygen concentration (2% O2 , compared with atmospheric air) increased the in vitro angiogenic potential of the cultured cells. Envisaging the clinical manufacturing of an allogeneic, off-the-shelf MSC-based product, preconditioned UCM MSC maintain the angiogenic gene expression profile upon cryopreservation and delivery processes in the conditions of our study. These results are expected to contribute to the development of MSC-based therapies in the context of angiogenesis.
Collapse
Affiliation(s)
- Diogo S Pinto
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Joana Serra
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
Cryopreservation and transplantation of amputated finger. Cryobiology 2020; 92:235-240. [DOI: 10.1016/j.cryobiol.2020.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022]
|
20
|
Thawed Mesenchymal Stem Cell Product Shows Comparable Immunomodulatory Potency to Cultured Cells In Vitro and in Polymicrobial Septic Animals. Sci Rep 2019; 9:18078. [PMID: 31792313 PMCID: PMC6889371 DOI: 10.1038/s41598-019-54462-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to exert immunomodulatory effects in both acute and chronic diseases. In acute inflammatory conditions like sepsis, cell therapy must be administered within hours of diagnosis, requiring "off-the-shelf" cryopreserved allogeneic cell products. However, their immunomodulatory potency, particularly in abilities to modulate innate immune cells, has not been well documented. Herein we compared the stabilities and functionalities of cultured versus thawed, donor-matched MSCs in modulating immune responses in vitro and in vivo. Cultured and thawed MSCs exhibited similar surface marker profiles and viabilities at 0 hr; however, thawed MSCs exhibited higher levels of apoptotic cells beyond 4 hrs. In vitro potency assays showed no significant difference between the abilities of both MSCs (donor-matched) to suppress proliferation of activated T cells, enhance phagocytosis of monocytes, and restore endothelial permeability after injury. Most importantly, in animals with polymicrobial sepsis, both MSCs significantly improved the phagocytic ability of peritoneal lavage cells, and reduced plasma levels of lactate and selected inflammatory cytokines without significant difference between groups. These results show comparable in vitro and in vivo immunomodulatory efficacy of thawed and fresh MSC products, providing further evidence for the utility of a cryopreserved MSC product for acute inflammatory diseases.
Collapse
|
21
|
Bahsoun S, Coopman K, Akam EC. The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: a systematic review. J Transl Med 2019; 17:397. [PMID: 31783866 PMCID: PMC6883667 DOI: 10.1186/s12967-019-02136-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent an invaluable asset for the field of cell therapy. Human Bone marrow-derived MSCs (hBM-MSCs) are one of the most commonly used cell types in clinical trials. They are currently being studied and tested for the treatment of a wide range of diseases and conditions. The future availability of MSCs therapies to the public will require a robust and reliable delivery process. Cryopreservation represents the gold standard in cell storage and transportation, but its effect on BM-MSCs is still not well established. A systematic review was conducted to evaluate the impact of cryopreservation on BM-MSCs and to attempt to uncover the reasons behind some of the controversial results reported in the literature. Forty-one in vitro studies were analysed, and their results organised according to the cell attributes they assess. It was concluded that cryopreservation does not affect BM-MSCs morphology, surface marker expression, differentiation or proliferation potential. However, mixed results exist regarding the effect on colony forming ability and the effects on viability, attachment and migration, genomic stability and paracrine function are undefined mainly due to the huge variabilities governing the cryopreservation process as a whole and to the lack of standardised assays.
Collapse
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Elizabeth C Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
22
|
Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period. J Transl Med 2019; 17:297. [PMID: 31464641 PMCID: PMC6716839 DOI: 10.1186/s12967-019-2038-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are attractive cell-therapy candidates. Despite their popularity and promise, there is no uniform method of preparation of MSCs. Typically, cells are cryopreserved in liquid nitrogen, thawed, and subsequently administered to a patient with little to no information on their function post-thaw. We hypothesized that a short acclimation period post-thaw will facilitate the recovery of MSC's functional potency. METHODS Human bone-marrow-derived MSCs were divided into 3 groups: FC (fresh cells; from existing culture); TT (thawed + time; acclimated for 24 h post-thaw); and FT (freshly thawed; thawed and immediately used). The 3 groups were analyzed for their cellular and functional potency. RESULTS Phenotypic analysis demonstrated a decrease in CD44 and CD105 surface markers in FT MSCs, with no change in the other two groups. All MSCs were able to differentiate down the osteogenic and chondrogenic lineages. In FT cells, metabolic activity and apoptosis was significantly increased with concomitant decrease in cell proliferation; clonogenic capacity; and key regenerative genes. Following 24-h acclimation, apoptosis was significantly reduced in TT cells with a concomitant upregulation in angiogenic and anti-inflammatory genes. While all MSCs significantly arrested T-cell proliferation, the TT MSCs were significantly more potent. Similarly, although all MSCs maintained their anti-inflammatory properties, IFN-γ secretion was significantly diminished in FT cells. CONCLUSIONS These data demonstrate that FT MSCs maintain their multipotent differentiation capacity, immunomodulatory function, and anti-inflammatory properties; yet, various aspects of cell characteristics and function are deleteriously affected by cryopreservation. Importantly, a 24-h acclimation period 'reactivates' thawed cells to recover their diminished stem-cell function.
Collapse
|
23
|
Caplan H, Olson SD, Kumar A, George M, Prabhakara KS, Wenzel P, Bedi S, Toledano-Furman NE, Triolo F, Kamhieh-Milz J, Moll G, Cox CS. Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Front Immunol 2019; 10:1645. [PMID: 31417542 PMCID: PMC6685059 DOI: 10.3389/fimmu.2019.01645] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
For several decades, multipotent mesenchymal stromal cells (MSCs) have been extensively studied for their therapeutic potential across a wide range of diseases. In the preclinical setting, MSCs demonstrate consistent ability to promote tissue healing, down-regulate excessive inflammation and improve outcomes in animal models. Several proposed mechanisms of action have been posited and demonstrated across an array of in vitro models. However, translation into clinical practice has proven considerably more difficult. A number of prominent well-funded late-phase clinical trials have failed, thus calling out for new efforts to optimize product delivery in the clinical setting. In this review, we discuss novel topics critical to the successful translation of MSCs from pre-clinical to clinical applications. In particular, we focus on the major routes of cell delivery, aspects related to hemocompatibility, and potential safety concerns associated with MSC therapy in the different settings.
Collapse
Affiliation(s)
- Henry Caplan
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akshita Kumar
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mitchell George
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela Wenzel
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Supinder Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Naama E. Toledano-Furman
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Charles S. Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
24
|
Oja S, Kaartinen T, Ahti M, Korhonen M, Laitinen A, Nystedt J. The Utilization of Freezing Steps in Mesenchymal Stromal Cell (MSC) Manufacturing: Potential Impact on Quality and Cell Functionality Attributes. Front Immunol 2019; 10:1627. [PMID: 31379832 PMCID: PMC6646664 DOI: 10.3389/fimmu.2019.01627] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/01/2019] [Indexed: 01/20/2023] Open
Abstract
Some recent reports suggest that cryopreserved and thawed mesenchymal stromal cells (MSCs) may have impaired functional properties as compared to freshly harvested MSCs from continuous cultures. A cryopreservation step in the manufacturing process brings important benefits, since it enables immediate off-the-shelf access to the products and a completion of all quality testing before batch release and administration to the patient. Cryopreservation is also inevitable in MSC banking strategies. In this study, we present the results from the MSC stability testing program of our in-house manufactured clinical-grade allogeneic bone marrow-derived MSC product that is expanded in platelet lysate and frozen in passage 2. The current manufacturing protocol contains only one freezing step and the frozen MSC product is thawed bed-side at the clinic. We can conclude superior viability and cell recovery of the frozen and thawed MSC product utilizing the validated freezing and thawing protocols we have developed. The MSC phenotype and differentiation potential was generally found to be unaltered after thawing, but the thawed cells exhibited a 50% reduced, but not completely abolished, performance in an in vitro immunosuppression assay. The in vitro immunosuppression assay results should, however, be interpreted with caution, since the chosen assay mainly measures one specific immunosuppressive mechanism of MSCs to suppress T-cell proliferation. Since at least two freezing steps are usually necessary in MSC banking strategies, we went on to investigate the impact of repeated freezing on MSC quality attributes. We can conclude that two freezing steps with a preceding cell culture phase of at least one passage before freezing is feasible and does not substantially affect basic cell manufacturing parameters or quality attributes of the final frozen and thawed product. Our results suggest, however, that an exhaustive number of freezing steps (≥4) may induce earlier senescence. In conclusion, our results support the utilization of frozen MSC products and MSC banking strategies, but emphasize the need of always performing detailed studies on also the cryopreserved MSC counterpart and to carefully report the cryopreservation and thawing protocols.
Collapse
Affiliation(s)
- Sofia Oja
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Tanja Kaartinen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Marja Ahti
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Matti Korhonen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Anita Laitinen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Johanna Nystedt
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
25
|
Laroye C, Boufenzer A, Jolly L, Cunat L, Alauzet C, Merlin JL, Yguel C, Bensoussan D, Reppel L, Gibot S. Bone marrow vs Wharton's jelly mesenchymal stem cells in experimental sepsis: a comparative study. Stem Cell Res Ther 2019; 10:192. [PMID: 31248453 PMCID: PMC6598309 DOI: 10.1186/s13287-019-1295-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) is being extensively studied in clinical trials in the setting of various diseases including diabetes, stroke, and progressive multiple sclerosis. The unique immunomodulatory properties of MSCs also point them as a possible therapeutic tool during sepsis and septic shock, a devastating syndrome associated with 30-35% mortality. However, MSCs are not equal regarding their activity, depending on their tissue origin. Here, we aimed at comparing the in vivo properties of MSCs according to their tissue source (bone marrow (BM) versus Wharton's jelly (WJ)) in a murine cecal ligation and puncture (CLP) model of sepsis that mimics a human peritonitis. We hypothesized that MSC properties may vary depending on their tissue source in the setting of sepsis. METHODS CLP, adult, male, C57BL/6 mice were randomized in 3 groups receiving respectively 0.25 × 106 BM-MSCs, 0.25 × 106 WJ-MSCs, or 150 μL phosphate-buffered saline (PBS) intravenously 24 h after the CLP procedure. RESULTS We observed that both types of MSCs regulated leukocyte trafficking and reduced organ dysfunction, while only WJ-MSCs were able to improve bacterial clearance and survival. CONCLUSION This study highlights the importance to determine the most appropriate source of MSCs for a given therapeutic indication and suggests a better profile for WJ-MSCs during sepsis.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | | | - Lucie Jolly
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- INOTREM, 54500 Vandoeuvre-lès-Nancy, France
| | - Lisiane Cunat
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 vandoeuvre-lès-Nancy, France
| | - Corentine Alauzet
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, 54000 Nancy, France
- Service de Biopathologie - Unité de Biologie des Tumeurs, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Clémence Yguel
- CHRU de Nancy, laboratoire anatomie et cytologie pathologiques, 54500 Vandoeuvre-lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Sébastien Gibot
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| |
Collapse
|
26
|
Cui LL, Golubczyk D, Tolppanen AM, Boltze J, Jolkkonen J. Cell therapy for ischemic stroke: Are differences in preclinical and clinical study design responsible for the translational loss of efficacy? Ann Neurol 2019; 86:5-16. [PMID: 31020699 DOI: 10.1002/ana.25493] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Li-Li Cui
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | - Dominika Golubczyk
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jukka Jolkkonen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
27
|
Calonge M, Pérez I, Galindo S, Nieto-Miguel T, López-Paniagua M, Fernández I, Alberca M, García-Sancho J, Sánchez A, Herreras JM. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Transl Res 2019; 206:18-40. [PMID: 30578758 DOI: 10.1016/j.trsl.2018.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/18/2018] [Accepted: 11/18/2018] [Indexed: 01/02/2023]
Abstract
Ocular stem cell transplantation derived from either autologous or allogeneic donor corneoscleral junction is a functional cell therapy to manage extensive and/or severe limbal stem cell deficiencies that lead to corneal epithelial failure. Mesenchymal stem cells have been properly tested in animal models of this ophthalmic pathology, but never in human eyes despite their potential advantages. We conducted a 6- to 12-month proof-of-concept, randomized, and double-masked pilot trial to test whether allogeneic bone marrow-derived mesenchymal stem cell transplantation (MSCT], n = 17) was as safe and as equally efficient as allogeneic cultivated limbal epithelial transplantation (CLET), (n = 11) to improve corneal epithelial damage due to limbal stem cell deficiency. Primary endpoints demanded combination of symptoms, signs, and the objective improvement of the epithelial phenotype in central cornea by in vivo confocal microscopy. This proof-of-concept trial showed that MSCT was as safe and efficacious as CLET. Global success at 6-12 months was 72.7%-77.8% for CLET cases and 76.5%-85.7% for MSCT cases (not significant differences). Central corneal epithelial phenotype improved in 71.4% and 66.7% of MSCT and CLET cases, respectively at 12 months (P = 1.000). There were no adverse events related to cell products. This trial suggests first evidence that MSCT facilitated improvement of a diseased corneal epithelium due to lack of its stem cells as efficiently as CLET. Consequently, not only CLET but also MSCT deserves more preclinical investigational resources before the favorable results of this proof-of-concept trial could be transformed into the larger numbers of the multicenter trials that would provide stronger evidence. (ClinicalTrials.gov number, NCT01562002.).
Collapse
Affiliation(s)
- Margarita Calonge
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Inmaculada Pérez
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain.
| | - Sara Galindo
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Teresa Nieto-Miguel
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Marina López-Paniagua
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Itziar Fernández
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| | - Mercedes Alberca
- IBGM (Institute of Molecular Biology and Genetics), University of Valladolid and National Research Council (CSIC), and University Scientific Park, Valladolid, Spain.
| | - Javier García-Sancho
- IBGM (Institute of Molecular Biology and Genetics), University of Valladolid and National Research Council (CSIC), and University Scientific Park, Valladolid, Spain.
| | - Ana Sánchez
- IBGM (Institute of Molecular Biology and Genetics), University of Valladolid and National Research Council (CSIC), and University Scientific Park, Valladolid, Spain.
| | - José M Herreras
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, Valladolid, Spain; CIBER-BBN (Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine), Carlos III National Institute of Health, Valladolid, Spain.
| |
Collapse
|
28
|
Bieback K, Kuçi S, Schäfer R. Production and quality testing of multipotent mesenchymal stromal cell therapeutics for clinical use. Transfusion 2019; 59:2164-2173. [DOI: 10.1111/trf.15252] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty MannheimGerman Red Cross Blood Donor Service Baden‐Württemberg‐Hessen gGmbH, Heidelberg University Mannheim Germany
- FlowCore Mannheim, Medical Faculty MannheimHeidelberg University Germany
| | - Selim Kuçi
- Department for Children and Adolescents, Division for Stem Cell Transplantation and ImmunologyUniversity Hospital Frankfurt Frankfurt am Main Germany
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden‐Württemberg‐Hessen gGmbHGoethe University Hospital Frankfurt am Main Germany
| |
Collapse
|
29
|
Kumar A, Xu Y, Yang E, Du Y. Stemness and Regenerative Potential of Corneal Stromal Stem Cells and Their Secretome After Long-Term Storage: Implications for Ocular Regeneration. Invest Ophthalmol Vis Sci 2019; 59:3728-3738. [PMID: 30046814 PMCID: PMC6059729 DOI: 10.1167/iovs.18-23824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To assess the stemness and regenerative potential of cryopreserved corneal stromal stem cells (cryo-CSSCs) after long-term storage. We also used the secretome from these cells to observe the effect on wound-healing capacity of corneal fibroblasts and on the expression of fibrotic markers during wound healing. Methods CSSCs were obtained from three donors and stored in liquid nitrogen for approximately 10 years. Post thaw, cryo-CSSCs were characterized for stemness using phenotypic and genotypic markers along with colony-forming efficiency and three-dimensional spheroid formation. Multilineage differentiation was observed by differentiation into osteocytes, adipocytes, neural cells, and keratocytes. Secretome was harvested by culturing cryo-CSSCs in log phase. Wound-healing capacity was observed by live-cell time-lapse microscopy. Statistical analysis was done using 1-way ANOVA and Tukey posttest. Results CSSCs displayed good viability post thaw and showed >90% expression of stem cell markers CD90, CD73, CD105, STRO1, and CD166. cryo-CSSCs also expressed stem cell genes OCT4, KLF4, and ABCG2, and could also form colonies and three-dimensional spheroids. Multipotency assessment showed that all three cryo-CSSCs could differentiate into osteocytes, adipocytes, neural cells, as shown by β-III tubulin and neurofilament antibody staining and corneal keratocytes as observed by staining for Kera C, J19, and collagen V antibodies. The secretome derived from these three populations could promote the wound healing of corneal fibroblasts and reduce the expression of fibrotic markers SPARC and fibronectin. Conclusions CSSCs maintained their stemness and multipotency after long-term storage, and secretome derived from these cells can be of paramount importance for corneal regeneration and prevention of fibrosis.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Xu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Enzhi Yang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Shanghai Oriental Hospital, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Laroye C, Lemarié J, Boufenzer A, Labroca P, Cunat L, Alauzet C, Groubatch F, Cailac C, Jolly L, Bensoussan D, Reppel L, Gibot S. Clinical-grade mesenchymal stem cells derived from umbilical cord improve septic shock in pigs. Intensive Care Med Exp 2018; 6:24. [PMID: 30091119 PMCID: PMC6082751 DOI: 10.1186/s40635-018-0194-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Septic shock is the leading cause of death in intensive care units. The pathophysiological complexity of this syndrome contributes to an absence of specific treatment. Several preclinical studies in murine models of septic shock have shown improvements to organ injury and survival after administration of mesenchymal stem cells (MSCs). To better mimic a clinical approach in humans, we investigated the impact of randomized controlled double-blind administration of clinical-grade umbilical cord-derived MSCs to a relevant pig model of septic shock. METHODS Septic shock was induced by fecal peritonitis in 12 male domestic pigs. Animals were resuscitated by an experienced intensivist including fluid administration and vasopressors. Four hours after the induction of peritonitis, pigs were randomized to receive intravenous injection of thawed umbilical cord-derived MSCs (UCMSC) (1 × 106 UCMSCs/kg diluted in 75 mL hydroxyethyl starch (HES), (n = 6) or placebo (HES alone, n = 6). Researchers were double-blinded to the treatment administered. Hemodynamic parameters were continuously recorded. Gas exchange, acid-base status, organ function, and plasma cytokine concentrations were assessed at regular intervals until 24 h after the onset of peritonitis when animals were sacrificed under anesthesia. RESULTS Peritonitis induced profound hypotension, hyperlactatemia, and multiple organ failure. These disorders were significantly attenuated when animals were treated with UCMSCs. In particular, cardiovascular failure was attenuated, as attested by a better mean arterial pressure and reduced lactatemia, despite lower norepinephrine requirements. As such, UCMSCs improved survival in this very severe model (60% survival vs. 0% at 24 h). CONCLUSION UCMSCs administration is beneficial in this pig model of polymicrobial septic shock.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Jérémie Lemarié
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| | | | - Pierre Labroca
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| | - Lisiane Cunat
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 Vandoeuvre-lès-Nancy, France
| | - Corentine Alauzet
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 Vandoeuvre-lès-Nancy, France
| | - Frédérique Groubatch
- Université de Lorraine, 54000 Nancy, France
- Ecole de chirurgie, 54500 Vandoeuvre-lès-Nancy, France
| | - Clémence Cailac
- CHRU de Nancy, laboratoire anatomie et cytologie pathologiques, 54000 Nancy, France
| | - Lucie Jolly
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- INOTREM, 54500 Vandoeuvre-lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Sébastien Gibot
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| |
Collapse
|
31
|
Chabot D, Lewin A, Loubaki L, Bazin R. Functional impairment of MSC induced by transient warming events: Correlation with loss of adhesion and altered cell size. Cytotherapy 2018; 20:990-1000. [PMID: 30093326 DOI: 10.1016/j.jcyt.2018.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND We recently showed that transient warming effects decreased the functional and adhesion properties of mesenchymal stromal cells (MSC) while post-thaw viability remained high. In an attempt to better predict functional impairment of cryopreserved MSC, we further analysed the correlation between viability, immunosuppressive activity and adhesion of cells exposed or not to warming events. METHODS MSC prepared from six umbilical cords were frozen to -130°C and immediately transferred in a dry ice container or exposed to room temperature for 2 to 10 min (warming events) prior to storage in liquid nitrogen. Viability, functionality (inhibition of T-cell proliferation), adhesion and expression of various integrins were evaluated. RESULTS The monotonic loss of functional activity with time was proportional to the length of warming events to which MSC were subjected and correlated with the monotonic loss of adhesion capacity. In contrast, post-thaw viability assessment did not predict functional impairment. Interestingly, flow cytometry analyses revealed the emergence of a FSClow population present in the viable cell fraction of freshly thawed MSC, which displayed poor adhesion capacity and expressed low levels of integrin β5. The prevalence of this FSClow population increased with the length of warming events and correlated with impaired functional and adhesion properties. DISCUSSION Our results reveal that loss of functional activity (4-day test) induced by transient warming events could be predicted by evaluating adhesion (2-hr test) or FSC profile (10-min test) of MSC immediately post-thaw. These observations could lead to the development of surrogate tests for rapidly assessing the functional quality of cryopreserved MSC.
Collapse
Affiliation(s)
- Dominique Chabot
- Medical Affairs and Innovation, Héma-Québec, Québec (Qc), Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec (Qc), Canada
| | - Antoine Lewin
- Medical Affairs and Innovation, Héma-Québec, Québec (Qc), Canada; Faculty of Medicine and Health Science, University of Sherbrooke, Sherbrooke (Qc) Canada
| | - Lionel Loubaki
- Medical Affairs and Innovation, Héma-Québec, Québec (Qc), Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec (Qc), Canada
| | - RenÉe Bazin
- Medical Affairs and Innovation, Héma-Québec, Québec (Qc), Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec (Qc), Canada.
| |
Collapse
|
32
|
Wang L, Zhu CY, Ma DX, Gu ZY, Xu CC, Wang FY, Chen JG, Liu CJ, Guan LX, Gao R, Gao Z, Fang S, Zhuo DJ, Liu SF, Gao CJ. Efficacy and safety of mesenchymal stromal cells for the prophylaxis of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials. Ann Hematol 2018; 97:1941-1950. [PMID: 29947972 DOI: 10.1007/s00277-018-3384-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
A meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the efficacy and safety of mesenchymal stromal cells (MSCs) for the prophylaxis of chronic graft-versus-host disease (cGVHD) in patients with hematological malignancies undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Six studies involving 365 patients were included. The pooled results showed that MSCs significantly reduced the incidence of cGVHD (risk ratio [RR] 0.63, 95% confidence interval [CI] 0.46 to 0.86, P = 0.004). Favorable prophylactic effects of MSCs on cGVHD were observed with umbilical cord-derived, high-dose, and late-infusion MSCs, while bone marrow-derived, low-dose, and coinfused MSCs did not confer beneficial prophylactic effects. In addition, MSC infusion did not increase the risk of primary disease relapse and infection (RR 1.02, 95% CI 0.70 to 1.50, P = 0.913; RR 0.89, 95% CI 0.44 to 1.81, P = 0.752; respectively). Moreover, there was an apparent trend toward increased overall survival (OS) in the MSC group compared with that in the control group (RR 1.13, 95% CI 0.98 to 1.29, P = 0.084). In conclusion, this meta-analysis demonstrated that MSC infusion is an effective and safe prophylactic strategy for cGVHD in patients with hematological malignancies undergoing allo-HSCT.
Collapse
Affiliation(s)
- Li Wang
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China.,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Cheng-Ying Zhu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - De-Xun Ma
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Zhen-Yang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chang-Chun Xu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Fei-Yan Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Ji-Gang Chen
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Cheng-Jun Liu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Li-Xun Guan
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Rui Gao
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Zhe Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Shu Fang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Du-Jun Zhuo
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Shu-Feng Liu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China.
| | - Chun-Ji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
33
|
Yong KW, Choi JR, Dolbashid AS, Wan Safwani WKZ. Biosafety and bioefficacy assessment of human mesenchymal stem cells: what do we know so far? Regen Med 2018; 13:219-232. [PMID: 29509072 DOI: 10.2217/rme-2017-0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
An outstanding amount of resources has been used in research on manipulation of human stem cells, especially mesenchymal stem cells (MSCs), for various clinical applications. However, human MSCs have not been fully utilized in clinical applications due to restrictions with regard to their certain biosafety and bioefficacy concerns, for example, genetic abnormality, tumor formation, induction of host immune response and failure of homing and engraftment. This review summarizes the biosafety and bioefficacy assessment of human MSCs in terms of genetic stability, tumorigenicity, immunogenicity, homing and engraftment. The strategies used to reduce the biosafety concerns and improve the bioefficacy of human MSCs are highlighted. In addition, the approaches that can be implemented to improve their biosafety and bioefficacy assessment are briefly discussed.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Asdani Saifullah Dolbashid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
34
|
Chinnadurai R, Rajan D, Qayed M, Arafat D, Garcia M, Liu Y, Kugathasan S, Anderson LJ, Gibson G, Galipeau J. Potency Analysis of Mesenchymal Stromal Cells Using a Combinatorial Assay Matrix Approach. Cell Rep 2018; 22:2504-2517. [PMID: 29490284 PMCID: PMC5855117 DOI: 10.1016/j.celrep.2018.02.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/11/2017] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
Assays that can characterize MSC immune potency need to be identified for use in advanced clinical trials. MSCs possess a number of putative regenerative and immunomodulatory properties, and an assay matrix approach may best capture involved effector pathways. We have tested two assay systems to measure the potency of MSCs derived from human subjects: MSC secretome analysis and a quantitative RNA-based array for genes specific to immunomodulatory and homing properties of MSCs. Secretome analysis identified a unique cytokine signature that is upregulated by MSCs or downregulated in responder PBMCs and correlated with T cell suppression. Use of interferon-γ as a surrogate for the action of activated PBMCs on MSCs served as an alternative for the use of human PBMCs as responder cells in a potency assay. Our approach and results define and simplify the multifunctional or matrix responses of MSCs and may serve as a platform for robust potency analysis.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Devi Rajan
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Muna Qayed
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Dalia Arafat
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Yifei Liu
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Subra Kugathasan
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Larry J Anderson
- Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Greg Gibson
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin - Madison, Madison, WI 53705, USA.
| |
Collapse
|
35
|
McIntyre LA, Stewart DJ, Mei SHJ, Courtman D, Watpool I, Granton J, Marshall J, dos Santos C, Walley KR, Winston BW, Schlosser K, Fergusson DA. Cellular Immunotherapy for Septic Shock. A Phase I Clinical Trial. Am J Respir Crit Care Med 2018; 197:337-347. [DOI: 10.1164/rccm.201705-1006oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Lauralyn A. McIntyre
- Division of Critical Care, Department of Medicine
- Department of Epidemiology and Community Medicine, and
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Duncan J. Stewart
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Shirley H. J. Mei
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David Courtman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Irene Watpool
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - John Marshall
- Department of Surgery and Critical Care Medicine, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Claudia dos Santos
- Department of Surgery and Critical Care Medicine, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Keith R. Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Brent W. Winston
- Department of Critical Care Medicine, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kenny Schlosser
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Department of Epidemiology and Community Medicine, and
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Arav A, Friedman O, Natan Y, Gur E, Shani N. Rat Hindlimb Cryopreservation and Transplantation: A Step Toward "Organ Banking". Am J Transplant 2017; 17:2820-2828. [PMID: 28422434 DOI: 10.1111/ajt.14320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
Abstract
In 2016, over 5 million reconstructive procedures were performed in the United States. The recent successes of clinical vascularized composite allotransplantations, hand and face transplantations included, established the tremendous potential of these life-enhancing reconstructions. Nevertheless, due to limited availability and lifelong immunosuppression, application is limited. Long-term banking of composite transplants may increase the availability of esthetically compatible parts with partial or complete HLA matching, reducing the risk of rejection and the immunosuppressive burden. The study purpose was to develop efficient protocols for the cryopreservation and transplantation of a complete rodent limb. Directional freezing is a method in which a sample is cooled at a constant-velocity linear temperature gradient, enabling precise control of the process and ice crystal formation. Vitrification is an alternative cryopreservation method in which the sample solidifies without the formation of ice crystals. Testing both methods on a rat hindlimb composite tissue transplantation model, we found reliable, reproducible, and stable ways to preserve composite tissue. We believe that with further research and development, cryopreservation may lead to composite tissue "banks." This may lead to a paradigm shift from few and far apart emergent surgeries to wide-scale, well-planned, and better-controlled elective surgeries.
Collapse
Affiliation(s)
- A Arav
- FertileSafe Ltd, Nes-Ziona, Israel
| | - O Friedman
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Y Natan
- FertileSafe Ltd, Nes-Ziona, Israel
| | - E Gur
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - N Shani
- The Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Laroye C, Gibot S, Reppel L, Bensoussan D. Concise Review: Mesenchymal Stromal/Stem Cells: A New Treatment for Sepsis and Septic Shock? Stem Cells 2017; 35:2331-2339. [PMID: 28856759 DOI: 10.1002/stem.2695] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
Sepsis and septic shock are the leading cause of admission and mortality in non-coronary intensive care units. Currently, however, no specific treatments are available for this syndrome. Due to the failure of conventional treatments in recent years, research is focusing on innovative therapeutic agents, including cell therapy. One particular type of cell, mesenchymal stromal/stem cells (MSCs), has raised hopes for the treatment of sepsis. Indeed, their immunomodulatory properties, antimicrobial activity and capacity of protection against organ failure confer MSCs with a major advantage to treat the immune and inflammatory dysfunctions associated with sepsis and septic shock. After a brief description of the pathophysiology of sepsis and septic shock, the latest advances in the use of MSCs to treat sepsis will be presented. Stem Cells 2017;35:2331-2339.
Collapse
Affiliation(s)
- Caroline Laroye
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,INSERM, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Sébastien Gibot
- INSERM, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France.,CHRU Nancy, Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Loïc Reppel
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| |
Collapse
|
38
|
Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:77-98. [PMID: 27837556 DOI: 10.1007/978-3-319-45457-3_7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSCs) harbor great therapeutic potential for numerous diseases. From early clinical trials, success and failure analysis, bench-to-bedside and back-to-bench approaches, there has been a great gain in knowledge, still leaving a number of questions to be answered regarding optimal manufacturing and quality of MSCs for clinical application. For treatment of many acute indications, cryobanking may remain a prerequisite, but great uncertainty exists considering the therapeutic value of freshly thawed (thawed) and continuously cultured (fresh) MSCs. The field has seen an explosion of new literature lately, outlining the relevance of the topic. MSCs appear to have compromised immunomodulatory activity directly after thawing for clinical application. This may provide a possible explanation for failure of early clinical trials. It is not clear if and how quickly MSCs recover their full therapeutic activity, and if the "cryo stun effect" is relevant for clinical success. Here, we will share our latest insights into the relevance of these observations for clinical practice that will be discussed in the context of the published literature. We argue that the differences of fresh and thawed MSCs are limited but significant. A key issue in evaluating potency differences is the time point of analysis after thawing. To date, prospective double-blinded randomized clinical studies to evaluate potency of both products are lacking, although recent progress was made with preclinical assessment. We suggest refocusing therapeutic MSC development on potency and safety assays with close resemblance of the clinical reality.
Collapse
|
39
|
Yong KW, Safwani WKZW, Xu F, Zhang X, Choi JR, Abas WABW, Omar SZ, Azmi MAN, Chua KH, Pingguan-Murphy B. Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells. J Tissue Eng Regen Med 2017; 11:2217-2226. [PMID: 26756982 DOI: 10.1002/term.2120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022]
Abstract
Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off-the-shelf use in clinical applications, e.g. cell-based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose-derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long-term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long-term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long-term cryopreserved hASCs for future clinical applications. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
| | | | - Feng Xu
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, People's Republic of China
| | - Xiaohui Zhang
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, People's Republic of China
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mat Adenan Noor Azmi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Avercenc-Léger L, Guerci P, Virion JM, Cauchois G, Hupont S, Rahouadj R, Magdalou J, Stoltz JF, Bensoussan D, Huselstein C, Reppel L. Umbilical cord-derived mesenchymal stromal cells: predictive obstetric factors for cell proliferation and chondrogenic differentiation. Stem Cell Res Ther 2017; 8:161. [PMID: 28676126 PMCID: PMC5497358 DOI: 10.1186/s13287-017-0609-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/09/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023] Open
Abstract
Background The umbilical cord is becoming a notable alternative to bone marrow (BM) as a source of mesenchymal stromal cells (MSC). Although age-dependent variations in BM-MSC are well described, less data are available for MSC isolated from Wharton’s jelly (WJ-MSC). We initiated a study to identify whether obstetric factors influenced MSC properties. We aimed to evaluate the correlation between a large number of obstetric factors collected during pregnancy and until peripartum (related to the mother, the labor and delivery, and the newborn) with WJ-MSC proliferation and chondrogenic differentiation parameters. Methods Correlations were made between 27 obstetric factors and 8 biological indicators including doubling time at passage (P)1 and P2, the percentage of proteoglycans and collagens, and the relative transcriptional expression of Sox-9, aggrecans, and total type 2 collagen (Coll2T). Results Amongst the obstetric factors considered, birth weight, the number of amenorrhea weeks, placental weight, normal pregnancy, and the absence of preeclampsia were identified as relevant factors for cell expansion, using multivariate linear regression analysis. Since all the above parameters are related to term, we concluded that WJ-MSC from healthy, full-term infants exhibit greater proliferation capacity. As for chondrogenesis, we also observed that obstetric factors influencing proliferation seemed beneficial, with no negative impact on MSC differentiation. Conclusions Awareness of obstetric factors influencing the proliferation and/or differentiation of WJ-MSC will make it possible to define criteria for collecting optimal umbilical cords with the aim of decreasing the variability of WJ-MSC batches produced for clinical use in cell and tissue engineering. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0609-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Léonore Avercenc-Léger
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Philippe Guerci
- CHRU de Nancy, Maternité Régionale Universitaire, Département d'Anesthésie-Réanimation, 54000, Nancy, France
| | - Jean-Marc Virion
- CHRU de Nancy, Epidémiologie et Evaluation Cliniques, 54500, Vandœuvre-lès-Nancy, France
| | - Ghislaine Cauchois
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Sébastien Hupont
- FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Rachid Rahouadj
- Université de Lorraine, 54000, Nancy, France.,UMR 7563 CNRS-Université de Lorraine, LEMTA, 54500, Vandœuvre-lès-Nancy, France
| | - Jacques Magdalou
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Jean-François Stoltz
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,CHRU de Nancy, Unité de Thérapie Cellulaire¸ Banque de Tissus, 54500, Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Danièle Bensoussan
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,CHRU de Nancy, Unité de Thérapie Cellulaire¸ Banque de Tissus, 54500, Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Céline Huselstein
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France.,Université de Lorraine, 54000, Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France
| | - Loïc Reppel
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l'Université de Lorraine, Campus biologie-santé, Faculté de Médecine, Avenue de la Forêt de Haye, BP 184, 54500, Vandoeuvre-Les-nancy, France. .,CHRU de Nancy, Unité de Thérapie Cellulaire¸ Banque de Tissus, 54500, Vandœuvre-lès-Nancy, France. .,Université de Lorraine, 54000, Nancy, France. .,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, 54500, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
41
|
Safety and Tolerance of Donor-Derived Mesenchymal Stem Cells in Pediatric Living-Donor Liver Transplantation: The MYSTEP1 Study. Stem Cells Int 2017; 2017:2352954. [PMID: 28740511 PMCID: PMC5504958 DOI: 10.1155/2017/2352954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Background Calcineurin inhibitors (CNI) have significantly improved patient and graft survival in pediatric liver transplantation (pLT). However, CNI toxicity leads to significant morbidity. Moreover, CNIs cannot prevent long-term allograft injury. Mesenchymal stem (stromal) cells (MSC) have potent immunomodulatory properties, which may promote allograft tolerance and ameliorate toxicity of high-dose CNI. The MYSTEP1 trial aims to investigate safety and feasibility of donor-derived MSCs in pLT. Methods/Design 7 to 10 children undergoing living-donor pLT will be included in this open-label, prospective pilot trial. A dose of 1 × 106 MSCs/kg body weight will be given at two time points: first by intraportal infusion intraoperatively and second by intravenous infusion on postoperative day 2. In addition, participants will receive standard immunosuppressive treatment. Our primary objective is to assess the safety of intraportal and intravenous MSC infusion in pLT recipients. Our secondary objective is to evaluate efficacy of MSC treatment as measured by the individual need for immunosuppression and the incidence of biopsy-proven acute rejection. We will perform detailed immune monitoring to investigate immunomodulatory effects. Discussion Our study will provide information on the safety of donor-derived MSCs in pediatric living-donor liver transplantation and their effect on immunomodulation and graft survival.
Collapse
|
42
|
Kaplan A, Sackett K, Sumstad D, Kadidlo D, McKenna DH. Impact of starting material (fresh versus cryopreserved marrow) on mesenchymal stem cell culture. Transfusion 2017; 57:2216-2219. [PMID: 28653392 DOI: 10.1111/trf.14192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) continue to be investigated in multiple clinical trials as potential therapy for different disorders. There is ongoing controversy surrounding the clinical use of cryopreserved versus fresh MSCs. However, little is known about how cryopreservation affects marrow as starting material. The growth kinetics of MSC cultures derived from fresh versus cryopreserved marrow were compared. STUDY DESIGN AND METHODS Data were reviewed on the growth kinetics of MSCs derived from fresh versus cryopreserved marrow of nine donors. Marrow harvested from each donor was separated into four aliquots (one fresh and three cryopreserved for culture). Data on the date of mononuclear cell cryopreservation/thaw, MSC counts at Passages 1 and 2, MSC doubling, MSC fold expansion, viability (of mononuclear cells and final MSCs), and on flow cytometry markers of mononuclear cells and final MSCs were analyzed for the fresh and cryopreserved marrow groups. RESULTS In total, 21 MSC lots (seven fresh and 14 cryopreserved) were obtained. The average age of cryopreserved mononuclear cell product was 295 days (range, 18-1241 days). There were no significant differences between MSC numbers at Passage 1 (p = 0.1), final MSC numbers (p = 0.5), MSC doubling (p = 0.7), or MSC fold expansion (p = 0.7). A significant difference was observed in viability by flow cytometry for both mononuclear cells (p = 0.002) and final MSCs (p = 0.009), with higher viability in the fresh marrow group. CONCLUSION This study demonstrates that MSCs derived from cryopreserved marrow have the same growth characteristics as fresh marrow-derived MSCs. Further studies are needed to explore potential differences in clinical efficacy.
Collapse
Affiliation(s)
- Alesia Kaplan
- Department of Pathology, University of Pittsburgh School of Medicine.,Institute for Transfusion Medicine, Pittsburgh, Pennsylvania
| | - Katie Sackett
- Department of Laboratory Medicine and Pathology, , Transfusion Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Darin Sumstad
- Clinical Cell Therapy Laboratory, University of Minnesota Medical Center, Molecular and Cellular Therapeutics, University of Minnesota, Minneapolis/St. Paul, Minnesota
| | - Dianne Kadidlo
- Clinical Cell Therapy Laboratory, University of Minnesota Medical Center, Molecular and Cellular Therapeutics, University of Minnesota, Minneapolis/St. Paul, Minnesota
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, , Transfusion Medicine, University of Minnesota, Minneapolis, Minnesota.,Clinical Cell Therapy Laboratory, University of Minnesota Medical Center, Molecular and Cellular Therapeutics, University of Minnesota, Minneapolis/St. Paul, Minnesota
| |
Collapse
|
43
|
Chabot D, Tremblay T, Paré I, Bazin R, Loubaki L. Transient warming events occurring after freezing impairs umbilical cord-derived mesenchymal stromal cells functionality. Cytotherapy 2017; 19:978-989. [PMID: 28606762 DOI: 10.1016/j.jcyt.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have shown promising results for the treatment of refractory acute graft-versus-host disease. While safety of MSC infusion has been demonstrated, the use of cryopreserved MSCs in clinical trials has raised concerns regarding the retention of their functional activity. This has led to the recommendation by experts in the field to use freshly harvested MSCs, even though this approach is much less practical from a logistic point of view. In the present study, we revisited the impact of cryopreservation on MSC functionality and addressed the possibility that warming events on frozen cells rather than cryopreservation per se could impact MSC functionality. METHODS Following controlled-rate freezing to -130°C, umbilical cord-derived MSCs were left at room temperature (RT) for 2-10 min or on dry ice for 10 min, before being transferred into liquid nitrogen (LqN2). MSCs of each group were subsequently tested (viability, functionality and cellular damage) and compared with their freshly harvested counterparts. RESULTS We demonstrated that freshly harvested MSCs as well as cryopreserved MSCs that were left on dry ice following step-down freezing have comparable viability, functionality and integrity. In contrast, cryopreserved MSCs that were left at RT before being transferred into LqN2 were functionally impaired and showed cellular damage upon thawing even though they exhibited high viability. DISCUSSION Warming events after freezing and not cryopreservation per se significantly impair MSC functionality, indicating that cryopreserved MSCs can be an advantageous alternative to freshly harvested cells for therapeutic purposes.
Collapse
Affiliation(s)
- Dominique Chabot
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec City, QC, Canada
| | - Tony Tremblay
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada
| | - Isabelle Paré
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada
| | - Renée Bazin
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec City, QC, Canada
| | - Lionel Loubaki
- Department of Research and Development, Héma-Québec, Québec City, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec City, QC, Canada.
| |
Collapse
|
44
|
Fujii S, Miura Y, Iwasa M, Yoshioka S, Fujishiro A, Sugino N, Kaneko H, Nakagawa Y, Hirai H, Takaori-Kondo A, Ichinohe T, Maekawa T. Isolation of mesenchymal stromal/stem cells from cryopreserved umbilical cord blood cells. J Clin Exp Hematop 2017; 57:1-8. [PMID: 28420812 DOI: 10.3960/jslrt.16019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Umbilical cord blood (UCB) has advantages over other tissues because it can be obtained without an invasive procedure and complex processing. We explored the availability of cryopreserved UCB cells as a source of mesenchymal stromal/stem cells (MSCs). MSCs were successfully isolated from six of 30 UCB units (median volume, 34.0 mL; median nucleated cell number, 4.4×108) that were processed and cryopreserved using CP-1/human serum albumin. This isolation rate was lower than that (57%) from non-cryopreserved UCB cells. The number of nucleated cells before and after hydroxyethyl starch separation, UCB unit volume, and cell viability after thawing did not significantly differ between UCB units from which MSCs were successfully isolated and those from which they were not. When CryoSure-DEX40 was used as a cryoprotectant, MSCs were isolated from two of ten UCB units. Logistic regression analysis demonstrated that the cryopreservation method was not significantly associated with the success of MSC isolation. The isolated MSCs had a similar morphology and surface marker expression profile as bone marrow-derived MSCs and were able to differentiate into osteogenic, adipogenic, and chondrogenic cells. In summary, MSCs can be isolated from cryopreserved UCB cells. However, the cryopreservation process reduces the isolation rate; therefore, freshly donated UCB cells are preferable for the isolation of MSCs.
Collapse
Affiliation(s)
- Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital.,Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital
| | - Masaki Iwasa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital.,Division of Gastroenterology and Hematology, Shiga University of Medical Science
| | - Satoshi Yoshioka
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital
| | - Aya Fujishiro
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital.,Division of Gastroenterology and Hematology, Shiga University of Medical Science
| | - Noriko Sugino
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital.,Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University
| | | | - Yoko Nakagawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital
| | - Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital
| | | | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital
| |
Collapse
|
45
|
Pollock K, Samsonraj RM, Dudakovic A, Thaler R, Stumbras A, McKenna DH, Dosa PI, van Wijnen AJ, Hubel A. Improved Post-Thaw Function and Epigenetic Changes in Mesenchymal Stromal Cells Cryopreserved Using Multicomponent Osmolyte Solutions. Stem Cells Dev 2017; 26:828-842. [PMID: 28178884 DOI: 10.1089/scd.2016.0347] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current methods for freezing mesenchymal stromal cells (MSCs) result in poor post-thaw function, which limits the clinical utility of these cells. This investigation develops a novel approach to preserve MSCs using combinations of sugars, sugar alcohols, and small-molecule additives. MSCs frozen using these solutions exhibit improved post-thaw attachment and a more normal alignment of the actin cytoskeleton compared to cells exposed to dimethylsulfoxide (DMSO). Osteogenic and chondrogenic differentiation assays show that cells retain their mesenchymal lineage properties. Genomic analysis indicates that the different freezing media evaluated have different effects on the levels of DNA hydroxymethylation, which are a principal epigenetic mark and a key step in the demethylation of CpG doublets. RNA sequencing and quantitative real time-polymerase chain reaction validation demonstrate that transcripts for distinct classes of cytoprotective genes, as well as genes related to extracellular matrix structure and growth factor/receptor signaling are upregulated in experimental freezing solutions compared to DMSO. For example, the osmotic regulator galanin, the antiapoptotic marker B cell lymphoma 2, as well as the cell surface adhesion molecules CD106 (vascular cell adhesion molecule 1) and CD54 (intracellular adhesion molecule 1) are all elevated in DMSO-free solutions. These studies validate the concept that DMSO-free solutions improve post-thaw biological functions and are viable alternatives for freezing MSCs. These novel solutions promote expression of cytoprotective genes, modulate the CpG epigenome, and retain the differentiation ability of MSCs, suggesting that osmolyte-based freezing solutions may provide a new paradigm for therapeutic cell preservation.
Collapse
Affiliation(s)
- Kathryn Pollock
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | | | - Amel Dudakovic
- 2 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Roman Thaler
- 2 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Aron Stumbras
- 3 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota
| | - David H McKenna
- 4 Department of Laboratory Medicine and Pathology, University of Minnesota , Minneapolis, Minnesota
| | - Peter I Dosa
- 5 Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota
| | | | - Allison Hubel
- 6 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
46
|
Pogozhykh D, Pogozhykh O, Prokopyuk V, Kuleshova L, Goltsev A, Blasczyk R, Mueller T. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Res Ther 2017; 8:66. [PMID: 28284229 PMCID: PMC5346212 DOI: 10.1186/s13287-017-0512-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/11/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. METHODS In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. RESULTS It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation with constant end temperatures or with temperature fluctuations. However, regulation of various genes after cryopreservation procedures significantly varies. Interestingly, transgene expression was not compromised in any of the studied samples. CONCLUSIONS Alterations in structural and functional parameters of placental MSCs after long-term preservation should be considered in practical biobanking due to potential temperature fluctuations in samples. At the same time, differentiation potential and transgene expression are not compromised during studied storage conditions, while variation in gene regulation is observed.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany. .,Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine.
| | - Olena Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine
| | - Larisa Kuleshova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015, Kharkiv, Ukraine
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Mueller
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Synlab Medical Care Center Weiden Ltd., Zur Kesselschmiede 4, 92637, Weiden in der Oberpfalz, Germany
| |
Collapse
|
47
|
Umbilical cord tissue–derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing. Cytotherapy 2017; 19:360-370. [DOI: 10.1016/j.jcyt.2016.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022]
|
48
|
Burand AJ, Gramlich OW, Brown AJ, Ankrum JA. Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-γ Prelicensing is Context Dependent. Stem Cells 2016; 35:1437-1439. [PMID: 27758056 DOI: 10.1002/stem.2528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Tailoring MSCs to fit the disease. Fresh, cryopreserved and, prelicensed cryopreserved MSC are all being explored to treat numerous diseases, but all are not suitable to treat all conditions. injury. "*" denotes preferred therapeutic strategy when both fresh MSC and cryo-MSC have shown utility in treating the disease but one is more efficacious or logistically suitable. ABBREVIATIONS CLI, critical limb ischemia; GvHD. graft versus host disease; I/R, ischemia reperfusion (I/R); OI, osteogenesis imperfecta.
Collapse
Affiliation(s)
- Anthony J Burand
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| | - Oliver W Gramlich
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA
| | - Alex J Brown
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA.,Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| | - James A Ankrum
- Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA
| |
Collapse
|
49
|
Dothel G, Raschi E, Rimondini R, De Ponti F. Mesenchymal stromal cell-based therapy: Regulatory and translational aspects in gastroenterology. World J Gastroenterol 2016; 22:9057-9068. [PMID: 27895395 PMCID: PMC5107589 DOI: 10.3748/wjg.v22.i41.9057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
The past decade has witnessed an outstanding scientific production focused towards the possible clinical applications of mesenchymal stromal cells (MSCs) in autoimmune and chronic inflammatory diseases. This raised the need of novel standards to adequately address quality, efficacy and safety issues of this advanced therapy. The development of a streamlined regulation is currently hampered by the complexity of analyzing dynamic biological entities rather than chemicals. Although numerous pieces of evidence show efficacy in reducing intestinal inflammation, some inconsistencies between the mechanisms of action of rodent vs human MSCs suggest caution before assigning translational value to preclinical studies. Preliminary evidence from clinical trials showed efficacy of MSCs in the treatment of fistulizing Crohn's disease (CD), and preparations of heterologous MSCs for CD treatment are currently tested in ongoing clinical trials. However, safety issues, especially in long-term treatment, still require solid clinical data. In this regard, standardized guidelines for appropriate dosing and methods of infusion could enhance the likelihood to predict more accurately the number of responders and the duration of remission periods. In addition, elucidating MSC mechanisms of action could lead to novel and more reliable formulations such as those derived from the MSCs themselves (e.g., supernatants).
Collapse
|
50
|
Rovira Gonzalez YI, Lynch PJ, Thompson EE, Stultz BG, Hursh DA. In vitro cytokine licensing induces persistent permissive chromatin at the Indoleamine 2,3-dioxygenase promoter. Cytotherapy 2016; 18:1114-28. [PMID: 27421739 DOI: 10.1016/j.jcyt.2016.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are being investigated as therapies for inflammatory diseases due to their immunosuppressive capacity. Interferon (IFN)-γ treatment primes MSC immunosuppression partially through induction of Indoleamine 2,3-dioxygenase (IDO1), which depletes tryptophan necessary to support proliferation of activated T cells. We investigated the role of histone modifications in the timing and maintenance of induced IDO1 expression in MSCs under clinical manufacturing conditions, such as cryopreservation. METHODS We used chromatin immunoprecipitation and quantitative polymerase chain reaction (PCR) to assay levels of transcriptionally permissive acetylated H3K9 and repressive trimethylated H3K9 histone modifications surrounding the transcriptional start site for IDO1, and reverse transcriptase PCR and immunoblotting to detect messenger RNA (mRNA) and protein. RESULTS MSCs derived from three donors approached maximum IDO1 mRNA levels following 24 hours of in vitro cytokine treatment. Induction of IDO1 expression correlated with increased acetylation of H3K9 concomitant with reduction of trimethylated H3K9 modifications at the promoter. Examination of two additional donors confirmed this result. While induced IDO1 levels decreased within 2 days after cytokine removal and freeze thawing, the activated chromatin state was maintained. Upon re-exposure to cytokines, previously primed MSCs accumulated near-maximum IDO1 mRNA levels within 4-8 h. DISCUSSION Our data indicate that in vitro priming of MSCs causes chromatin remodeling at the IDO1 promoter, that this alteration is maintained during processing commonly used to prepare MSCs for clinical use and that, once primed, MSCs are poised for IDO1 expression even in the absence of cytokines.
Collapse
Affiliation(s)
- Yazmin I Rovira Gonzalez
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick J Lynch
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| | - Elaine E Thompson
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Brian G Stultz
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Deborah A Hursh
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|