1
|
Yamashita T, Ekino T, Kanzaki N, Shinya R. The developmental and structural uniqueness of the embryo of the extremophile viviparous nematode, Tokorhabditis tufae. Front Physiol 2023; 14:1197477. [PMID: 37427410 PMCID: PMC10325857 DOI: 10.3389/fphys.2023.1197477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Viviparity, a reproductive form that supplies nutrients to the embryo during gestation, has repeatedly and independently occurred in multiple lineages of animals. During the convergent evolution of viviparity, various modifications of development, structure, and physiology emerged. A new species of nematode, Tokorhabditis tufae, was discovered in the alkaline, hypersaline, and arsenic-rich environment of Mono lake. Its reproductive form is viviparity because it is obligately live-bearing and the embryo increases in size during development. However, the magnitude of the increase in size and nutrient provisioning are unclear. We measured egg and embryo sizes at three developmental stages in T. tufae. Eggs and embryos of T. tufae at the threefold stage were respectively 2.6- and 3.6-fold larger than at the single-cell stage. We then obtained T. tufae embryos at the single-cell, lima bean, and threefold developmental stages and investigated the egg hatching frequency at three different concentrations of egg salt buffer. Removal of embryos from the uterus halted embryonic development at the single-cell and lima bean stages in T. tufae irrespective of the solution used for incubation, indicating the provision of nutrients within the uterus. Ultrastructural and permeability evaluation showed that the permeability barrier did not form during embryonic development, resulting in increased molecular permeability. This high permeability caused by the absence of the permeability barrier likely enables supply of nutrients from the mother. The structural and physiological modifications in T. tufae are like those in other viviparous animals. We conclude that T. tufae is a viviparous rather than an ovoviviparous nematode. T. tufae will facilitate investigation of the evolution of viviparity in animals.
Collapse
Affiliation(s)
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), Kyoto, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
2
|
Huang J, Zhi F, Zhang J, Hafeez M, Li X, Zhang J, Zhang Z, Wang L, Lu Y. Reproductive pattern in the solanum mealybug, Phenacoccus solani: A new perspective. PeerJ 2020; 8:e9734. [PMID: 32904449 PMCID: PMC7453925 DOI: 10.7717/peerj.9734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background The reproductive pattern of most scale insects is ovoviviparity. The solanum mealybug, Phenacoccus solani (Hemiptera: Pseudococcidae), is known as a thelytokous parthenogenetic species, but there is still debate about the reproductive strategies of this species. Methods Here, we investigated the oviposition characteristics of P. solani and used scanning/transmission electron microscopy and RNA-seq to identify the differences between two types of eggs. Results We found that P. solani laid two types of eggs in one batch, with no significant difference in apparent size: one with eyespots that hatched and another without eyespots that failed to hatch. Furthermore, the physiological and molecular differences between the two types of eggs were highly significant. KEGG enrichment analysis revealed significant enrichment for the JAK-STAT, Notch, Hippo, and Wnt signaling pathways and dorsoventral axis formation, wax biosynthesis, cell cycle, insulin secretion, and nitrogen metabolism pathways. The results suggest that the embryo of the egg undergoes development inside the mother and only a short molting period outside the mother. Discussion Ovoviviparous species produce eggs and keep them inside the mother's body until they are ready to hatch, and the offspring exits the egg shell during or immediately following oviposition. Therefore, we suggest that the reproductive pattern of P. solani can be described as ovoviviparity.
Collapse
Affiliation(s)
- Jun Huang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fuying Zhi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Juan Zhang
- Institute of Garden Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Hafeez
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhijun Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Likun Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaobin Lu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
Bilinski SM, Sekula M, Tworzydlo W. Morphogenesis of the ovarian follicular epithelium during initial stages of embryogenesis of the viviparous earwig,
Hemimerus talpoides. J Morphol 2019; 281:47-54. [DOI: 10.1002/jmor.21078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Szczepan M. Bilinski
- Department of Developmental Biology and Invertebrate MorphologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow Krakow Poland
| | - Malgorzata Sekula
- Department of Developmental Biology and Invertebrate MorphologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow Krakow Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate MorphologyInstitute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow Krakow Poland
| |
Collapse
|
4
|
Tworzydlo W, Jaglarz MK, Pardyak L, Bilinska B, Bilinski SM. Evolutionary origin and functioning of pregenital abdominal outgrowths in a viviparous insect, Arixenia esau. Sci Rep 2019; 9:16090. [PMID: 31695096 PMCID: PMC6834671 DOI: 10.1038/s41598-019-52568-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022] Open
Abstract
Although pregenital abdominal outgrowths occur only rarely in pterygote insects, they are interesting from the evolutionary viewpoint because of their potential homology to wings. Our previous studies of early development of an epizoic dermapteran, Arixenia esau revealed that abdominal segments of the advanced embryos and larvae, growing inside a mother’s uterus, are equipped with paired serial outgrowths. Here, we focus on the origin and functioning of these outgrowths. We demonstrate that they bud from the lateral parts of the abdominal nota, persist till the end of intrauterine development, and remain in contact with the uterus wall. We also show that the bundles of muscle fibers associated with the abdominal outgrowths may facilitate flow of the haemolymph from the outgrowths’ lumen to the larval body cavity. Following completion of the intrauterine development, abdominal outgrowths are shed together with the larval cuticle during the first molt after the larva birth. Using immunohistochemical and biochemical approaches, we demonstrate that the Arixenia abdominal outgrowths represent an evolutionary novelty, presumably related to intrauterine development, and suggest that they are not related to serial wing homologs.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
5
|
Jaglarz MK, Tworzydlo W, Rak A, Kotula-Balak M, Sekula M, Bilinski SM. Viviparity in the dermapteran Arixenia esau: respiration inside mother's body requires both maternal and larval contribution. PROTOPLASMA 2019; 256:1573-1584. [PMID: 31218520 PMCID: PMC6820587 DOI: 10.1007/s00709-019-01402-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Earwigs (Dermaptera) use different strategies to increase their reproductive success. Most species lay eggs; however, viviparity of the matrotrophic type has been reported in two groups: Hemimeridae and Arixeniidae. In Arixeniidae, offspring develop in two separate places: inside an ovary (the intraovarian phase) and within a uterus (the intrauterine phase). Both morphological and physiological aspects of viviparity in Arixeniidae have begun to be unraveled only recently. Here, we characterize how the first instar larvae of Arixenia esau, developing inside the mother's reproductive system, manage respiration and gas exchange. Using modern light and electron microscopy techniques as well as immunological approach, we provide a detailed account of the maternal and larval tissue interactions during the intrauterine development. We demonstrate that respiration in the Arixenia first instar larvae relies on the extensive tracheal system of the mother as well as a respiratory pigment (hemocyanin) present within the body cavity of the larvae. Our results indicate that the larval fat body tissue is the likely place of the hemocyanin synthesis. Our study shows that characteristic cone-shaped lobes of the outgrowths located on the larval abdomen are a part of a placenta-like organ and mediate the gas exchange between the maternal and larval organisms. Based on the obtained results, we propose that Arixenia esau evolved a unique biphasic system supporting respiration of the first instar larvae during their development inside the mother's reproductive tract.
Collapse
Affiliation(s)
- Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Malgorzata Sekula
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
6
|
Bilinski SM, Tworzydlo W. Morphogenesis of serial abdominal outgrowths during development of the viviparous dermapteran, Arixenia esau (Insecta, Dermaptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 49:62-69. [PMID: 30445116 DOI: 10.1016/j.asd.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The embryos and first instar larvae of the epizoic earwig, Arixenia esau, develop sequentially in two different compartments of the female reproductive system, that is ovarian follicles and the lateral oviducts (the uterus). Here we show that the second (intrauterine) phase of development consists of three physiologically disparate stages: early embryos (before dorsal closure, surrounded by an egg envelope), late embryos (after dorsal closure, surrounded by an egg envelope) and the first instar larvae (after "hatching" from an egg envelope). Early and late embryos float in the fluid filling the uterus, whereas the first instar larvae develop attached to the uterus wall. Our analyses revealed also that in Arixenia serial multilobed outgrowths develop on dorso-lateral aspects of all abdominal segments. At the onset of the third developmental stage and after liberation from an egg envelope, these outgrowths (or more precisely their lobes) adhere to the epithelium lining the uterus, forming a series of small contact sites, where the mother and embryo tissues are separated only by a thin, presumably permeable, embryonic cuticle. We suggest that all these contact sites collectively constitute a dispersed placenta-like organ involved in the nourishment of the embryo.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
7
|
Viviparity in Two Closely Related Epizoic Dermapterans Relies on Disparate Modifications of Reproductive Systems and Embryogenesis. Results Probl Cell Differ 2019; 68:455-475. [PMID: 31598867 DOI: 10.1007/978-3-030-23459-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nutritional modes operating during embryonic/larval development of viviparous species range from "pure" lecitothrophy in which embryos rely solely on reserve materials (yolk spheres, lipid droplets, and glycogen particles) accumulated in the egg cytoplasm to matrotrophy in which embryos are continuously supplied with nutrients from a parental organism. Interestingly, a wide spectrum of diverse "mixed" modes employed in the embryo nourishment have also been described among viviparous species. Here, we summarize results of histochemical, ultrastructural, and biochemical analyses of reproductive systems as well as developing embryos of two closely related viviparous species of earwigs (Dermaptera), Hemimerus talpoides and Arixenia esau. These analyses clearly indicate that morphological as well as physiological modifications (adaptations) supporting viviparity and matrotrophy in Hemimerus and Arixenia, with the exception of a complex biphasic respiration, are markedly different. Most importantly, Hemimerus embryos complete their development inside terminal (largest) ovarian follicles, whereas Arixenia embryos, after initial developmental stages, are transferred to highly modified lateral oviducts, that is the uterus, where they develop until the release (birth) of larvae. The obtained results strongly suggest that viviparity in hemimerids and arixeniids had evolved independently and might therefore serve as an example of evolutionary parallelism as well as remarkable functional plasticity of insect reproduction and embryonic development.
Collapse
|
8
|
Jaglarz MK, Tworzydlo W, Bilinski SM. Excretion in the mother's body: modifications of the larval excretory system in the viviparous dermapteran, Arixenia esau. PROTOPLASMA 2018; 255:1799-1809. [PMID: 29948364 PMCID: PMC6208827 DOI: 10.1007/s00709-018-1264-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/15/2018] [Indexed: 05/06/2023]
Abstract
The vast majority of Dermaptera are free-living and oviparous, i.e., females lay eggs within which embryonic development occurs until the larva hatches. In contrast, in the epizoic dermapteran Arixenia esau, eggs are retained within mother's body and the embryos and first instar larvae develop inside her reproductive system. Such a reproductive strategy poses many physiological challenges for a mother, one of which is the removal of metabolic waste generated by the developing offspring. Here, we examine how the Arixenia females cope with this challenge by analyzing features of the developing larval excretory system. Our comparative analyses of the early and late first instar larvae revealed characteristic modifications in the cellular architecture of the Malpighian tubules, indicating that these organs are functional. The results of the electron probe microanalyses suggest additionally that the larval Malpighian tubules are mainly involved in maintaining ion homeostasis. We also found that the lumen of the larval alimentary track is occluded by a cellular diaphragm at the midgut-hindgut junction and that cells of the diaphragm accumulate metabolic compounds. Such an organization of the larval gut apparently prevents fouling of the mother's organism with the offspring metabolic waste and therefore can be regarded as an adaptation for viviparity.
Collapse
Affiliation(s)
- Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
9
|
Horváth B, Kalinka AT. The genetics of egg retention and fertilization success in Drosophila: One step closer to understanding the transition from facultative to obligate viviparity. Evolution 2018; 72:318-336. [PMID: 29265369 DOI: 10.1111/evo.13411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/16/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
Oviparous, facultative egg retention enables Drosophila females to withhold fertilized eggs in their reproductive tracts until circumstances favor oviposition. The propensity to retain fertilized eggs varies greatly between species, and is correlated with other reproductive traits, such as egg size and ovariole number. While previous studies have described the phenomenon, no study to date has characterized within-species variation or the genetic basis of the trait. Here, we develop a novel microscope-based method for measuring egg retention in Drosophila females and determine the range of phenotypic variation in mated female egg retention in a subset of 91 Drosophila Genetic Reference Panel (DGRP) lines. We inferred the genetic basis of egg retention using a genome-wide association study (GWAS). Further, the scoring of more than 95,000 stained, staged eggs enabled estimates of fertilization success for each line. We found evidence that ovary- and spermathecae-related genes as well as genes affecting olfactory behavior, male mating behavior, male-female attraction and sperm motility may play a crucial role in post-mating physiology. Based on our findings we also propose potential evolutionary routes toward obligate viviparity. In particular, we propose that the loss of fecundity incurred by viviparity could be offset by benefits arising from enhanced mate discrimination, resource specialization, or modified egg morphology.
Collapse
Affiliation(s)
- Barbara Horváth
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria.,Vienna Graduate School of Population Genetics, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria.,Current Address: Barbara Ellis, Institutionen för ekologi och genetik, Evolutionsbiologiskt Centrum (EBC), Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Alex T Kalinka
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna A-1210, Austria
| |
Collapse
|
10
|
Kamimura Y, Ferreira RL. Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta). Zookeys 2017; 713:25-52. [PMID: 29187791 PMCID: PMC5704199 DOI: 10.3897/zookeys.713.15118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 11/12/2022] Open
Abstract
Based on samples collected during surveys of Brazilian cave fauna, seven earwig species are reported: Cylindrogaster cavernicola Kamimura, sp. n., Cylindrogaster sp. 1, Cylindrogaster sp. 2, Euborellia janeirensis, Euborellia brasiliensis, Paralabellula dorsalis, and Doru luteipes, as well as four species identified to the (sub)family level. To date, C. cavernicola Kamimura, sp. n. has been recorded only from cave habitats (but near entrances), whereas the other four organisms identified at the species level have also been recorded from non-cave habitats. Wings and female genital structures of Cylindrogaster spp. (Cylindrogastrinae) are examined for the first time. The genital traits, including the gonapophyses of the 8th abdominal segment shorter than those of the 9th segement, and venation of the hind wings of Cylindrogastrinae correspond to those of the members of Diplatyidae and not to Pygidicranidae. This is the first synopsis of cave-dwelling earwigs of Brazil, one of the most species-rich areas of Dermaptera in the world.
Collapse
Affiliation(s)
- Yoshitaka Kamimura
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521, Japan
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of Lavras, CEP 37200-000 Lavras (MG), Brazil
| |
Collapse
|
11
|
Bilinski SM, Halajian A, Tworzydlo W. Ovaries and oogenesis in an epizoic dermapteran, Hemimerus talpoides (Dermaptera, Hemimeridae): Structural and functional adaptations to viviparity and matrotrophy. ZOOLOGY 2017; 125:32-40. [PMID: 28869120 DOI: 10.1016/j.zool.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 11/27/2022]
Abstract
The Dermaptera are traditionally classified in three taxa: the free living Forficulina and two viviparous (matrotrophic) groups, the Hemimerina and Arixeniina. Recent molecular and histological analyses suggest that both matrotrophic groups should be nested among the most derived taxon of the Forficulina, the Eudermaptera. We present results of ultrastructural analyses of ovary/ovariole morphology and oogenesis in a representative of the Hemimerina, Hemimerus talpoides (Walker, 1871). Our results strongly reinforce the idea that the Hemimerina should be classified within the Eudermaptera. We show additionally that the ovaries of the studied species are characterized by two peculiar modifications, i.e. the presence of numerous tracheoles in contact with the basement lamina covering the ovarioles, and an unusual development of the ovariole stalks. We believe that both characters are related to viviparity and unconventional "intra-ovariolar" embryo development. Finally, our study also indicates that the oocytes of H. talpoides reveal characters apparently associated with a matrotrophic type of embryo nourishment. They are completely yolkless and devoid of the typical, multilayered egg envelopes; instead, they comprise unconventional organelles (para-crystalline stacks of endoplasmic reticulum cisternae and translucent vacuoles) that seem to function after initiation of embryonic development. Thus, the ovaries as well as the oocytes of H. talpoides are characterized by an exceptional mixture of features shared with derived dermapterans and adaptations to matrotrophy.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Ali Halajian
- Department of Biodiversity, University of Limpopo, Sovenga 0727, South Africa
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
12
|
Kamimura Y, Tee HS, Lee CY. Ovoviviparity and genital evolution: a lesson from an earwig species with coercive traumatic mating and accidental breakage of elongated intromittent organs. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yoshitaka Kamimura
- Department of Biology; Keio University; 4-1-1 Hiyoshi Yokohama 223-8521 Japan
- Urban Entomology Laboratory; Vector Control Research Unit; School of Biological Sciences; Universiti Sains Malaysia; Minden 11800 Penang Malaysia
| | - Hui-Siang Tee
- Urban Entomology Laboratory; Vector Control Research Unit; School of Biological Sciences; Universiti Sains Malaysia; Minden 11800 Penang Malaysia
| | - Chow-Yang Lee
- Urban Entomology Laboratory; Vector Control Research Unit; School of Biological Sciences; Universiti Sains Malaysia; Minden 11800 Penang Malaysia
| |
Collapse
|
13
|
Tworzydlo W. Relationship between lateral oviduct morphology and reproductive strategy in earwigs. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Bilinski SM, Kocarek P, Jankowska W, Kisiel E, Tworzydlo W. Ovaries and phylogeny of dermapterans once more: Ovarian characters support paraphyly of Spongiphoridae. ZOOL ANZ 2014. [DOI: 10.1016/j.jcz.2013.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Urbisz AZ, Lai YT, Świątek P. Barbronia weberi(Clitellata, Hirudinida, Salifidae) has ovary cords of the Erpobdella type. J Morphol 2013; 275:479-88. [DOI: 10.1002/jmor.20229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Z. Urbisz
- Department of Animal Histology and Embryology; University of Silesia; Bankowa 9 40-007 Katowice Poland
| | - Yi-Te Lai
- Institute of Zoology; National Taiwan University; 1 Roosevelt Rd., Sec. 4, Da-an District Taipei 106 Taiwan
- Department of Biology; University of Eastern Finland; PO Box 111 FI 80101 Joensuu Finland
| | - Piotr Świątek
- Department of Animal Histology and Embryology; University of Silesia; Bankowa 9 40-007 Katowice Poland
| |
Collapse
|
16
|
Kocarek P, John V, Hulva P. When the body hides the ancestry: phylogeny of morphologically modified epizoic earwigs based on molecular evidence. PLoS One 2013; 8:e66900. [PMID: 23826171 PMCID: PMC3691250 DOI: 10.1371/journal.pone.0066900] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy. Our results also indicate that the evolutionary consequences of the transition to an ectoparazitic mode of living, which is extremely rare in earwigs, have biased previous morphology-based hypotheses regarding the phylogeny of this insect group.
Collapse
Affiliation(s)
- Petr Kocarek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | | | | |
Collapse
|
17
|
Tworzydlo W, Kisiel E, Bilinski SM. Embryos of the viviparous dermapteran, Arixenia esau develop sequentially in two compartments: terminal ovarian follicles and the uterus. PLoS One 2013; 8:e64087. [PMID: 23667700 PMCID: PMC3648550 DOI: 10.1371/journal.pone.0064087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/08/2013] [Indexed: 11/27/2022] Open
Abstract
Three main reproductive strategies have been described among insects: most common oviparity, ovoviviparity and viviparity. In the latter strategy, the embryonic development takes place within the body of the mother which provides gas exchange and nutrients for embryos. Here we present the results of histological and EM analyses of the female reproductive system of the viviparous earwig, Arixenia esau, focusing on all the modifications related to the viviparity. We show that in the studied species the embryonic development consists of two “physiological phases” that take place in two clearly disparate compartments, i.e. the terminal ovarian follicle and the uterus. In both compartments the embryos are associated with synthetically active epithelial cells. We suggest that these cells are involved in the nourishment of the embryo. Our results indicate that viviparity in arixeniids is more complex than previously considered. We propose the new term “pseudoplacento-uterotrophic viviparity” for this unique two-phase reproductive strategy.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|