1
|
Birla D, Khandale N, Bashir B, ShahbazAlam M, Vishwas S, Gupta G, Dureja H, Kumbhar PS, Disouza J, Patravale V, Veiga F, Paiva-Santos AC, Pillappan R, Paudel KR, Goh BH, Singh M, Dua K, Singh SK. Application of quality by design in optimization of nanoformulations: Principle, perspectives and practices. Drug Deliv Transl Res 2025; 15:798-830. [PMID: 39126576 DOI: 10.1007/s13346-024-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability. This advantage of NDDS can help to deliver pure drugs to the target site. However, the formulation of nanoparticles is a complex process that requires optimization to ensure product quality and efficacy. Quality by Design (QbD) is a systemic approach that has been implemented in the pharmaceutical industry to improve the quality and reliability of drug products. QbD involves the optimization of different parameters like zeta potential (ZP), particle size (PS), entrapment efficiency (EE), polydispersity index (PDI), and drug release using statistical experimental design. The present article discussed the detailed role of QbD in optimizing nanoformulations and their advantages, advancement, and applications from the industrial perspective. Various case studies of QbD in the optimization of nanoformulations are also discussed.
Collapse
Affiliation(s)
- Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Md ShahbazAlam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal. Panhala, Dist., Kolhapur, Maharashtra, India, 416 113
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India, 400019
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ramkumar Pillappan
- NITTE (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences [NGSMIPS], Mangaluru, Karnataka, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bey Hing Goh
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Biofunctional Molecule Exploratory Research (BMEX) Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Manisha Singh
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, Uttar Pradesh, India
| | - Kamal Dua
- Faculty of Health, Graduate School of Health, University of Technology Sydney, Sydney, Australia
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- ARCCIM, School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
2
|
Sahin H, Yucel O, Holloway P, Yildirim E, Emik S, Gurdag G, Tanriverdi G, Erkanli Senturk G. Comparison of Drug Delivery Systems with Different Types of Nanoparticles in Terms of Cellular Uptake and Responses in Human Endothelial Cells, Pericytes, and Astrocytes. Pharmaceuticals (Basel) 2024; 17:1567. [PMID: 39770409 PMCID: PMC11679882 DOI: 10.3390/ph17121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The key components of the blood-brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB. To overcome this challenge, nanotechnology, particularly drug delivery systems such as nanoparticles (NPs), have gained significant attention. Methods: Poly(lactide-co-glycolide) (PLGA) and albumin-based NPs (bovine/human), with or without transferrin (Tf) ligands (BSA, HSA, BSA-Tf, HSA-Tf), and nanolipid carriers (NLC) were synthesized. The interactions of these NPs with human brain microvascular endothelial cells (hBMECs), human brain vascular pericytes (hBVPs), and human astrocytes (hASTROs) were analyzed. Results: At doses of 15.62 µg/mL, 31.25 µg/mL, and 62.5 µg/mL, none of the NPs caused toxic effects on hBMECs, hBVPs, or hASTROs after 3 h of incubation. All NPs were internalized by the cells, but BSA-Tf and HSA-Tf showed significantly higher uptake in hBMECs in a dose-dependent manner. Ultrastructural analysis revealed notable differences between NP formulation and cell type. Conclusions: Our findings underscore the potential of ligand-targeted NPs to selectively interact with BBB endothelial cells. Ultrastructural analysis reveals distinct cellular processing pathways for various NP formulations across BBB-associated cell types, with autophagy emerging as a crucial mechanism for NP handling in pericytes and astrocytes. Changes in NP chemical properties upon biological exposure present significant challenges for nanomedicine design, emphasizing the need for further investigation into NP interactions at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| | - Oguz Yucel
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Paul Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
| | - Eren Yildirim
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Serkan Emik
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Gulten Gurdag
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey; (O.Y.); (E.Y.); (S.E.); (G.G.)
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| | - Gozde Erkanli Senturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey; (G.T.); (G.E.S.)
| |
Collapse
|
3
|
Myint SLL, Rodsiri R, Benya-Aphikul H, Rojanaratha T, Ritthidej G, Islamie R. Nasal Delivery of Asiatic Acid Ameliorates Scopolamine-Induced Memory Dysfunction in Mice. Adv Pharmacol Pharm Sci 2024; 2024:9941034. [PMID: 39286638 PMCID: PMC11405110 DOI: 10.1155/2024/9941034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Asiatic acid (AA) has previously shown its neuroprotective effects, but low oral bioavailability limits its penetration into the brain. This study aimed to investigate the effect of intranasal AA administration in mice with memory dysfunction induced by scopolamine. Mice received either intranasal AA (INAA), oral AA (POAA3 or POAA30), or donepezil, followed by scopolamine for 10 days. Morris water maze (MWM) was performed on days 0-5, 30 min after treatment. Locomotor activity was conducted on day 6 followed by brain collection. In MWM, INAA treatment had significantly reduced escape latency on days 2-4, while POAA3 decreased escape latency on day 3 and POAA30 and donepezil decreased escape latency on day 4. INAA inhibited acetylcholinesterase activity, increased catalase protein expression, and decreased malondialdehyde levels in the brain tissue. Therefore, intranasal administration of AA produced a rapid onset in the protection of learning and memory deficits induced by scopolamine through acetylcholinesterase inhibition and antioxidant effect.
Collapse
Affiliation(s)
- Su Lwin Lwin Myint
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Hattaya Benya-Aphikul
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Tissana Rojanaratha
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Queen Saovabha Memorial Institute The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ridho Islamie
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical and Community Pharmacy Faculty of Pharmacy University of Surabaya, Surabaya 60293, Indonesia
| |
Collapse
|
4
|
Matarazzo AP, Rios CA, Gerônimo G, Ondei R, de Paula E, Breitkreitz MC. Development of a Versatile Nanostructured Lipid Carrier (NLC) Using Design of Experiments (DoE)-Part II: Incorporation and Stability of Butamben with Different Surfactants. Pharmaceutics 2024; 16:863. [PMID: 39065560 PMCID: PMC11280378 DOI: 10.3390/pharmaceutics16070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Nanostructured lipid carriers (NLCs) are typically composed of liquid lipids, solid lipids, and surfactants, enabling the encapsulation of lipophilic drugs. Butamben is a Class II anesthetic drug, according to the Biopharmaceutical Classification System (BCS); it has a log P of 2.87 and is considered a 'brick dust' (poorly water-soluble and poorly lipid-soluble) drug. This characteristic poses a challenge for the development of NLCs, as they are not soluble in the liquid lipid present in the NLC core. In a previous study, we developed an NLC core consisting of a solid lipid (CrodamolTM CP), a lipophilic liquid with medium polarity (SRTM Lauryl lactate), and a hydrophilic excipient (SRTM DMI) that allowed the solubilization of 'brick dust' types of drugs, including butamben. In this study, starting from the NLC core formulation previously developed we carried out an optimization of the surfactant system and evaluated their performance in aqueous medium. Three different surfactants (CrodasolTM HS HP, SynperonicTM PE/F68, and CroduretTM 40) were studied and, for each of them, a 23 factorial design was stablished, with total lipids, % surfactant, and sonication time (min) as the input variables and particle size (nm), polydispersity index (PDI), and zeta potential (mV) as the response variables. Stable NLCs were obtained using CrodasolTM HS HP and SynperonicTM PE/F68 as surfactants. Through a comparison between NLCs developed with and without SRTM DMI, it was observed that besides helping the solubilization of butamben in the NLC core, this excipient helped in stabilizing the system and decreasing particle size. NLCs containing CrodasolTM HS HP and SynperonicTM PE/F68 presented particle size values in the nanometric scale, PDI values lower than 0.3, and zeta potentials above |10|mV. Concerning NLCs' stability, SBTB-NLC with SynperonicTM PE/F68 and butamben demonstrated stability over a 3-month period in aqueous medium. The remaining NLCs showed phase separation or precipitation during the 3-month analysis. Nevertheless, these formulations could be freeze-dried after preparation, which would avoid precipitation in an aqueous medium.
Collapse
Affiliation(s)
- Ananda P. Matarazzo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil;
| | - Carlos A. Rios
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Gabriela Gerônimo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-862, SP, Brazil; (G.G.); (E.d.P.)
| | - Roberta Ondei
- Croda Brazil, R. Croda, 580—Distrito Industrial, Campinas 13054-710, SP, Brazil;
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-862, SP, Brazil; (G.G.); (E.d.P.)
| | - Márcia C. Breitkreitz
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, SP, Brazil;
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| |
Collapse
|
5
|
Pant A, Singh G, Barnwal RP, Sharma T, Singh B. QbD-driven development and characterization of superparamagnetic iron oxide nanoparticles (SPIONS) of a bone-targeting peptide for early detection of osteoporosis. Int J Pharm 2024; 654:123936. [PMID: 38417727 DOI: 10.1016/j.ijpharm.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Osteoporosis is a metabolic disorder that leads to deterioration of bones. The major challenges confronting osteoporosis therapy include early-stage detection and regular disease monitoring. The present studies employed D-aspartic acid octapeptide (-D-Asp-)8 as bone-targeting peptide for evaluating osteoporosis manifestation, and superparamagnetic iron oxide nanoparticles (SPIONs) as nanocarriers for MRI-aided diagnosis. Thermal decomposition technique was employed to synthesize SPIONs, followed by surface-functionalization with hydrophilic ligands. Failure mode effect analysis and factor screening studies were performed to identify concentrations of SPIONs and ligand as critical material attributes, and systematic optimization was subsequently conducted employing face-centered cubic design. The optimum formulation was delineated using desirability function, and design space demarcated with 178.70 nm as hydrodynamic particle size, -24.40 mV as zeta potential, and 99.89 % as hydrophilic iron content as critical quality attributes. XRD patterns ratified lattice structure and SQUID studies corroborated superparamagnetic properties of hydrophilic SPIONs. Bioconjugation of (-D-Asp-)8 with SPIONs (1:1) was confirmed using UV spectroscopy, FTIR and NMR studies. Cell line studies indicated successful targeting of SPIONs to MG-63 human osteoblasts, ratifying enormous bone-targeting and safety potential of peptide-tethered SPIONs as MRI probes. In vivo MRI imaging studies in rats showcased promising contrast ability and safety of peptide-conjugated SPIONs.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140 401, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140 401, India.
| |
Collapse
|
6
|
Pant A, Sharma G, Saini S, Kaur G, Jain A, Thakur A, Singh B. QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: extensive in vitro and in vivo evaluation studies. Drug Deliv Transl Res 2024; 14:730-756. [PMID: 37768530 DOI: 10.1007/s13346-023-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Raloxifene (RLX) is popularly indicated in treatment of osteoporosis and prevention of breast cancer. Owing to its poor aqueous solubility, high pre-systemic metabolism, intestinal glucuronidation, and P-glycoprotein (P-gp) efflux, however, it demonstrates low (< 2%) and inconsistent oral bioavailability. The current work, Quality by Design (QbD)-driven development of phospholipid-embedded nanostructured lipidic carriers (NLCs) of RLX, accordingly, was undertaken to potentiate its lymphatic uptake, augment oral bioavailability, and possibly reduce drug dosage. Factor screening and failure mode effect analysis (FMEA) studies were performed to delineate high-risk factors using solid lipid (glyceryl monostearate), liquid lipid (vitamin E), and surfactant (Tween 80). Response surface optimization studies were performed employing the Box-Behnken design. Mathematical and graphical methods were adopted to embark upon the selection of optimized NLCs with various critical quality attributes (CQAs) of mean particle size as 186 nm, zeta potential of - 23.6 mV, entrapment efficiency of 80.09%, and cumulative drug release at 12 h of 83.87%. The DSC and FTIR studies, conducted on optimized NLCs, indicated successful entrapment of drug into the lipid matrix. In vitro drug release studies demonstrated Fickian diffusion mechanism. In vivo pharmacokinetic studies in rats construed significant improvement in AUC0-72 h (4.48-folds) and in Cmax (5.11-folds), unequivocally indicating markedly superior (p < 0.001) oral bioavailability of RLX-NLCs vis-à-vis marketed tablet formulation. Subsequently, level "A" in vitro/in vivo correlation (IVIVC) was also successfully attempted between the percentages of in vitro drug dissolved and of in vivo drug absorbed at the matching time points. In vitro cytotoxicity and cellular uptake studies also corroborated higher efficacy and successful localization of coumarin-6-loaded NLCs into MG-63 cells through microfluidic channels.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurjeet Kaur
- Department of Renal Transplant Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Atul Jain
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
7
|
Simões A, Veiga F, Vitorino C. Question-based review for pharmaceutical development: An enhanced quality approach. Eur J Pharm Biopharm 2024; 195:114174. [PMID: 38160986 DOI: 10.1016/j.ejpb.2023.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Over the last years, the pharmaceutical industry has faced real challenges regarding quality assurance. In this context, the establishment of more holistic approaches to the pharmaceutical development has been encouraged. The emergence of the Quality by Design (QbD) paradigm as systematic, scientific and risk-based methodology introduced a new concept of pharmaceutical quality. In essence, QbD can be interpreted as a strategy to maximize time and cost savings. An in-depth understanding of the formulation and manufacturing process is demanded to optimize the safety, efficacy and quality of a drug product at all stages of development. This innovative approach streamlines the pharmaceutical Research and Development (R&D) process, provides greater manufacturing flexibility and reduces regulatory burden. To assist in QbD implementation, International Conference on Harmonisation (ICH), U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) organized and launched QbD principles in their guidance for industry, identifying key concepts and tools to design and develop a high-quality drug product. Despite the undeniable advantages of the QbD approach, and the widespread information on QbD regulatory expectations, its full implementation in the pharmaceutical field is still limited. The present review aims to establish a crosswise overview on the current application status of QbD within the framework of the ICH guidelines (ICH Q8(R2) - Q14 and ICH Q2(R2)). Moreover, it outlines the way information gathered from the QbD methodology is being harmonized in Marketing Authorization Applications (MAAs) for European market approval. This work also highlights the challenges that hinder the deployment of the QbD strategy as a standard practice.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra, Portugal.
| |
Collapse
|
8
|
Islamie R, Myint SLL, Rojanaratha T, Ritthidej G, Wanakhachornkrai O, Wattanathamsan O, Rodsiri R. Neuroprotective effect of nose-to-brain delivery of Asiatic acid in solid lipid nanoparticles and its mechanisms against memory dysfunction induced by Amyloid Beta 1-42 in mice. BMC Complement Med Ther 2023; 23:294. [PMID: 37608290 PMCID: PMC10464452 DOI: 10.1186/s12906-023-04125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Amyloid-β1-42 (Aβ1-42) plays an essential role in the development of the early stage of Alzheimer's disease (AD). Asiatic acid (AA), an active compound in Centella asiatica L, exhibit neuroprotective properties in previous studies. Due to its low bioavailability, the nose-to-brain delivery technique was used to enhance AA penetration in the brain. In this study, AA was also loaded in solid lipid nanoparticles (SLNs) as a strategy to increase its absorption in the nasal cavity. METHODS Memory impairment was induced via direct intracerebroventricular injection of Aβ1-42 oligomer into mouse brain. The neuroprotective effect and potential underlying mechanisms were investigated using several memory behavioral examinations and molecular techniques. RESULTS The intranasal administration of AA in SLNs attenuated learning and memory impairment induced by Aβ1-42 in Morris water maze and novel object recognition tests. AA significantly inhibited tau hyperphosphorylation of pTau-S396 and pTau-T231 and prevented astrocyte reactivity and microglial activation in the hippocampus of Aβ1-42-treated mice. It is also decreased the high levels of IL-1β, TNF-α, and malondialdehyde (MDA) in mouse brain. CONCLUSIONS These results suggested that nose-to-brain delivery of AA in SLNs could be a promising strategy to treat the early stage of AD.
Collapse
Affiliation(s)
- Ridho Islamie
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Su Lwin Lwin Myint
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tissana Rojanaratha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Oraphan Wanakhachornkrai
- Physiology Unit, Department of Medical Sciences, Faculty of Sciences, Rangsit University, Pathumthani, 12000, Thailand
| | - Onsurang Wattanathamsan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Ghazwani M, Hani U, Alqarni MH, Alam A. Beta Caryophyllene-Loaded Nanostructured Lipid Carriers for Topical Management of Skin Disorders: Statistical Optimization, In Vitro and Dermatokinetic Evaluation. Gels 2023; 9:550. [PMID: 37504429 PMCID: PMC10378941 DOI: 10.3390/gels9070550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
This work aimed to overcome the disadvantages of the oral administration of beta-caryophyllene and boost efficiency by developing a nanostructured lipid carrier for topical administration of the drug in skin disorders. The heat emulsification method was utilized to produce beta-caryophyllene-loaded nanostructured lipid carriers. The newly created formulation was examined for its particle size, entrapment efficiency, and zeta potential after being improved using the Box-Behnken Design. The chosen formulation underwent tests to determine its ex vivo skin retention, dermatokinetic, in vitro release, antioxidant, and confocal laser scanning microscopy study. The findings of the characterization of the nanostructured lipid carriers demonstrated that the particles had a spherical form and a size of 210.86 nm (0.263 polydispersity index). The entrapment efficiency was determined to be 86.74%, and the zeta potential was measured to be -26.97 mV. The in vitro release investigation showed that nanostructure lipid carriers were capable of releasing regulated amounts of beta-caryophyllene for up to 24 hrs. In comparison to the traditional gel formulation, the ex vivo investigation demonstrated a 1.94-fold increase in the skin's capacity to retain the substance. According to the findings of the study, nanostructure lipid carriers loaded with beta-caryophyllene have the potential to be investigated for use as a topical administration method in skin disorders with enhanced skin retention and effectiveness.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
10
|
Ibrahim SS. Nanostructured Lipid Carriers for Oral Delivery of a Corticosteroid: Role of Formulation on Biopharmaceutical Performance. J Pharm Sci 2023; 112:790-797. [PMID: 36270540 DOI: 10.1016/j.xphs.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Corticosteroids are potent anti-inflammatory and immunosuppressive drugs widely used world-wide for treatment of diverse conditions. However, their use is restricted by their poor bioavailability and high risk-benefit ratio. Therefore, the aim of this study was to develop nanostructred lipid carriers (NLC) of prednisolone acetate (PA) to improve the drug's therapeutic outcome by altering its pharmacokinetic profile and/or allow preferential targeting to inflammatory tissues. PA-loaded NLCs were formulated by solvent injection method using Compritol (solid lipid), oleic acid (liquid lipid) and Tween 80 or Pluronic F68 (surfactant). Formulation conditions, such as liquid lipid concentration, total lipids, drug:lipid ratio and surfactant type were optimized based on particle size (PS), polydispersity index (PDI), and encapsulation efficiency (EE%) results. Optimized formulation was further characterized for its surface morphology, thermal properties, storage stability and anti-inflammatory activity in an animal acute inflammation model. Selected NLCs displayed PS of 170.7 nm, EE% of 67.4%, sustained release over 72 h and good stability for 30 days at refrigeration conditions. PA NLCs displayed superior anti-inflammatory activity of 83.9 ± 4.46% compared to PA suspension (40.5 ± 7.03%) and drug-free NLCs (54.7 ± 6.12%). The current work delineates the potential of NLCs for distinctly improved biopharmaceutical performance of PA.
Collapse
Affiliation(s)
- Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
11
|
Bhatt HN, Pena-Zacarias J, Beaven E, Zahid MI, Ahmad SS, Diwan R, Nurunnabi M. Potential and Progress of 2D Materials in Photomedicine for Cancer Treatment. ACS APPLIED BIO MATERIALS 2023; 6:365-383. [PMID: 36753355 PMCID: PMC9975046 DOI: 10.1021/acsabm.2c00981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Over the last decades, photomedicine has made a significant impact and progress in treating superficial cancer. With tremendous efforts many of the technologies have entered clinical trials. Photothermal agents (PTAs) have been considered as emerging candidates for accelerating the outcome from photomedicine based cancer treatment. Besides various inorganic and organic candidates, 2D materials such as graphene, boron nitride, and molybdenum disulfide have shown significant potential for photothermal therapy (PTT). The properties such as high surface area to volume, biocompatibility, stability in physiological media, ease of synthesis and functionalization, and high photothermal conversion efficiency have made 2D nanomaterials wonderful candidates for PTT to treat cancer. The targeting or localized activation could be achieved when PTT is combined with chemotherapies, immunotherapies, or photodynamic therapy (PDT) to provide better outcomes with fewer side effects. Though significant development has been made in the field of phototherapeutic drugs, several challenges have restricted the use of PTT in clinical use and hence they have not yet been tested in large clinical trials. In this review, we attempted to discuss the progress, properties, applications, and challenges of 2D materials in the field of PTT and their application in photomedicine.
Collapse
Affiliation(s)
- Himanshu N. Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Jaqueline Pena-Zacarias
- Department of Biological Sciences, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Elfa Beaven
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Ikhtiar Zahid
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Sheikh Shafin Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, Environmental Science & Engineering, and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
12
|
Nanogels: Update on the methods of synthesis and applications for cardiovascular and neurological complications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zafar A, Awad Alsaidan O, Alruwaili NK, Sarim Imam S, Yasir M, Saad Alharbi K, Singh L, Muqtader Ahmed M. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation. Int J Pharm 2022; 627:122232. [PMID: 36155794 DOI: 10.1016/j.ijpharm.2022.122232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
The objective of the present research was to develop, optimize, and evaluate rotigotine (RT)-loaded chitosan (CH) coated nanostructured lipid carriers (RT-CH-NLCs) for nose-to-brain delivery. The NLCs were prepared by homogenization and sonication technique as well as optimized by using three factors at three-level Box-Behnken design. The prepared NLCs were evaluated for particle size, zeta potential, entrapment efficiency, drug release, and ex vivo permeation. The pharmacokinetic study was conducted on albino Wistar rats to evaluate the bioavailability and neuropharmacokinetic parameters after intranasal administration of the optimized formulation (RT-CH-NLCs-OPT). The optimized formulation showed the particle size (170.48 ± 8.37 nm), PDI (0.19 ± 0.03), zeta potential (+ 26.73 mV), and entrapment efficiency (82.37 ± 2.48 %). In vitro drug release study displayed a sustained drug release pattern from RT-CH-NLCs-OPT (86.73±8.58 % in 24 h) in comparison to RT-Dis (98.61±7.24 % in 16 h). The permeability coefficient (PC) was found to be 11.39 ± 1.08×10-4 cm.h-1 and 2.34 folds higher than RT-Dis (4.85±1.53×10-4 cm.h-1). The relative bioavailability of RT from RT-CH-NLCs-OPT was 3.2-fold greater as compared to RT-Dis. The absolute bioavailability of RT after intranasal administration of RT-CH-NLCs-OPT was 2.1-fold higher than RT-CH-NLCs-OPT administered intravenously. The brain targeting and targeting potential was displayed by DTE (422.03 %) and DTP (76.03 %) after intranasal administration of RT-CH-NLCs-OPT as compared to RT-Dis (DTE 173.91 % and DTP 59.97 %). Furthermore, confocal laser scanning microscopy results confirmed better brain targeting for RT-CH-NLCs-OPT as compared to RT-Dis. From these findings, it could be concluded that RT-CH-NLCs could serve as a promising strategy for targeting RT through the intranasal route.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia.
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella 396, Ethiopia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, UP 250005, India
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
14
|
Zhang YB, Xu D, Bai L, Zhou YM, Zhang H, Cui YL. A Review of Non-Invasive Drug Delivery through Respiratory Routes. Pharmaceutics 2022; 14:1974. [PMID: 36145722 PMCID: PMC9506287 DOI: 10.3390/pharmaceutics14091974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
With rapid and non-invasive characteristics, the respiratory route of administration has drawn significant attention compared with the limitations of conventional routes. Respiratory delivery can bypass the physiological barrier to achieve local and systemic disease treatment. A scientometric analysis and review were used to analyze how respiratory delivery can contribute to local and systemic therapy. The literature data obtained from the Web of Science Core Collection database showed an increasing worldwide tendency toward respiratory delivery from 1998 to 2020. Keywords analysis suggested that nasal and pulmonary drug delivery are the leading research topics in respiratory delivery. Based on the results of scientometric analysis, the research hotspots mainly included therapy for central nervous systems (CNS) disorders (Parkinson's disease, Alzheimer's disease, depression, glioblastoma, and epilepsy), tracheal and bronchial or lung diseases (chronic obstructive pulmonary disease, asthma, acute lung injury or respiratory distress syndrome, lung cancer, and idiopathic pulmonary fibrosis), and systemic diseases (diabetes and COVID-19). The study of advanced preparations contained nano drug delivery systems of the respiratory route, drug delivery barriers investigation (blood-brain barrier, BBB), and chitosan-based biomaterials for respiratory delivery. These results provided researchers with future research directions related to respiratory delivery.
Collapse
Affiliation(s)
- Yong-Bo Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Lu Bai
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan-Ming Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
15
|
Bajwa N, Mahal S, Naryal S, Singh PA, Baldi A. Development of Novel Solid Nanostructured Lipid Carriers for Bioavailability Enhancement Using a Quality by Design Approach. AAPS PharmSciTech 2022; 23:253. [DOI: 10.1208/s12249-022-02386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022] Open
|
16
|
Quality by Design (QbD) application for the pharmaceutical development process. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Yasir M, Zafar A, Noorulla KM, Tura AJ, Sara UVS, Panjwani D, Khalid M, Haji MJ, Gobena WG, Gebissa T, Dalecha DD. Nose to brain delivery of donepezil through surface modified NLCs: Formulation development, optimization, and brain targeting study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Thymoquinone-Enriched Naringenin-Loaded Nanostructured Lipid Carrier for Brain Delivery via Nasal Route: In Vitro Prospect and In Vivo Therapeutic Efficacy for the Treatment of Depression. Pharmaceutics 2022; 14:pharmaceutics14030656. [PMID: 35336030 PMCID: PMC8953208 DOI: 10.3390/pharmaceutics14030656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
In the current research, a thymoquinone-enriched naringenin (NGN)-loaded nanostructured lipid carrier (NLC) was developed and delivered via the nasal route for depression. Thymoquinone (TQ) oil was used as the liquid lipid and provided synergistic effects. A TQ- and NGN-enriched NLC was developed via the ultrasonication technique and optimized using a central composite rotatable design (CCRD). The optimized NLC exhibited the following properties: droplet size, 84.17 to 86.71 nm; PDI, 0.258 to 0.271; zeta potential, −8.15 to −8.21 mV; and % EE, 87.58 to 88.21%. The in vitro drug release profile showed the supremacy of the TQ-NGN-NLC in comparison to the NGN suspension, with a cumulative drug release of 82.42 ± 1.88% from the NLC and 38.20 ± 0.82% from the drug suspension. Ex vivo permeation study displayed a 2.21-fold increase in nasal permeation of NGN from the NLC compared to the NGN suspension. DPPH study showed the better antioxidant potential of the TQ-NGN-NLC in comparison to NGN alone due to the synergistic effect of NGN and TQ oil. CLSM images revealed deeper permeation of the NGN-NLC (39.9 µm) through the nasal mucosa in comparison to the NGN suspension (20 µm). Pharmacodynamic studies, such as the forced swim test and the locomotor activity test, were assessed in the depressed rat model, which revealed the remarkable antidepressant effect of the TQ-NGN-NLC in comparison to the NGN suspension and the marketed formulation. The results signify the potential of the TQ-enriched NGN-NLC in enhancing brain delivery and the therapeutic effect of NGN for depression treatment.
Collapse
|
19
|
Abo El-Enin HA, Elkomy MH, Naguib IA, Ahmed MF, Alsaidan OA, Alsalahat I, Ghoneim MM, Eid HM. Lipid Nanocarriers Overlaid with Chitosan for Brain Delivery of Berberine via the Nasal Route. Pharmaceuticals (Basel) 2022; 15:281. [PMID: 35337079 PMCID: PMC8955068 DOI: 10.3390/ph15030281] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
This research aimed to design, optimize, and evaluate berberine-laden nanostructured lipid carriers overlaid with chitosan (BER-CTS-NLCs) for efficient brain delivery via the intranasal route. The nanostructured lipid carriers containing berberine (BER-NLCs) were formulated via hot homogenization and ultrasonication strategy and optimized for the influence of a variety of causal variables, including the amount of glycerol monostearate (solid lipid), poloxamer 407 (surfactant) concentration, and oleic acid (liquid lipid) amount, on size of the particles, entrapment, and the total drug release after 24 h. The optimal BER-NLCs formulation was then coated with chitosan. Their diameter, in vitro release, surface charge, morphology, ex vivo permeability, pH, histological, and in vivo (pharmacokinetics and brain uptake) parameters were estimated. BER-CTS-NLCs had a size of 180.9 ± 4.3 nm, sustained-release properties, positive surface charge of 36.8 mV, and augmented ex-vivo permeation via nasal mucosa. The histopathological assessment revealed that the BER-CTS-NLCs system is safe for nasal delivery. Pharmacokinetic and brain accumulation experiments showed that animals treated intranasally with BER-CTS-NLCs had substantially greater drug levels in the brain. The ratios of BER brain/blood levels at 30 min, AUCbrain/AUCblood, drug transport percentage, and drug targeting efficiency for BER-CTS-NLCs (IN) were higher compared to BER solution (IN), suggesting enhanced brain targeting. The optimized nanoparticulate system is speculated to be a successful approach for boosting the effect of BER in treating CNS diseases, such as Alzheimer's disease, through intranasal therapy.
Collapse
Affiliation(s)
- Hadel A. Abo El-Enin
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka 72341, Saudi Arabia;
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Omar A. Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka 72341, Saudi Arabia;
| | - Izzeddin Alsalahat
- Complement Biology Group, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK;
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, P.O. Box 71666, Ad Diriyah 13713, Saudi Arabia;
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
20
|
Rajput A, Butani S. Donepezil HCl Liposomes: Development, Characterization, Cytotoxicity, and Pharmacokinetic Study. AAPS PharmSciTech 2022; 23:74. [PMID: 35149912 DOI: 10.1208/s12249-022-02209-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/04/2022] [Indexed: 01/24/2023] Open
Abstract
The current research work aims to study the pharmacokinetic and nasal ciliotoxicity of donepezil liposome-based in situ gel to treat Alzheimer's disease. The physicochemical properties and first-pass metabolism of donepezil HCl result in low concentrations reaching the brain post oral administration. To overcome this problem, donepezil HCl-loaded liposomes were formulated using the ethanol injection method. The donepezil HCl-loaded liposomes were spherical with a size of 103 ± 6.2 nm, polydispersity index of 0.108 ± 0.008, and entrapment efficiency of 93 ± 5.33 %. The optimized in situ gel with donepezil HCl-loaded liposomes showed 80.11 ± 7.77 % drug permeation than donepezil HCl solution-based in situ gel (13.12 ± 4.84 %) across sheep nasal mucosa. The nasal ciliotoxicity study indicated the safety of developed formulation for administration via nasal route. The pharmacokinetics and biodistribution study of developed formulation showed higher drug concentration (1239.61 ± 123.60 pg/g) in the brain after nasal administration indicating its better potential via the nasal pathway. To treat Alzheimer's disease, the administration of liposome-based in situ gel through the nasal pathway can therefore be considered as an effective and promising mode of drug delivery.
Collapse
|
21
|
Tripathi S, Gupta U, Ujjwal RR, Yadav AK. Nano-lipidic formulation and therapeutic strategies for Alzheimer's disease via intranasal route. J Microencapsul 2021; 38:572-593. [PMID: 34591731 DOI: 10.1080/02652048.2021.1986585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The inability of drug molecules to cross the 'Blood-Brain Barrier' restrict the effective treatment of Alzheimer's disease. Lipid nanocarriers have proven to be a novel paradigm in brain targeting of bioactive by facilitating suitable therapeutic concentrations to be attained in the brain. METHODS The relevant information regarding the title of this review article was collected from the peer-reviewed published articles. Also, the physicochemical properties, and their in vitro and in vivo evaluations were presented in this review article. RESULTS Administration of lipid-based nano-carriers have abilities to target the brain, improve the pharmacokinetic and pharmacodynamics properties of drugs, and mitigate the side effects of encapsulated therapeutic active agents. CONCLUSION Unlike oral and other routes, the Intranasal route promises high bioavailability, low first-pass effect, better pharmacokinetic properties, bypass of the systemic circulation, fewer incidences of unwanted side effects, and direct delivery of anti-AD drugs to the brain via circumventing 'Blood-Brain Barrier'.
Collapse
Affiliation(s)
- Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| |
Collapse
|
22
|
Statistical design of experiment-based formulation development and optimization of 3D printed oral controlled release drug delivery with multi target product profile. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00542-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Costa CP, Cunha S, Moreira JN, Silva R, Gil-Martins E, Silva V, Azevedo L, Peixoto AF, Sousa Lobo JM, Silva AC. Quality by design (QbD) optimization of diazepam-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery: Toxicological effect of surface charge on human neuronal cells. Int J Pharm 2021; 607:120933. [PMID: 34324988 DOI: 10.1016/j.ijpharm.2021.120933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
Diazepam is commonly used in the management of epileptic seizures, although it has limitations that can be overcome by using formulations that are easier to administer and capable of directing the drug to the brain. In this field, it has been reported that the use of nanostructured lipid carriers (NLC) via intranasal (or via nose-to-brain) promotes the targeting of drugs to the brain, improving the effectiveness of therapy. The aim of this work was to optimize two diazepam-loaded NLC formulations for nose-to-brain delivery, one with positive surface charge and one with negative surface charge. The quality by design (QbD) approach was used to design the experiments, where the quality target product profile (QTPP), the risk assessment and the critical quality attributes (CQAs) were defined to ensure safety, efficacy and quality of the final formulations. The experiments started with the optimization of critical material attributes (CMAs), related to the ratios of lipids and emulsifiers, followed by the selection of critical process parameters (CPPs), related to the production methods of the diazepam-loaded NLC formulation (ultrasound technique and high-pressure homogenization - HPH). Afterwards, the positive surface charge of the diazepam-loaded NLC was optimized. Finally, the biocompatibility with human neuronal cells of the formulation with a negative surface charge and of the formulation with a positive surface charge was evaluated. The results of the optimization of the CMAs showed that the ratios of lipids and emulsifiers more adequate were 6.7:2.9 and 4.2:0.3 (% w,w), respectively. Regarding the CPPs, HPH was considered the most suitable production method, resulting in an optimized diazepam-loaded NLC formulation (F1C15) with negative surface charge, showing particle size of 69.59 ± 0.22 nm, polydispersity index (PDI) of 0.19 ± 0.00, zeta potential (ZP) of -23.50 ± 0.24 mV and encapsulation efficiency (EE) of 96.60 ± 0.03 %. The optimized diazepam-loaded NLC formulation (F2A8) with positive surface charge had particle size of 124.40 ± 0.84 nm, PDI of 0.17 ± 0.01, ZP of 32.60 ± 1.13 mV and EE of 95.76 ± 0.24 %. In addition, the incorporation of diazepam in NLC resulted in a sustained release of the drug. No significant changes in particle size, PDI, ZP and EE were observed for the formulation F1C15, after 3 months of storage, whereas for formulation F2A8, particle size increased significantly. Biocompatibility studies showed that the formulation F2A8 was more cytotoxic than the formulation F1C15. Thereby, we conclude that the formulation F1C15 is more suitable for targeting the brain, when compared with the formulation F2A8. From the results of these studies, it can be confirmed that the QbD approach is an adequate and central tool to optimize NLC formulations.
Collapse
Affiliation(s)
- C P Costa
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - S Cunha
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Pólo I), University of Coimbra, 3004-531 Coimbra, Portugal; UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - E Gil-Martins
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - V Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - L Azevedo
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - A F Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - J M Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - A C Silva
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; FP-ENAS (UFP Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal.
| |
Collapse
|
25
|
Pinto CM, Horta LS, Soares AP, Carvalho BA, Ferreira E, Lages EB, Ferreira LAM, Faraco AAG, Santiago HC, Goulart GAC. Nanoencapsulated Doxorubicin Prevents Mucositis Development in Mice. Pharmaceutics 2021; 13:1021. [PMID: 34371713 PMCID: PMC8329927 DOI: 10.3390/pharmaceutics13071021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin (DOX), a chemotherapy drug successfully used in the therapy of various types of cancer, is currently associated with the mucositis development, an inflammation that can cause ulcerative lesions in the mucosa of the gastrointestinal tract, abdominal pain and secondary infections. To increase the safety of the chemotherapy, we loaded DOX into nanostructured lipid carriers (NLCs). The NLC-DOX was characterized by HPLC, DLS, NTA, Zeta potential, FTIR, DSC, TEM and cryogenic-TEM. The ability of NLC-DOX to control the DOX release was evaluated through in vitro release studies. Moreover, the effect of NLC-DOX on intestinal mucosa was compared to a free DOX solution in C57BL/6 mice. The NLC-DOX showed spherical shape, high drug encapsulation efficiency (84.8 ± 4.6%), high drug loading (55.2 ± 3.4 mg/g) and low average diameter (66.0-78.8 nm). The DSC and FTIR analyses showed high interaction between the NLC components, resulting in controlled drug release. Treatment with NLC-DOX attenuated DOX-induced mucositis in mice, improving shortening on villus height and crypt depth, decreased inflammatory parameters, preserved intestinal permeability and increased expression of tight junctions (ZO-1 and Ocludin). These results indicated that encapsulation of DOX in NLCs is viable and reduces the drug toxicity to mucosal structures.
Collapse
Affiliation(s)
- Cristiane M. Pinto
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| | - Laila S. Horta
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.S.H.); (H.C.S.)
| | - Amanda P. Soares
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.S.H.); (H.C.S.)
| | - Bárbara A. Carvalho
- Department of General Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (B.A.C.); (E.F.)
| | - Enio Ferreira
- Department of General Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (B.A.C.); (E.F.)
| | - Eduardo B. Lages
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| | - Lucas A. M. Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| | - André A. G. Faraco
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| | - Helton C. Santiago
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.S.H.); (H.C.S.)
| | - Gisele A. C. Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| |
Collapse
|
26
|
Dacoba TG, Ruiz-Gatón L, Benito A, Klein M, Dupin D, Luo M, Menta M, Teijeiro-Osorio D, Loinaz I, Alonso MJ, Crecente-Campo J. Technological challenges in the preclinical development of an HIV nanovaccine candidate. Drug Deliv Transl Res 2021; 10:621-634. [PMID: 32040775 DOI: 10.1007/s13346-020-00721-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite a very active research in the field of nanomedicine, only a few nano-based drug delivery systems have reached the market. The "death valley" between research and commercialization has been partially attributed to the limited characterization and reproducibility of the nanoformulations. Our group has previously reported the potential of a peptide-based nanovaccine candidate for the prevention of SIV infection in macaques. This vaccine candidate is composed of chitosan/dextran sulfate nanoparticles containing twelve SIV peptide antigens. The aim of this work was to rigorously characterize one of these nanoformulations containing a specific peptide, following a quality-by-design approach. The evaluation of the different quality attributes was performed by several complementary techniques, such as dynamic light scattering, nanoparticle tracking analysis, and electron microscopy for particle size characterization. The inter-batch reproducibility was validated by three independent laboratories. Finally, the long-term stability and scalability of the manufacturing technique were assessed. Overall, these data, together with the in vivo efficacy results obtained in macaques, underline the promise this new vaccine holds with regard to its translation to clinical trials. Graphical abstract.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Luisa Ruiz-Gatón
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, 20014, Donostia-San Sebastián, Spain
| | - Ana Benito
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, 20014, Donostia-San Sebastián, Spain
| | - Marlène Klein
- Ultra Trace Analyses Aquitaine (UT2A/ADERA), Technopôle Hélioparc Pau-Pyrénées, 64053, Pau Cedex 9, France
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, 20014, Donostia-San Sebastián, Spain
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mathieu Menta
- Ultra Trace Analyses Aquitaine (UT2A/ADERA), Technopôle Hélioparc Pau-Pyrénées, 64053, Pau Cedex 9, France
| | - Desirée Teijeiro-Osorio
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, 20014, Donostia-San Sebastián, Spain
| | - María J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
27
|
Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep 2021; 73:806-819. [PMID: 33826133 DOI: 10.1007/s43440-021-00220-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The objective of the present study was co-delivery of venlafaxin (VEN) and doxycycline (DOX), a matrix metalloproteinase inhibitor drug, for alleviating inflammation and neuropathy in diabetic foot ulcer (DFU). METHODS Bacterial cellulose nanofiber sheets (BCNS) were loaded with DOX and VEN and categorized by their loading efficiency, release profiles and ex vivo permeation throughrat skin. The optimized nanofibers were used in patients with DFU to compare with the standard wound care regimen during a 12-week trial. Wound area was measured every 2 weeks. Biochemical parameters and microscopic studies of the skin were examined prior and at the end of the treatment. The Michigan Neuropathy Screening Instrument (MNSI) questionnaire was utilized to assess diabetic neuropathy. RESULTS The optimum formulation showed loading efficiency of 37.8 ± 1.6% for DOX and 48 ± 1.9% for VEN. Rat skin permeation was 40% for DOX after 7-29 h and 83% for VEN during 105 h. Patients treated with BCNS showed no significant difference in their biochemical parameters before and after intervention. The ulcer size showed faster reduction after 12 weeks in the treatment group compared to the control group. The abnormal responses in the MNSI questionnaire decreased and pain-free walking distance increased significantly in the treatment group compared with the control group (p < 0.001). Microscopic studies of the skin after using nanofibers showed a large number of polymorphonuclear chronic inflammatory cells and formation of new capillary beds. CONCLUSIONS The BCNS loaded with DOX and VEN may expedite healing and reduce neuropathy in the DFU of diabetic patients.
Collapse
Affiliation(s)
| | - Sana Chegini
- Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Masoud Amini
- Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
28
|
Shah B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Taymouri S, Minaiyan M, Ebrahimi F, Tavakoli N. In-vitro and in-vivo evaluation of chitosan-based thermosensitive gel containing lorazepam NLCs for the treatment of status epilepticus. IET Nanobiotechnol 2021; 14:148-154. [PMID: 32433032 DOI: 10.1049/iet-nbt.2019.0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to develop an in-situ gel containing lorazepam (LZM) loaded nanostructured lipid carriers (NLCs) for direct nose-to-brain delivery in order to increase drug therapeutic efficacy in the treatment of epilepsy. Accordingly, LZM loaded NLCs were formulated using emulsification solvent diffusion and evaporation method; then the effects of the formulation variables on different physicochemical characteristics of NLCs were investigated. Thermosensitive in-situ gels containing LZM-NLCs were prepared using a combination of chitosan and β-glycerol phosphate (β-GP). The anticonvulsant efficacy of LZM-NLCs-Gel was then examined using the pentylenetetrazole (PTZ) model. The optimised NLCs were spherical, showing the particle size of 71.70 ± 5.16 nm and the zeta potential of -20.06 ± 2.70 mV. The pH and gelation time for the chitosan solution with 15% (w/v) β-GP were determined to be 7.12 ± 0.03 and 5.33 ± 0.58 min, respectively. The in-vivo findings showed that compared with the control group and the group that received LZM-Gel, the occurrence of PTZ-induced seizures in the rats was significantly reduced by LZM-NLCs-Gel after intranasal administration. These results, therefore, suggested that the LZM-NLCs-Gel system could have potential applications for brain targeting through nasal route and might increase LZM therapeutic efficacy in the treatment of epilepsy.
Collapse
Affiliation(s)
- Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Ebrahimi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naser Tavakoli
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
30
|
Khan SA, Rehman S, Nabi B, Iqubal A, Nehal N, Fahmy UA, Kotta S, Baboota S, Md S, Ali J. Boosting the Brain Delivery of Atazanavir through Nanostructured Lipid Carrier-Based Approach for Mitigating NeuroAIDS. Pharmaceutics 2020; 12:pharmaceutics12111059. [PMID: 33172119 PMCID: PMC7694775 DOI: 10.3390/pharmaceutics12111059] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023] Open
Abstract
Atazanavir (ATZ) presents poor brain availability when administered orally, which poses a major hurdle in its use as an effective therapy for the management of NeuroAIDS. The utilization of nanostructured lipid carriers (NLCs) in conjunction with the premeditated use of excipients can be a potential approach for overcoming the limited ATZ brain delivery. Methods: ATZ-loaded NLC was formulated using the quality by design-enabled approach and further optimized by employing the Box–Behnken design. The optimized nanoformulation was then characterized for several in vitro and in vivo assessments. Results: The optimized NLC showed small particle size of 227.6 ± 5.4 nm, high entrapment efficiency (71.09% ± 5.84%) and high drug loading capacity (8.12% ± 2.7%). The release pattern was observed to be biphasic exhibiting fast release (60%) during the initial 2 h, then trailed by the sustained release. ATZ-NLC demonstrated a 2.36-fold increase in the cumulative drug permeated across the rat intestine as compared to suspension. Pharmacokinetic studies revealed 2.75-folds greater Cmax in the brain and 4-fold improvement in brain bioavailability signifying the superiority of NLC formulation over drug suspension. Conclusion: Thus, NLC could be a promising avenue for encapsulating hydrophobic drugs and delivering it to their target site. The results suggested that increase in bioavailability and brain-targeted delivery by NLC, in all plausibility, help in improving the therapeutic prospects of atazanavir.
Collapse
Affiliation(s)
- Saif Ahmad Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.K.); (S.M.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.K.); (S.M.)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.K.); (S.M.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
- Correspondence: ; Tel.: +91-981-1312-247; Fax: +91-11-2605-9663
| |
Collapse
|
31
|
Rehman S, Nabi B, Baboota S, Ali J. Tailoring lipid nanoconstructs for the oral delivery of paliperidone: Formulation, optimization and in vitro evaluation. Chem Phys Lipids 2020; 234:105005. [PMID: 33144070 DOI: 10.1016/j.chemphyslip.2020.105005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The present research work involves Quality by Design (QbD)-based fabrication of lipid nanoconstructs (LNC) of paliperidone (PPD) bearing superior biopharmaceutical attributes. METHODS LNC of paliperidone was prepared by melt emulsification-probe sonication and high-pressure homogenization method followed by optimization using QbD approach. Preparing LNC by both these methods will give the benefit of identifying the best optimized formulation which will be further evaluated for in vitro studies. RESULTS The best optimized formulation was obtained using melt emulsification-probe sonication technique with small particle size (86.35 nm), high entrapment efficiency (90.07 %), and high loading capacity (8.49 %). The drug release from LNC was found to be 5, 8, and 9-folds greater than drug suspension in pH 1.2, 6.8, and 7.4 respectively (p < 0.001). Stability studies of LNC in simulated gastric fluid pH 1.2 and fasted state simulated intestinal fluid depicted no alteration in particle size and polydispersity index of LNC but were found to increase in fed state simulated intestinal fluid. The drug permeability through rat intestine for LNC was found to be approximately 6-folds (p < 0.05) greater as compared to the drug suspension which was further confirmed by confocal microscopy. The in vitro lipolysis study presented significantly highest solubilization (p < 0.001) in the aqueous phase thereby anticipating higher in vivo absorption. CONCLUSION Thus, it was concluded that LNC bears the knack of improving the solubilization and permeation potential of an otherwise hydrophobic drug, paliperidone."
Collapse
Affiliation(s)
- Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
32
|
Development of Metronidazole Loaded Chitosan Nanoparticles Using QbD Approach-A Novel and Potential Antibacterial Formulation. Pharmaceutics 2020; 12:pharmaceutics12100920. [PMID: 32992903 PMCID: PMC7601138 DOI: 10.3390/pharmaceutics12100920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to design, optimize, and develop metronidazole (Met) loaded nanoparticles (MetNp) by employing quality-based design (QbD) as well as a risk assessment methodology. A fractional factorial design was used by selecting five independent variables viz., chitosan concentration, tripolyphosphate concentration, and acetic acid concentration as material attributes, stirring speed, and stirring time as process parameters, whereby their influence on two dependent variables such as particle size (PS) and %entrapment efficiency (%EE) was studied. MetNp were synthesized by employing an ionic-gelation technique and optimized formula obtained from the QbD design study. PS and %EE studies revealed the formation of MetNp with 558.06 ± 2.52 nm and 59.07 ± 2.15%, respectively. Furthermore, a Met release study in various simulated gastro-intestinal media suggested pH-triggered (pH > 7.0) and sustained release profile of Met from Eudragit S100 enteric-coated MetNp capsule (MetNp cap). Moreover, the stability investigation of formulations confirmed good stability with respect to their PS and residual drug content (RDC) at different temperature conditions. In conclusion, the QbD method was effectively utilized in the development of MetNp and enteric-coated MetNp cap depicting their potential to release Met through MetNp cap only in the colon region and can be utilized for the treatment of amoebiasis in the colon.
Collapse
|
33
|
Development of mirtazapine loaded solid lipid nanoparticles for topical delivery: Optimization, characterization and cytotoxicity evaluation. Int J Pharm 2020; 586:119439. [PMID: 32622808 DOI: 10.1016/j.ijpharm.2020.119439] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 11/20/2022]
Abstract
Mirtazapine, an antidepressant drug has been proved to exert antipruritic effect upon oral administration in numerous clinical trial studies. The objective of the current study was to develop mirtazapine loaded solid lipid nanoparticles (SLNs) and evaluate its potential as a topical drug delivery system for management of pruritus. Mirtazapine loaded SLNs were successfully developed and optimized applying Box-Behnken design. The optimized mirtazapine loaded SLNs were characterized for physicochemical parameters and morphology. The in vitro cytotoxicity and cellular uptake studies of optimized SLNs were performed in human epithelial A-431 cell line. Further, the optimized mirtazapine loaded SLNs dispersion was incorporated into gel and characterized for rheology and texture analysis. The particle size and PDI of optimized mirtazapine loaded was found to be 180.3 nm and 0.209 respectively. The cytotoxicity studies revealed the safety of mirtazapine loaded SLNs on topical administration. The developed gel showed pseudoplastic flow behavior and good textural profile. The in vitro drug release studies showed that the developed mirtazapine loaded SLNs dispersion and its gel followed Korsmeyer-Peppas model (R2 = 0.905) and Higuchi model (R2 = 0.928) respectively. The ex vivo drug permeation studies showed higher values for mean cumulative amount of drug released (548.25 ± 29.29 μg/cm2), permeation flux (45.10 ± 0.78 μg/cm2/h) and skin retention (11.33 ± 0.85%) of SLNs gel in comparison to pure drug gel. The stability studies indicate the stability of SLNs gel for three months at refrigerated and ambient temperatures. Therefore, abovementioned findings suggest that mirtazapine loaded SLNs could be a potential system for topical management of pruritus.
Collapse
|
34
|
Salem LH, El-Feky GS, Fahmy RH, El Gazayerly ON, Abdelbary A. Coated Lipidic Nanoparticles as a New Strategy for Enhancing Nose-to-Brain Delivery of a Hydrophilic Drug Molecule. J Pharm Sci 2020; 109:2237-2251. [DOI: 10.1016/j.xphs.2020.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
|
35
|
Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, Sousa Lobo JM, Silva AC. Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental Parameters. Pharmaceutics 2020; 12:E599. [PMID: 32605177 PMCID: PMC7407548 DOI: 10.3390/pharmaceutics12070599] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Rivastigmine is a drug commonly used in the management of Alzheimer's disease that shows bioavailability problems. To overcome this, the use of nanosystems, such as nanostructured lipid carriers (NLC), administered through alternative routes seems promising. In this work, we performed a double optimization of a rivastigmine-loaded NLC formulation for direct drug delivery from the nose to the brain using the quality by design (QbD) approach, whereby the quality target product profile (QTPP) was the requisite for nose to brain delivery. The experiments started with the optimization of the formulation variables (or critical material attributes-CMAs) using a central composite design. The rivastigmine-loaded NLC formulations with the best critical quality attributes (CQAs) of particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE) were selected for the second optimization, which was related to the production methods (ultrasound technique and high-pressure homogenization). The most suitable instrumental parameters for the production of NLC were analyzed through a Box-Behnken design, with the same CQAs being evaluated for the first optimization. For the second part of the optimization studies, were selected two rivastigmine-loaded NLC formulations: one produced by ultrasound technique and the other by the high-pressure homogenization (HPH) method. Afterwards, the pH and osmolarity of these formulations were adjusted to the physiological nasal mucosa values and in vitro drug release studies were performed. The results of the first part of the optimization showed that the most adequate ratios of lipids and surfactants were 7.49:1.94 and 4.5:0.5 (%, w/w), respectively. From the second part of the optimization, the results for the particle size, PDI, ZP, and EE of the rivastigmine-loaded NLC formulations produced by ultrasound technique and HPH method were, respectively, 114.0 ± 1.9 nm and 109.0 ± 0.9 nm; 0.221 ± 0.003 and 0.196 ± 0.007; -30.6 ± 0.3 mV and -30.5 ± 0.3 mV; 97.0 ± 0.5% and 97.2 ± 0.3%. Herein, the HPH was selected as the most suitable production method, although the ultrasound technique has also shown effectiveness. In addition, no significant changes in CQAs were observed after 90 days of storage of the formulations at different temperatures. In vitro studies showed that the release of rivastigmine followed a non-Fickian mechanism, with an initial fast drug release followed by a prolonged release over 48 h. This study has optimized a rivastigmine-loaded NLC formulation produced by the HPH method for nose-to-brain delivery of rivastigmine. The next step is for in vitro and in vivo experiments to demonstrate preclinical efficacy and safety. QbD was demonstrated to be a useful approach for the optimization of NLC formulations for which specific physicochemical requisites can be identified.
Collapse
Affiliation(s)
- Sara Cunha
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Cláudia Pina Costa
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | | | - Andreia F. Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK;
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
- UFP Energy, Environment and Health Research Unit (FP ENAS), Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
36
|
New intranasal cross-linked mosapride xyloglucan pluronics micelles (MOS-XPMs) for reflux esophagitis disease: In-vitro optimization and improved therapeutic efficacy. J Adv Res 2020; 23:83-94. [PMID: 32089877 PMCID: PMC7025289 DOI: 10.1016/j.jare.2020.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mosapride was loaded inside crosslinked Xyloglucan Pluronic micelle (MOS-XPMs). (MOS-XPMs) showed improved stability and mucoadhesiveness. MOS-XPMs systems showed a rapid release of drug located in the shell within 0.5hr followed by a consistent release pattern for the remaining 8hr. Trans-abdominal ultrasonography XPMs showed 1.5 fold increased in duodenal and cecal motility compared to MOS suspension.
Mosapride belongs to class IV in Biopharmaceutics Classification System and is used in the treatment of reflux esophagitis. It exhibits poor bioavailability due to limited permeability, solubility and extensive first-pass metabolism. In this study, intranasal mosapride-loaded cross-linked xyloglucan Pluronic micelles (MOS-XPMs) was formulated and optimized to improve the low solubility & bioavailability of MOS. The solid dispersion technique using 23 full factorial design was applied. (MOS-XPMs) (F4) had the highest desirability value (0.952) and, therefore, it was selected as an optimal system. Xyloglucan cross-linked in the shell of Pluronic micelles offered improved stability and mucoadhesiveness to MOS-XPMs. 1H NMR spectra ensured the cross-linking of xyloglucan with Pluronic micelle shell and micelle stabilization. A Pharmacodynamic study revealed that MOS-XPMs showed 1.5-fold increase in duodenal and cecal motility compared to MOS suspension and 1.7-fold increase compared to the oral marketed product. The new MOS-XPMs were shown to be successful at improving the therapeutic efficacy of mosapride.
Collapse
|
37
|
Alshweiat A, Ambrus R, Csoka II. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem 2019; 26:6459-6492. [PMID: 31453778 DOI: 10.2174/0929867326666190827151741] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
There is always a need for alternative and efficient methods of drug delivery. The nasal cavity can be considered as a non-invasive and efficient route of administration. It has been used for local, systemic, brain targeting, and vaccination delivery. Although many intranasal products are currently available on the market, the majority is used for local delivery with fewer products available for the other targets. As nanotechnology utilization in drug delivery has rapidly spread out, the nasal delivery has become attractive as a promising approach. Nanoparticulate systems facilitate drug transportation across the mucosal barrier, protect the drug from nasal enzyme degradation, enhance the delivery of vaccines to the lymphoid tissue of the nasal cavity with an adjuvant activity, and offer a way for peptide delivery into the brain and the systemic circulation, in addition to their potential for brain tumor treatment. This review article aims at discussing the potential benefit of the intranasal nanoparticulate systems, including nanosuspensions, lipid and surfactant, and polymer-based nanoparticles as regards productive intranasal delivery. The aim of this review is to focus on the topicalities of nanotechnology applications for intranasal delivery of local, systemic, brain, and vaccination purposes during the last decade, referring to the factors affecting delivery, regulatory aspects, and patient expectations. This review further identifies the benefits of applying the Quality by Design approaches (QbD) in product development. According to the reported studies on nanotechnology-based intranasal delivery, potential attention has been focused on brain targeting and vaccine delivery with promising outcomes. Despite the significant research effort in this field, nanoparticle-based products for intranasal delivery are not available. Thus, further efforts are required to promote the introduction of intranasal nanoparticulate products that can meet the requirements of regulatory affairs with high patient acceptance.
Collapse
Affiliation(s)
- Areen Alshweiat
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary.,Faculty of Pharmaceutical Science, The Hashemite University, Zarqa, Jordan
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - IIdikó Csoka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
38
|
Csányi E, Bakonyi M, Kovács A, Budai-Szűcs M, Csóka I, Berkó S. Development of Topical Nanocarriers for Skin Cancer Treatment Using Quality by Design Approach. Curr Med Chem 2019; 26:6440-6458. [PMID: 30444194 DOI: 10.2174/0929867325666181116143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/04/2018] [Accepted: 11/11/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND One of the most compelling medical challenges of this century is the treatment of cancer and among them, skin cancer is the most common type. Thus, current treatments need to be renewed continuously to handle this challenge. OBJECTIVE This review presents considerations which can be employed during the development of nanosized formulations dedicated to the topical treatment of skin cancer. We aimed to collect and organize literature data on the treatment options for skin cancer in order to determine the required quality attributes of an effective dermal anticancer formulation. METHOD With the consideration of the Quality by Design (QbD) approach related to the development of new pharmaceutical formulations, a cost-saving process ensuring a high-quality product taking into account patient expectations, industrial and regulatory aspects can be achieved. Furthermore, this concept is highly recommended by regulatory agencies. RESULTS Our work discusses the current therapies, active agents, drug carrier systems, and evaluation methods in connection with the treatment of skin cancer and outlines Critical Quality Attributes which need to be considered during the development of a nanosized dermal anticancer formulation. CONCLUSION The first part of this review summarizes the most important topical treatment therapies for skin cancer and highlights the future therapeutic perspectives, focusing on the benefits of nanotechnology and dermal administration. The second part outlines the critical points of nanosized dermal anticancer formulation development in the view of QbD approach. Our research emphasizes the application of QbD method for a rationalized and more effective anticancer formulation development process.
Collapse
Affiliation(s)
- Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mónika Bakonyi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| |
Collapse
|
39
|
Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Cirri M, Maestrini L, Maestrelli F, Mennini N, Mura P, Ghelardini C, Di Cesare Mannelli L. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv 2019; 25:1910-1921. [PMID: 30451015 PMCID: PMC6249610 DOI: 10.1080/10717544.2018.1529209] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The hydrochlorothiazide (HCT) low solubility and permeability give rise to limited and variable bioavailability; its low stability makes it difficult to develop stable aqueous liquid formulations; its low dose makes the achievement of a homogeneous drug distribution very difficult. Thus, the aim of this study was to investigate the effectiveness of a strategy based on the development of nanostructured lipid carriers (NLC) as an innovative oral pediatric formulation of HCT with improved therapeutic efficacy. The performance of various synthetic and natural liquid lipids was examined and two different preparation methods were employed, i.e. homogenization-ultrasonication (HU) and microemulsion (ME), in order to evaluate their influence on the NLC properties in terms of size, polydispersity index, ζ-potential, entrapment efficiency, gastric stability, and drug release properties. Precirol®ATO5 was used as solid lipid and Tween®80 and Pluronic®F68 as surfactants, formerly selected in a previous study focused on the development of HCT-solid lipid nanoparticles (SLNs). The presence of Pluronic®F68 did not allow ME formation. On the contrary, using Tween®80, the ME method enabled a higher entrapment efficiency than the HU. Regardless of the preparation method, NLCs exhibited great entrapment efficiency values clearly higher than previous SLNs. Moreover, NLC-ME formulations provided a prolonged release, which lasted for 6 h. In particular, NLC-ME containing Tween®20 as Co-Surfactant showed the best performances, giving rise to a complete drug release, never achieved with previous SLN formulations, despite their successful results. In vivo studies on rats confirmed these results, displaying their best diuretic profile. Moreover, all HCT-loaded NLC formulations showed higher stability than the corresponding SLNs.
Collapse
Affiliation(s)
- Marzia Cirri
- a Department of Chemistry, School of Human Health Sciences , University of Florence , Florence , Italy
| | | | - Francesca Maestrelli
- a Department of Chemistry, School of Human Health Sciences , University of Florence , Florence , Italy
| | - Natascia Mennini
- a Department of Chemistry, School of Human Health Sciences , University of Florence , Florence , Italy
| | - Paola Mura
- a Department of Chemistry, School of Human Health Sciences , University of Florence , Florence , Italy
| | - Carla Ghelardini
- c Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section , University of Florence , Florence , Italy
| | - Lorenzo Di Cesare Mannelli
- c Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section , University of Florence , Florence , Italy
| |
Collapse
|
41
|
Herneisey M, Liu L, Lambert E, Schmitz N, Loftus S, Janjic JM. Development of Theranostic Perfluorocarbon Nanoemulsions as a Model Non-Opioid Pain Nanomedicine Using a Quality by Design (QbD) Approach. AAPS PharmSciTech 2019; 20:65. [PMID: 30627887 DOI: 10.1208/s12249-018-1287-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Pain nanomedicine is an emerging field in response to current needs of addressing the opioid crisis in the USA and around the world. Our group has focused on the development of macrophage-targeted perfluorocarbon nanoemulsions as inflammatory pain nanomedicines over the past several years. We present here, for the first time, a quality by design approach used to design pain nanomedicine. Specifically, we used failure mode, effects, and criticality analysis (FMECA) which identified the process and composition parameters that were most likely to impact nanoemulsion critical quality attributes (CQAs). From here, we applied a unique combination approach that compared multiple linear regression, boosted decision tree regression, and partial least squares regression methods in combination with correlation plots. The presented combination approach allowed for in-depth analyses of which formulation steps in the nanoemulsification processes control nanoemulsion droplet diameter, stability, and drug loading. We identified that increase in solubilizer (transcutol) content increased drug loading and decreased nanoemulsion stability. This was mitigated by inclusion of perfluorocarbon oil in the internal phase. We observed negative correlation (R2 = 0.4357, p value 0.0054) between the amount of PCE and the percent diameter increase (destabilization), and no correlation between processing parameters and percent diameter increase over time. Further, we identified that increased sonication time decreases nanoemulsion drug loading but does not significantly impact droplet diameter or stability. We believe the methods presented here can be useful in the development of various nanomedicines to produce higher-quality products with enhanced manufacturing and design control.
Collapse
|
42
|
Hammad RW, Sanad RAB, Abdelmalk NS, Aziz RL, Torad FA. Intranasal Surface-Modified Mosapride Citrate-Loaded Nanostructured Lipid Carriers (MOS-SMNLCs) for Treatment of Reflux Diseases: In vitro Optimization, Pharmacodynamics, and Pharmacokinetic Studies. AAPS PharmSciTech 2018; 19:3791-3808. [PMID: 30280358 DOI: 10.1208/s12249-018-1142-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022] Open
Abstract
Gastroesophageal reflux disease (GERD) is an esophageal injury occurred when the stomach contents reflux abnormally into the esophagus. GERD complications include esophageal adenocarcinoma. Mosapride (MOS) is a safe prokinetic agent potentially used to treat GERD. Yet, its low solubility and bioavailability due to extensive first-pass metabolism limits its applications. This study aimed to formulate MOS nanostructured lipid carriers (MOS-NLCs) via the intranasal route to improve its bioavailability. Melt-emulsification low temperature-solidification technique using 23 full factorial design was adopted to formulate MOS-NLCs. Eight formulae were prepared and assessed in terms of entrapment efficiency (%EE), particle size, and in vitro release. Glycerol addition significantly reduced the particle sizes and improved %EE and %drug released. Surface modification using chitosan was applied. The optimized MOS surface-modified nanostructured lipid carriers (MOS-SMNLCs-F7)(stearic acid, 4% glycerol, 0.5% LuterolF127, 0.5% chitosan) showed low particle size 413.8 nm ± 11.46 nm and high %EE 90.19% ± 0.06% and a threefold increase in permeation of MOS with respect to the drug suspension. MOS-SMNLCs (F7) was also evaluated for its bioavailability compared with drug suspension and commercial product. Statistical analysis revealed a significant increase in gastric emptying rate to be 21.54 ± 1.88 contractions/min compared with10.02 ± 0.62 contractions/min and 8.9 ± 0.72 contractions/min for drug suspension and oral marketed product respectively. Pharmacokinetic studies showed 2.44-fold rise in bioavailability as compared to MOS suspension and 4.54-fold as compared to the oral marketed product. In vitro/in vivo studies proven to level A correlation between in vitro permeation through sheep nasal mucosa and in vivo absorption. Therefore, MOS-SMNLCs could be considered a step forward towards enhancing the clinical efficacy of Mosapride.
Collapse
|
43
|
Kallakunta VR, Tiwari R, Sarabu S, Bandari S, Repka MA. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: A comparative study. Eur J Pharm Sci 2018; 121:126-138. [PMID: 29772273 PMCID: PMC6235737 DOI: 10.1016/j.ejps.2018.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/03/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
Abstract
The current study's aim is to prepare lipid based sustained release tablets via a twin-screw granulation technique and compare those dosage forms with conventional techniques, namely wet granulation and direct compression. The granules were successfully manufactured in a single-step, continuous twin-screw granulation process with a low proportion of binder (Klucel™ EF, HPC SSL) using Compritol® 888 ATO, Precirol® ATO 5 and Geleol™ as sustained release agents. The granules prepared showed good flow characteristics and compaction properties. DSC and XRD studies were conducted to characterize the granules prepared via a twin-screw granulation method and the results demonstrated the crystalline nature of lipids within the granules. FTIR data indicated that there were no interactions with the formulation components investigated. The formulations developed by all three methods were compressed into tablets with a mechanical strength of 14-16 KP. The tablets formulated were characterized for physicochemical properties, in vitro drug release studies, water uptake and erosion studies. These results showed that the drug was not completely released after 24 h for tablets developed by the wet granulation process using all three lipids. The tablets prepared by the direct compression method demonstrated a burst release within 8 to 10 h from Precirol ATO 5® and Geleol™ formulations compared to Compritol® 888 ATO. However, tablets prepared using twin-screw granulation exhibited sustained release of the drug over 24 h and the water uptake and erosion results were in accordance with dissolution data. Stability data for 45 days at accelerated conditions (40 °C/75% RH) showed similar release profiles with ƒ2 values above 50 for all of the twin screw granulation formulations, indicating the suitability of the process for formulating sustained release tablets. These findings of a single-step, continuous twin-screw granulation process are novel and demonstrate new opportunities for development of sustained release tablets.
Collapse
Affiliation(s)
- Venkata Raman Kallakunta
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Roshan Tiwari
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
44
|
Aderibigbe BA, Naki T. Design and Efficacy of Nanogels Formulations for Intranasal Administration. Molecules 2018; 23:E1241. [PMID: 29789506 PMCID: PMC6100477 DOI: 10.3390/molecules23061241] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Nanogels are drug delivery systems that can bypass the blood-brain barrier and deliver drugs to the desired site when administered intranasally. They have been used as a drug delivery platform for the management of brain diseases such as Alzheimer disease, migraine, schizophrenia and depression. nanogels have also been developed as vaccine carriers for the protection of bacterial infections such as influenza, meningitis, pneumonia and as veterinary vaccine carriers for the protection of animals from encephalomyelitis and mouth to foot disease. It has been developed as vaccine carriers for the prevention of lifestyle disease such as obesity. Intranasal administration of therapeutics using nanogels for the management of brain diseases revealed that the drug transportation was via the olfactory nerve pathway resulting in rapid drug delivery to the brain with excellent neuroprotective effect. The application of nanogels as vaccine carriers also induced significant responses associated with protective immunity against selected bacterial and viral infections. This review provides a detailed information on the enhanced therapeutic effects, mechanisms and biological efficacy of nanogels for intranasal administration.
Collapse
Affiliation(s)
- Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
45
|
Application of quality by design principles in the development and evaluation of semisolid drug carrier systems for the transdermal delivery of lidocaine. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Javed MN, Kohli K, Amin S. Risk Assessment Integrated QbD Approach for Development of Optimized Bicontinuous Mucoadhesive Limicubes for Oral Delivery of Rosuvastatin. AAPS PharmSciTech 2018; 19:1377-1391. [PMID: 29388027 DOI: 10.1208/s12249-018-0951-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/02/2018] [Indexed: 01/31/2023] Open
Abstract
Statins are widely prescribed for hyperlipidemia, cancer, and Alzheimer's disease but are facing some inherent challenges such as low solubility and drug loading, higher hepatic metabolism, as well as instability at gastric pH. So, relatively higher circulating dose, required for exerting the therapeutic benefits, leads to dose-mediated severe toxicity. Furthermore, due to low biocompatibility, high toxicity, and other regulatory caveats such as product conformity, reproducibility, and stability of conventional formulations as well as preferentially higher bioabsorption of lipids in their favorable cuboidal geometry, enhancement in in vivo biopharmaceutical performance of Rosuvastatin could be well manifested in Quality by Design (QbD) integrated cuboidal-shaped mucoadhesive microcrystalline delivery systems (Limicubes). Here, quality-target-product-profile (QTPPs), critical quality attributes (CQAs), Ishikawa fishbone diagram, and integration of risk management through risk assessment matrix for failure mode and effects analysis (FMEA) followed by processing of Plackett-Burman design matrix using different statistical test for the first time established an approach to substantiate the claims that controlling levels of only these three screened out independent process variables, i.e., Monoolein (B = 800-1100 μL), Poloxamer (C = 150-200 mg), and stirring speed (F = 700-1000 rpm) were statistically significant to modulate and improve the biopharmaceutical performance affecting key attributes, viz., average particle size (Y1 = 1.40-2.70 μ), entrapment efficiency (Y2 = 62.60-88.80%), and drug loading (Y3 = 0.817-1.15%), in QbD-enabled process. The optimal performance of developed Limicubes exhibited an average particle size of 1.8 ± 0.2 μ, entrapment efficiency 80.32 ± 2.88%, and drug loading 0.93 ± 0.08% at the level of 1100 μL (+ 1), 200 mg (+ 1), and 700 rpm (- 1) for Monoolein, Poloxamer, and stirring speed, respectively.
Collapse
Affiliation(s)
- Md Noushad Javed
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Amin
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
47
|
PEGylated Lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: Design, characterization and its cytotoxic effect. Int J Pharm 2018; 536:272-282. [DOI: 10.1016/j.ijpharm.2017.10.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/12/2017] [Accepted: 10/22/2017] [Indexed: 01/27/2023]
|
48
|
Bhise K, Kashaw SK, Sau S, Iyer AK. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach. Int J Pharm 2017; 526:506-515. [PMID: 28502895 PMCID: PMC5577003 DOI: 10.1016/j.ijpharm.2017.04.078] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of death worldwide. There are several hurdles in cancer therapy because of side-effects which limits its usage. Nanoparticulate drug delivery systems have been tested against cancer in a range of scientific studies. In the recent years, advanced research on Nanostructured Lipid Carriers (NLCs) has garnered considerable attention owing to the advantages over their first-generation counterparts, Solid Lipid Nanoparticles (SLN). NLCs facilitate efficient loading of poorly water soluble drugs with simple methods of drug loading. Recently, there is an increased interest in polyphenols because of the evidence of their promising role in prevention of cancer. Polyphenols are produced as secondary metabolites by plants. Their role in prevention of development of tumors through variety of mechanisms and reduction of tumor cell mass has been reported. This article aims to review the science behind development of NLCs and role of polyphenols as promising anticancer agents. Principles of Quality by Design (QbD) have also been explained which are used in formulation-development of many nanoparticles, including NLCs, as reported in literature.
Collapse
Affiliation(s)
- Ketki Bhise
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
49
|
A quality by design (QbD) study on enoxaparin sodium loaded polymeric microspheres for colon-specific delivery. Eur J Pharm Sci 2017; 100:249-261. [DOI: 10.1016/j.ejps.2017.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/17/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
|