1
|
Lysandrou M, Kefala D, Vinnakota JM, Savvopoulos N, Zeiser R, Spyridonidis A. Regulatory T cell therapy for Graft-versus-Host Disease. Bone Marrow Transplant 2025:10.1038/s41409-025-02553-x. [PMID: 40240498 DOI: 10.1038/s41409-025-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Graft-versus-Host Disease (GvHD) is the main cause of morbidity and mortality of allogeneic hematopoietic cell transplantation (allo-HCT). Conventional immunosuppressive pharmacotherapy remains the backbone of GvHD prevention and treatment with suboptimal outcomes especially for patients with refractory disease. Adoptive immunotherapy with regulatory T-cells (Treg) stands as an alternative approach that aims to restore immune tolerance and circumvent prolonged immunosuppression albeit preserving the beneficial Graft-versus-Leukaemia (GvL) effect. In this review, we summarise recent knowledge on Treg biology, clinical applications of various Tregs subtypes in the setting of GvHD and future endeavours of the field.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Dionysia Kefala
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Nikolaos Savvopoulos
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece
| | - Robert Zeiser
- Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Patras, Greece.
| |
Collapse
|
2
|
Lysandrou M, Stamou P, Kefala D, Pierides C, Kyriakou M, Savvopoulos N, Christofi P, Papadopoulou A, Yannaki E, Costeas P, Spyridonidis A. Hypomethylation-induced regulatory programs in T cells unveiled by transcriptomic analyses. Front Immunol 2023; 14:1235661. [PMID: 37828996 PMCID: PMC10565652 DOI: 10.3389/fimmu.2023.1235661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023] Open
Abstract
Regulatory T cells (Tregs) are essential mediators of tolerance mitigating aberrant immune responses. While naturally occurring Treg (nTreg) development and function are directed by epigenetic events, induced Treg (iTreg) identity and mechanisms of action remain elusive. Mirroring the epigenetic circuits of nTregs, we and others have used hypomethylation agents (HAs) to ex vivo convert T cells into iTregs (HA-iTregs) and further showed that the suppressive properties of the HA-iTregs are predominantly confined in an emergent population, which de novo expresses the immunomodulatory molecule HLA-G, consequently providing a surface marker for isolation of the suppressive HA-iTreg compartment (G+ cells). We isolated the HA-induced G+ cells and their G- counterparts and employed high-throughput RNA-sequencing (RNA-seq) analyses to uncover the G+-specific transcriptomic changes guiding T cells toward a regulatory trajectory upon their exposure to HA. We found a distinct transcriptional upregulation of G+ cells accompanied by enrichment of immune-response-related pathways. Although single-cell RNA-seq profiling revealed regulatory G+ cells to have molecular features akin to nTregs, when assessed in conjunction with the comparative transcriptomic analysis and profiling of secreted cytokines against the non-suppressive G- cells, FOXP3 and other T-helper signatures appear to play a minor role in their suppressive phenotype. We found an ectopic expression of IDO-1 and CCL17/22 in G+ cells, denoting that in vitro exposure of T cells to HA may well unlock myeloid suppressor genes. This report provides transcriptional data shaping the molecular identity of a highly purified and potent HA-iTreg population and hints toward ectopic myeloid-specific molecular mechanisms mediating HA-iTreg function.
Collapse
Affiliation(s)
- Memnon Lysandrou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Panagiota Stamou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Dionysia Kefala
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Chryso Pierides
- The Center for the Study of Haematological and other Malignancies and Karaiskakio Foundation, Nicosia, Cyprus
| | - Maria Kyriakou
- The Center for the Study of Haematological and other Malignancies and Karaiskakio Foundation, Nicosia, Cyprus
| | - Nikolaos Savvopoulos
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Panayiota Christofi
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | - Paul Costeas
- The Center for the Study of Haematological and other Malignancies and Karaiskakio Foundation, Nicosia, Cyprus
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| |
Collapse
|
3
|
Lysandrou M, Kefala D, Christofi P, Savvopoulos N, Papayanni PG, Theodorellou R, Sagiadinou E, Zacharioudaki V, Moukouli M, Tsokanas D, Karavalakis G, Liga M, Stavrinos K, Papadopoulou A, Yannaki E, Spyridonidis A. Study protocol: Phase I/II trial of induced HLA-G + regulatory T cells in patients undergoing allogeneic hematopoietic cell transplantation from an HLA-matched sibling donor. Front Med (Lausanne) 2023; 10:1166871. [PMID: 37275377 PMCID: PMC10237041 DOI: 10.3389/fmed.2023.1166871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Regulatory T-cell (Treg) immunotherapy has emerged as a promising and highly effective strategy to combat graft-versus-host disease (GvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Both naturally occurring Treg and induced Treg populations have been successfully evaluated in trials illustrating the feasibility, safety, and efficacy required for clinical translation. Using a non-mobilized leukapheresis, we have developed a good manufacturing practice (GMP)-compatible induced Treg product, termed iG-Tregs, that is enriched in cells expressing the potent immunosuppressive human leucocyte antigen-G molecule (HLA-G+). To assess the safety and the maximum tolerable dose (MTD) of iG-Tregs, we conduct a phase I-II, two-center, interventional, dose escalation (3 + 3 design), open-label study in adult patients undergoing allo-HCT from an HLA-matched sibling donor, which serves also as the donor for iG-Treg manufacturing. Herein, we present the clinical protocol with a detailed description of the study rationale and design as well as thoroughly explain every step from patient screening, product manufacturing, infusion, and participant follow-up to data collection, management, and analysis (registered EUDRACT-2021-006367-26).
Collapse
Affiliation(s)
- Memnon Lysandrou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Dionysia Kefala
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Panayiota Christofi
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | - Nikolaos Savvopoulos
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Penelope Georgia Papayanni
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | | | - Eleftheria Sagiadinou
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Vassiliki Zacharioudaki
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | | | - Dimitrios Tsokanas
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | - Georgios Karavalakis
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | - Maria Liga
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| | | | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit and Institute of Cell Therapy, University of Patras, Rio, Greece
| |
Collapse
|
4
|
Zavaro M, Dangot A, Bar-Lev TH, Amit O, Avivi I, Ram R, Aharon A. The Role of Extracellular Vesicles (EVs) in Chronic Graft vs. Host Disease, and the Potential Function of Placental Cell-Derived EVs as a Therapeutic Tool. Int J Mol Sci 2023; 24:ijms24098126. [PMID: 37175831 PMCID: PMC10179565 DOI: 10.3390/ijms24098126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) presents with dermal inflammation and fibrosis. We investigated the characteristics of extracellular vesicles (EVs) obtained from cGVHD patients, and their potential effects on human dermal fibroblast (NHDF) cells. The anti-inflammatory and anti-fibrotic effects of placental EVs were also explored given their known anti-inflammatory properties. Fourteen cGVHD patients' EVs contained higher levels of fibrosis-related proteins, TGFβ and α-smooth muscle actin (αSMA), compared to EVs from thirteen healthy subjects. The exposure of NHDF cells to the patients' EVs increased the NHDF cells' TGFβ and αSMA expressions. Placental EVs derived from placental-expanded cells (PLX) (Pluri Inc.) and human villous trophoblast (HVT) cells expressing the mesenchymal markers CD29, CD73, and CD105, penetrated into both the epidermal keratinocytes (HACATs) and NHDF cells. Stimulation of the HACAT cells with cytokine TNFα/INFγ (0.01-0.1 ng/µL) reduced cell proliferation, while the addition of placental EVs attenuated this effect, increasing and normalizing cell proliferation. The treatment of NHDF cells with a combination of TGFβ and placental HVT EVs reduced the stimulatory effects of TGFβ on αSMA production by over 40% (p = 0.0286). In summary, EVs from patients with cGVHD can serve as a biomarker for the cGVHD state. Placental EVs may be used to regulate dermal inflammation and fibrosis, warranting further investigation of their therapeutic potential.
Collapse
Affiliation(s)
- Mor Zavaro
- Hematology Research Laboratory, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
| | - Ayelet Dangot
- Hematology Research Laboratory, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
| | - Tali Hana Bar-Lev
- Hematology Research Laboratory, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Odelia Amit
- The BMT Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Irit Avivi
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
- Hematology Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Ron Ram
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
- The BMT Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Anat Aharon
- Hematology Research Laboratory, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6195001, Israel
| |
Collapse
|
5
|
Kostara M, Chondrou V, Fotopoulos V, Sgourou A, Tsabouri S. Epigenetic/genetic variations in CG-rich elements of immune-related genes contribute to food allergy development during childhood. Pediatr Allergy Immunol 2022; 33:e13812. [PMID: 35754135 DOI: 10.1111/pai.13812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Genetic areas of FOXP3 TSDR, human leukocyte antigen-G (HLA-G) upstream of CpG island 96, CpG41 and CpG73 islands of the HLA-DRB1 and HLA-DQB1 genes respectively, previously documented to display immune-modulatory properties, were subjected to epigenetic/genetic analysis to assess their influence in IgE-mediated food allergy (FA) development in children. METHODS Sixty-four orally challenged and IgE-tested food allergic subjects together with 44 controls were recruited. Targeted pyrosequencing analysis to detect DNA methylation status and genetic variations was utilized and experimental results obtained were analyzed by a statistical software platform and correlated to clinical data. Also, transcription factor (TF) binding sites in study areas were unmasked by the JASPAR prediction database. RESULTS Parents' smoking was significantly correlated with aberrant methylation patterns, regardless of food allergic or control status. HLA-G promoter region showed a trend for hypomethylation in food allergic subjects, with one of the CG sites displaying significantly decreased methylation values. Rs1233333, residing within the HLA-G promoter region preserved a protective role toward DNA methylation. Variable methylation patterns were recorded for CpG41 of the HLA-DRB1 gene and hypermethylation of the region was significantly correlated with the presence of single nucleotide polymorphisms (SNPs). TFs' recognition sites, located in studied genetic areas and exerting pivotal regulatory biological roles, are potentially affected by divergent DNA methylation status. CONCLUSIONS We propose that HLA-G expression is triggered by food-derived allergens, providing a TregFoxP3-/HLA-G+ subpopulation generation to promote direct immune tolerance. Furthermore, clear evidence is provided for the underlying co-operation of genetic polymorphisms with epigenetic events, mainly at the CpG41 island of the HLA-DRB1 gene, which needs an extended investigation and elucidation.
Collapse
Affiliation(s)
- Maria Kostara
- Department of Paediatrics, Ioannina University Hospital, Ioannina, Greece
| | - Vasiliki Chondrou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Vassilis Fotopoulos
- Digital Systems Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- Laboratory of Biology, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Sophia Tsabouri
- Department of Paediatrics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Wang QY, Liu HH, Dong YJ, Liang ZY, Yin Y, Liu W, Wang QY, Wang Q, Sun YH, Xu WL, Han N, Li Y, Ren HY. Low-Dose 5-Aza and DZnep Alleviate Acute Graft- Versus-Host Disease With Less Side Effects Through Altering T-Cell Differentiation. Front Immunol 2022; 13:780708. [PMID: 35281001 PMCID: PMC8907421 DOI: 10.3389/fimmu.2022.780708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Previous studies showed that hypomethylating agents (HMAs) could alleviate acute graft-versus-host disease (aGvHD), but affect engraftment after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The combination of two different HMAs in lower doses might overcome this problem. This study aimed to evaluate the treatment effect of the combination of two HMAs—azacitidine (5-Aza) and histone H3K27 methyltransferase inhibitor 3-deazaneplanocin (DZNep)—for the prophylaxis of aGvHD after allo-HSCT and to explore the possible mechanisms. Methods We first optimized the concentrations of individual and combinational 5-Aza and DZNep treatments to ensure no obvious toxicities on activated T cells by evaluating T-cell proliferation, viability, and differentiation. A mouse model of aGvHD was then established to assess the prophylactic efficacy of 5-Aza, DZNep, and their combination on aGvHD. The immunomodulatory effect on T cells and the hematopoietic reconstruction were assessed. Additionally, RNA sequencing (RNA-seq) was performed to identify the underlying molecular mechanisms. Results Compared with single treatments, the in vitro application of 5-Aza with DZNep could more powerfully reduce the production of T helper type 1 (Th1)/T cytotoxic type 1 (Tc1) cells and increase the production of regulatory T cells (Tregs). In an allo-HSCT mouse model, in vivo administration of 5-Aza with DZNep could enhance the prophylactic effect for aGvHD compared with single agents. The mechanism study demonstrated that the combination of 5-Aza and DZNep in vivo had an enhanced effect to inhibit the production of Th1/Tc1, increase the proportions of Th2/Tc2, and induce the differentiation of Tregs as in vitro. RNA-seq analysis revealed the cytokine and chemokine pathways as one mechanism for the alleviation of aGvHD with the combination of 5-Aza and DZNep. Conclusion The combination of 5-Aza and DZNep could enhance the prophylactic effect for aGvHD by influencing donor T-cell differentiation through affecting cytokine and chemokine pathways. This study shed light on the effectively prophylactic measure for aGvHD using different epigenetic agent combinations.
Collapse
Affiliation(s)
- Qing Ya Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Hui Hui Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Jun Dong
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Ze Yin Liang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Qing Yun Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Hua Sun
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Wei Lin Xu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Na Han
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| | - Han Yun Ren
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
7
|
Bu X, Zhong J, Li W, Cai S, Gao Y, Ping B. Immunomodulating functions of human leukocyte antigen-G and its role in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2021; 100:1391-1400. [PMID: 33709198 PMCID: PMC8116272 DOI: 10.1007/s00277-021-04486-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapeutic strategy to treat several hematological malignancies and non-hematological malignancies. However, graft-versus-host disease (GVHD) is a frequent and serious transplant-related complication which dramatically restrains the curative effect of allo-HSCT and a significant cause of morbidity and mortality in allogeneic HCT recipients. Effective prevention of GVHD mainly depends on the induction of peripheral immune tolerance. Human leukocyte antigen-G (HLA-G) is a non-classical MHC class I molecule with a strong immunosuppressive function, which plays a prominent role in immune tolerance. HLA-G triggers different reactions depending on the activation state of the immune cells and system. It also exerts a long-term immune tolerance mechanism by inducing regulatory cells. In this present review, we demonstrate the immunomodulatory properties of human leukocyte antigen-G and highlight the role of HLA-G as an immune regulator of GVHD. Furthermore, HLA-G could also serve as a good predictor of GVHD and represent a new therapeutic target for GVHD.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- Department of Huiqiao, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
8
|
Crossland RE, Perutelli F, Bogunia-Kubik K, Mooney N, Milutin Gašperov N, Pučić-Baković M, Greinix H, Weber D, Holler E, Pulanić D, Wolff D, Dickinson AM, Inngjerdingen M, Grce M. Potential Novel Biomarkers in Chronic Graft-Versus-Host Disease. Front Immunol 2020; 11:602547. [PMID: 33424849 PMCID: PMC7786047 DOI: 10.3389/fimmu.2020.602547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Prognostic, diagnostic or predictive biomarkers are urgently needed for assessment of chronic graft-versus-host disease (cGvHD), a major risk for patients undergoing allogeneic hematopoietic stem cell transplantation. The main goal of this review generated within the COST Action EUROGRAFT "Integrated European Network on Chronic Graft Versus Host Disease" was to identify potential novel biomarkers for cGvHD besides the widely accepted molecular and cellular biomarkers. Thus, the focus was on cellular biomarkers, alloantibodies, glycomics, endothelial derived particles, extracellular vesicles, microbiome, epigenetic and neurologic changes in cGvHD patients. Both host-reactive antibodies in general, and particularly alloantibodies have been associated with cGvHD and require further consideration. Glycans attached to IgG modulate its activity and represent a promising predictive and/or stratification biomarker for cGVHD. Furthermore, epigenetic changes such as microRNAs and DNA methylation represent potential biomarkers for monitoring cGvHD patients and novel targets for developing new treatment approaches. Finally, the microbiome likely affects the pathophysiology of cGvHD; bacterial strains as well as microbial metabolites could display potential biomarkers for dysbiosis and risk for the development of cGvHD. In summary, although there are no validated biomarkers currently available for clinical use to better inform on the diagnosis, prognosis or prediction of outcome for cGvHD, many novel sources of potential markers have shown promise and warrant further investigation using well characterized, multi-center patient cohorts.
Collapse
Affiliation(s)
- Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesca Perutelli
- Department of Molecular Biotechnology and Health Sciences, School of Medicine, University of Torino, Torino, Italy
| | - Katarzyna Bogunia-Kubik
- Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Nuala Mooney
- INSERM U976, Human Immunology, Pathophysiology and Immunotherapies, Hôpital Saint Louis, Paris, France
| | | | | | - Hildegard Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniela Weber
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Dražen Pulanić
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - Daniel Wolff
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Contini P, Murdaca G, Puppo F, Negrini S. HLA-G Expressing Immune Cells in Immune Mediated Diseases. Front Immunol 2020; 11:1613. [PMID: 32983083 PMCID: PMC7484697 DOI: 10.3389/fimmu.2020.01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
HLA-G is a HLA class Ib antigen that possesses immunomodulatory properties. HLA-G-expressing CD4+ and CD8+ T lymphocytes, NK cells, monocytes, and dendritic cells with immunoregulatory functions are present in small percentages of patients with physiologic conditions. Quantitative and qualitative derangements of HLA-G+ immune cells have been detected in several conditions in which the immune system plays an important role, such as infectious, neoplastic, and autoimmune diseases as well as in complications from transplants and pregnancy. These observations strongly support the hypothesis that HLA-G+ immune cells may be implicated in the complex mechanisms underlying the pathogenesis of these disorders.
Collapse
Affiliation(s)
| | | | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | |
Collapse
|
10
|
Wang QY, Li Y, Liang ZY, Yin Y, Liu W, Wang Q, Dong YJ, Sun YH, Xu WL, Ren HY. Decitabine-Containing Conditioning Regimen for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Intermediate- and High-Risk Myelodysplastic Syndrome/Acute Myeloid Leukemia: Potential Decrease in the Incidence of Acute Graft versus Host Disease. Cancer Manag Res 2019; 11:10195-10203. [PMID: 31824191 PMCID: PMC6900353 DOI: 10.2147/cmar.s229768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose To evaluate the role of Decitabine in the allo-HSCT conditioning regimen for intermediate- and high-risk patients with MDS or AML. Patients and methods Retrospective analysis of data pertaining to 76 intermediate- and high-risk patients with MDS or AML who underwent allo-HSCT between December 2005 and June 2018 at the Peking University First Hospital. Forty patients received Decitabine-containing conditioning regimen before transplantation, while thirty-six patients received regimen without Decitabine. Results Over a median follow-up of 40 months (range, 1 to 155), the cumulative incidence of grade II to IV acute graft versus host disease was 12.4% [95% confidence interval (CI) 4.9–30.9%] in the Decitabine group and 41.5% (95% CI 28.1–61.2%) in the non-Decitabine group (P=0.005). On multivariate analysis, Decitabine-containing conditioning regimen was found to protect against grade II to IV aGVHD (HR=0.279, 95% CI 0.102–0.765, P=0.013). Incidence of respiratory infection in the Decitabine and non-Decitabine groups was 22.5% and 52.78%, respectively (P=0.012). No significant between-group difference was observed with respect to 3-year OS, DFS, or RR (P=0.980, 0.959, and 0.573, respectively), while the median relapse time was longer in the Decitabine group [7 months (range, 2–12) versus 3 months (range, 2–4), P=0.171]. Decitabine-containing conditioning showed a tendency for lower relapse rate among higher risk patients, as assessed by IPSS R; however, the between-group difference was not statistically significant (P=0.085). Conclusion Inclusion of Decitabine in the conditioning regimen for allo-HSCT in intermediate- and high-risk patients may lower the incidence of aGVHD and respiratory infections, and contribute to longer median relapse time.
Collapse
Affiliation(s)
- Qing Ya Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Ze Yin Liang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yu Jun Dong
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yu Hua Sun
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Wei Lin Xu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Han Yun Ren
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Sommese L, Benincasa G, Schiano C, Marfella R, Grimaldi V, Sorriento A, Lucchese R, Fiorito C, Sardu C, Nicoletti GF, Napoli C. Genetic and epigenetic-sensitive regulatory network in immune response: a putative link between HLA-G and diabetes. Expert Rev Endocrinol Metab 2019; 14:233-241. [PMID: 31131681 DOI: 10.1080/17446651.2019.1620103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Human leukocyte antigen-G (HLA-G) gene encodes for a tolerogenic molecule constitutively expressed in human pancreas and upregulated upon inflammatory signals. The 14 bp INS/DEL polymorphism in the 3'UTR of HLA-G may influence the susceptibility for diabetes and coronary heart diseases (CHD), thus suggesting a novel candidate gene. DNA hypomethylation at HLA-G promoter may be a putative useful clinical biomarker for CHD onset. Upregulation of soluble HLA-G isoform (sHLA-G) was detected in prediabetic and diabetic subjects, suggesting a putative role in metabolic dysfunctions. AREAS COVERED We conducted a scoping literature review of genetic and epigenetic-sensitive mechanisms regulating HLA-G in diabetes. English-language manuscripts published between 1997 and 2019, were identified through PubMed, Google Scholar, and Web of Science database searches. After selecting 14 original articles representing case-control studies, we summarized and critically evaluated their main findings. EXPERT COMMENTARY Although epigenetic modifications are involved in the onset of hyperglycemic conditions evolving into diabetes and CHD, it is still difficult to obtain simple and useful clinical biomarkers. Inflammatory-induced KDM6A/INF-β/HLA-G axis might be a part of the epigenetic network leading to overexpression of HLA-G at pancreatic level. Network medicine may show whether HLA-G is involved in diabetes and CHD.
Collapse
Affiliation(s)
- Linda Sommese
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Giuditta Benincasa
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | | | - Raffaele Marfella
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | - Vincenzo Grimaldi
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Antonio Sorriento
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Roberta Lucchese
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Carmela Fiorito
- a U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Napoli , Italy
| | - Celestino Sardu
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
| | - Giovanni Francesco Nicoletti
- d Multidisciplinary Department of Medical-Surgical and Dental Specialties , Università degli Studi della Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- b Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences , University of Campania "Luigi Vanvitelli , Naples , Italy
- c IRCCS SDN , Naples , Italy
| |
Collapse
|
12
|
Donadei C, Cappuccilli M, La Manna G. An intriguing link between human leukocyte antigen G, T-regulatory cells and neutrophil gelatinase-associated lipocalin in immune tolerance induction. Cytotherapy 2018; 20:477-478. [PMID: 29352667 DOI: 10.1016/j.jcyt.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Chiara Donadei
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Maria Cappuccilli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy.
| |
Collapse
|
13
|
|