1
|
Arshad MS, Mujeeb M, Zafar S, Khan WQ, Patel M, Yousef B, Chang MW, Sayed E, Ahmad Z. EHDA engineering of Piroxicam-PVP components for pharmaceutical dosages. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. NANOSCALE 2022; 14:11484-11511. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With their soaring technological demand, flexible and stretchable electronics have attracted many researchers' attention for a variety of applications. The challenge which was identified a decade ago and still remains, however, is that the conventional electrodes based on indium tin oxide (ITO) are not suitable for ultra-flexible electronic devices. The main reason is that ITO is brittle and expensive, limiting device performance and application. Thus, it is crucial to develop new materials and processes to construct flexible and stretchable electrodes with superior quality for next-generation soft devices. Herein, various types of conductive nanomaterials as candidates for flexible and stretchable electrodes are briefly reviewed. Among them, silver nanowire (AgNW) is selected as the focus of this review, on account of its excellent conductivity, superior flexibility, high technological maturity, and significant presence in the research community. To fabricate a reliable AgNW-based conductive network for electrodes, different processing technologies are introduced, and the corresponding characteristics are compared and discussed. Furthermore, this review summarizes strategies and the latest progress in enhancing the conductive pathway. Finally, we showcase some exemplary applications and provide some perspectives about the remaining technical challenges for future research.
Collapse
Affiliation(s)
- Yuanhang Yang
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Shun Duan
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
3
|
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. MICROMACHINES 2022; 13:642. [PMID: 35457946 PMCID: PMC9033068 DOI: 10.3390/mi13040642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| | - Yanhua Song
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
4
|
The Effect of Surface Wettability on Viscoelastic Droplet Dynamics under Electric Fields. MICROMACHINES 2022; 13:mi13040580. [PMID: 35457884 PMCID: PMC9029302 DOI: 10.3390/mi13040580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
The effects of surface wettability and viscoelasticity on the dynamics of liquid droplets under an electric field are studied experimentally. A needle-plate electrode system is used as the power source to polarize a dielectric plate by the corona discharge emitted at the needle electrode, creating a new type of steerable electric field realized. The dynamics of droplets between the dielectric plate and a conductive substrate include three different phenomena: equilibrium to a stationary shape on substrates with higher wettability, deformation to form a bridge between the top acrylic plate and take-off on the substrates with lower wettability. Viscoelastic droplets differ from water in the liquid bridge and takeoff phenomena in that thin liquid filaments appear in viscoelastic droplets, not observed for Newtonian droplets. The equilibrated droplet exhibits more pronounced heights for Newtonian droplets compared to viscoelastic droplets, with a decrease in height with the increase in the concentration of the elastic constituent in the aqueous solution. In the take-off phenomenon, the time required for the droplet to contact the upper plate decreases with the concentration of the elastic constituent increases. It is also found that the critical voltage required for the take-off phenomenon to occur decreases as the elasticity increases.
Collapse
|
5
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
6
|
Altun E, Yuca E, Ekren N, Kalaskar DM, Ficai D, Dolete G, Ficai A, Gunduz O. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics 2021; 13:pharmaceutics13050613. [PMID: 33922739 PMCID: PMC8145298 DOI: 10.3390/pharmaceutics13050613] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study investigates the usage of electrohydrodynamic (EHD)-3D printing for the fabrication of bacterial cellulose (BC)/polycaprolactone (PCL) patches loaded with different antibiotics (amoxicillin (AMX), ampicillin (AMP), and kanamycin (KAN)) for transdermal delivery. The composite patches demonstrated facilitated drug loading and encapsulation efficiency of drugs along with extended drug release profiles. Release curves were also subjected to model fitting, and it was found that drug release was optimally adapted to the Higuchi square root model for each drug. They performed a time-dependent and diffusion-controlled release from the patches and followed Fick’s diffusion law by the Korsmeyer–Peppas energy law equation. Moreover, produced patches demonstrated excellent antimicrobial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) strains, so they could be helpful in the treatment of chronic infectious lesions during wound closures. As different tests have confirmed, various types of antibiotics could be loaded and successfully released regardless of their types from produced BC/PCL patches. This study could breathe life into the production of antibiotic patches for local transdermal applications in wound dressing studies and improve the quality of life of patients.
Collapse
Affiliation(s)
- Esra Altun
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Goztepe Campus, Marmara University, Istanbul 34722, Turkey;
| | - Esra Yuca
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Davutpasa Campus, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Nazmi Ekren
- Centre for Nanotechnology & Biomaterials Research, Department of Electrical-Electronics Engineering, Faculty of Technology, Goztepe Campus, Marmara University, Istanbul 34722, Turkey;
| | - Deepak M. Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, London NW3 2PF, UK
- Correspondence: (D.M.K.); (A.F.); (O.G.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Anton Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 060042 Bucharest, Romania
- Correspondence: (D.M.K.); (A.F.); (O.G.)
| | - Oguzhan Gunduz
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Goztepe Campus, Marmara University, Istanbul 34722, Turkey;
- Correspondence: (D.M.K.); (A.F.); (O.G.)
| |
Collapse
|
7
|
Jain K, Shukla R, Yadav A, Ujjwal RR, Flora SJS. 3D Printing in Development of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:420. [PMID: 33562310 PMCID: PMC7914812 DOI: 10.3390/nano11020420] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) printing is gaining numerous advances in manufacturing approaches both at macro- and nanoscales. Three-dimensional printing is being explored for various biomedical applications and fabrication of nanomedicines using additive manufacturing techniques, and shows promising potential in fulfilling the need for patient-centric personalized treatment. Initial reports attributed this to availability of novel natural biomaterials and precisely engineered polymeric materials, which could be fabricated into exclusive 3D printed nanomaterials for various biomedical applications as nanomedicines. Nanomedicine is defined as the application of nanotechnology in designing nanomaterials for different medicinal applications, including diagnosis, treatment, monitoring, prevention, and control of diseases. Nanomedicine is also showing great impact in the design and development of precision medicine. In contrast to the "one-size-fits-all" criterion of the conventional medicine system, personalized or precision medicines consider the differences in various traits, including pharmacokinetics and genetics of different patients, which have shown improved results over conventional treatment. In the last few years, much literature has been published on the application of 3D printing for the fabrication of nanomedicine. This article deals with progress made in the development and design of tailor-made nanomedicine using 3D printing technology.
Collapse
Affiliation(s)
- Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (K.J.); (R.S.); (A.Y.)
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (K.J.); (R.S.); (A.Y.)
| | - Awesh Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India; (K.J.); (R.S.); (A.Y.)
| | - Rewati Raman Ujjwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| |
Collapse
|
8
|
Alonso-Lerma B, Larraza I, Barandiaran L, Ugarte L, Saralegi A, Corcuera MA, Perez-Jimenez R, Eceiza A. Enzymatically produced cellulose nanocrystals as reinforcement for waterborne polyurethane and its applications. Carbohydr Polym 2020; 254:117478. [PMID: 33357930 DOI: 10.1016/j.carbpol.2020.117478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/25/2023]
Abstract
Waterborne polyurethanes (WBPUs) have been proposed as ecofriendly elastomers with several applications in coatings and adhesives. WBPU's physicochemical properties can be enhanced by the addition of cellulose nanocrystals (CNCs). The way CNCs are isolated has a strong effect on their properties and can determine their role as reinforcement. In this work, CNCs produced using ancestral endoglucanase (EnCNCs) were used as reinforcement for WBPU and compared with CNC produced by sulfuric acid hydrolysis (AcCNC). The enzymatic method produced highly thermostable and crystalline CNCs. The addition of small contents of EnCNCs improved the thermomechanical stability and mechanical properties of WBPUs, even better than commercial AcCNCs. Besides, WBPU reinforced by adding EnCNCs was studied as a coating for paper materials, increasing its abrasion resistance and as electrospun nanocomposite mats where EnCNCs helped maintaining the morphology of the fibers.
Collapse
Affiliation(s)
- Borja Alonso-Lerma
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain; CIC nanoGUNE BRTA, San Sebastian, Spain
| | - Izaskun Larraza
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain
| | | | - Lorena Ugarte
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain
| | - Ainara Saralegi
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain
| | - Maria Angeles Corcuera
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain
| | - Raul Perez-Jimenez
- CIC nanoGUNE BRTA, San Sebastian, Spain; Ikerbasque Foundation for Science, Bilbao, Spain; Evolgene Genomics S.L., San Sebastian, Spain.
| | - Arantxa Eceiza
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain.
| |
Collapse
|
9
|
Ali R, Mehta P, Kyriaki Monou P, Arshad MS, Panteris E, Rasekh M, Singh N, Qutachi O, Wilson P, Tzetzis D, Chang MW, Fatouros DG, Ahmad Z. Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. Eur J Pharm Biopharm 2020; 156:20-39. [DOI: 10.1016/j.ejpb.2020.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023]
|
10
|
Menazea A, Ahmed M. Nanosecond laser ablation assisted the enhancement of antibacterial activity of copper oxide nano particles embedded though Polyethylene Oxide/Polyvinyl pyrrolidone blend matrix. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108911] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Wu S, Ahmad Z, Li JS, Chang MW. Fabrication of flexible composite drug films via foldable linkages using electrohydrodynamic printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110393. [DOI: 10.1016/j.msec.2019.110393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 11/25/2022]
|
13
|
Eleftheriadis GK, Katsiotis CS, Bouropoulos N, Koutsopoulos S, Fatouros DG. FDM-printed pH-responsive capsules for the oral delivery of a model macromolecular dye. Pharm Dev Technol 2020; 25:517-523. [PMID: 31903821 DOI: 10.1080/10837450.2019.1711396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To this day, the oral delivery of biomacromolecules remains a major developmentally-oriented challenge. A combinatorial approach was followed at this study, to formulate an efficient carrier for the in vitro delivery of a model macromolecule, fluorescein isothiocyanate-dextran 4 kDa (FD4). The model macromolecule was formulated in a self-assembling peptide hydrogel (ac-(RADA)4-CONH2), prior to deposition in a hydroxypropyl methylcellulose-phthalate (HPMCP)-based 3D-printed capsule. Loading of FD4 was investigated for potential alterations on the structural (AFM) and gelling properties of the peptide carrier. Thermal analysis and morphological properties of the 3D-printed capsules were assessed by TGA, DSC and microscopy studies. For the peptide hydrogel, similar release profiles of FD4 were recorded in simulated gastric fluid pH 1.2 and phosphate buffer saline pH 7.4, indicating the need for a structural barrier, to protect the peptide carrier from the acidic environment of the stomach. The pH responsive character of the HPMCP-based capsule was evidenced in the release profiles of FD4 in a sequence of release media, i.e. simulated gastric fluid pH 1.2, simulated intestinal fluid pH 6.8 and phosphate buffer saline pH 7.4. The results supported the combinatorial formulation approach as a promising system for the efficient oral delivery of biomacromolecules.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Katsiotis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras, Greece.,Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Zeeshan F, Madheswaran T, Pandey M, Gorain B. Three-Dimensional (3-D) Printing Technology Exploited for the Fabrication of Drug Delivery Systems. Curr Pharm Des 2019; 24:5019-5028. [PMID: 30621558 DOI: 10.2174/1381612825666190101111525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The conventional dosage forms cannot be administered to all patients because of interindividual variability found among people of different race coupled with different metabolism and cultural necessities. Therefore, to address this global issue there is a growing focus on the fabrication of new drug delivery systems customised to individual needs. Medicinal products printed using 3-D technology are transforming the current medicine business to a plausible alternative of conventional medicines. METHODS The PubMed database and Google scholar were browsed by keywords of 3-D printing, drug delivery, and personalised medicine. The data about techniques employed in the manufacturing of 3-D printed medicines and the application of 3-D printing technology in the fabrication of individualised medicine were collected, analysed and discussed. RESULTS Numerous techniques can fabricate 3-D printed medicines however, printing-based inkjet, nozzle-based deposition and laser-based writing systems are the most popular 3-D printing methods which have been employed successfully in the development of tablets, polypills, implants, solutions, nanoparticles, targeted and topical dug delivery. In addition, the approval of Spritam® containing levetiracetam by FDA as the primary 3-D printed drug product has boosted its importance. However, some drawbacks such as suitability of manufacturing techniques and the available excipients for 3-D printing need to be addressed to ensure simple, feasible, reliable and reproducible 3-D printed fabrication. CONCLUSION 3-D printing is a revolutionary in pharmaceutical technology to cater the present and future needs of individualised medicines. Nonetheless, more investigations are required on its manufacturing aspects in terms cost effectiveness, reproducibility and bio-equivalence.
Collapse
Affiliation(s)
- Farrukh Zeeshan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur-57000, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur-57000, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur-57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Selangor-47500, Malaysia
| |
Collapse
|
15
|
Arshad MS, Shahzad A, Abbas N, AlAsiri A, Hussain A, Kucuk I, Chang MW, Bukhari NI, Ahmad Z. Preparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approach. Pharm Dev Technol 2019; 25:197-205. [DOI: 10.1080/10837450.2019.1684520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muhammad Sohail Arshad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Aqeel Shahzad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nasir Abbas
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ali AlAsiri
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Amjad Hussain
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkey
| | - M.-W. Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, Northern Ireland, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
16
|
Li X, Zhang C, Wu S, Chen X, Mai J, Chang MW. Precision Printing of Customized Cylindrical Capsules with Multifunctional Layers for Oral Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39179-39191. [PMID: 31573786 DOI: 10.1021/acsami.9b13568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in personalized medicine will require custom drug formulations and delivery mechanisms. Herein, we demonstrate a new type of personalized capsule comprising of printed concentric cylindrical layers with each layer having a distinctive functional drug component. Poly ε-caprolactone (PCL) with paracetamol (APAP) and chlorpheniramine maleate (CM), synergistic drugs commonly used to alleviate influenza symptoms, are printed as an inner layer and outer layer, respectively, via microscaled electrohydrodynamic (EHD) printing. Polyvinylpyrrolidone (PVP) nanofibers are embedded as interlayers between the two printed PCL-drug layers using electrospinning (ES) techniques. The complete concentric cylindrical capsule with a 6 mm inner diameter and 15 mm length can be swallowed for oral drug delivery. After dissolution of the PVP interlayer, the capsule separates in two, with inner and outer capsules for continuous drug dosing and targeting. Imaging was achieved using a 3T MRI system which allowed temporal observations of the targeted release through the incorporation of nanoparticles (Fe3O4). The morphology and structure, chemical composition, mechanical properties, and biocompatibility of the capsules were studied in vitro. In summary, this new type of custom printed and electrospun capsule that enabled component separation, targeted drug release may advance personalized medicine via multidrug oral delivery.
Collapse
Affiliation(s)
- Xuefeng Li
- Key Laboratory for Biomedical Engineering of Education Ministry of China , Hangzhou 310027 , PR China
- Zhejiang Province Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal , Hangzhou 310027 , PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China , Hangzhou 310027 , PR China
- Zhejiang Province Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal , Hangzhou 310027 , PR China
| | - Shuting Wu
- Key Laboratory for Biomedical Engineering of Education Ministry of China , Hangzhou 310027 , PR China
- Zhejiang Province Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal , Hangzhou 310027 , PR China
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China , Hangzhou 310027 , PR China
- Zhejiang Province Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal , Hangzhou 310027 , PR China
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering , University of Southern California , Los Angeles , California 90007 , United States
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of China , Hangzhou 310027 , PR China
- Nanotechnology and Integrated Bioengineering Centre , University of Ulster , Jordanstown Campus , Newtownabbey BT37 0QB , Northern Ireland , U.K
| |
Collapse
|
17
|
Maleki Dizaj S, Sharifi S, Jahangiri A. Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharm Dev Technol 2019; 24:1187-1199. [PMID: 31424308 DOI: 10.1080/10837450.2019.1656238] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology has attracted increasing interest in different aspects of biotechnology. The fabrication of electrospun nanofibers (NFs) containing antibacterial agents for antimicrobial applications has been significantly enhanced in recent years. In the current review, various electrospun NFs with antimicrobial properties were introduced and evaluated. The main focus was on the recent developments and applications of antimicrobial electrospun NFs incorporated with different antimicrobial agents, including metal nanoparticles (NPs), antibiotics, quaternized ammonium compounds, triclosan, herbal extracts, carbon nanomaterials, and antimicrobial biopolymers with inherent antimicrobial properties. The search results revealed that antimicrobial containing electrospun NFs had enhanced antimicrobial performance with various biomedical applications compared to the traditional antimicrobial materials. According to the reported results, most of the studies were of an investigative nature and were mostly based on in vitro tests. Hence, further examination on in vivo clinical performance of these antimicrobial NFs seems necessary. However, these antimicrobial NFs appear to have the potential to achieve clinical usefulness and commercial production in the near future.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Azin Jahangiri
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences , Urmia , Iran
| |
Collapse
|
18
|
Yao ZC, Wang JC, Ahmad Z, Li JS, Chang MW. Fabrication of patterned three-dimensional micron scaled core-sheath architectures for drug patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:776-783. [DOI: 10.1016/j.msec.2018.12.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/08/2018] [Accepted: 12/27/2018] [Indexed: 01/11/2023]
|
19
|
|
20
|
Mehta P, Zaman A, Smith A, Rasekh M, Haj‐Ahmad R, Arshad MS, der Merwe S, Chang M, Ahmad Z. Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prina Mehta
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Aliyah Zaman
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Ashleigh Smith
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - Manoochehr Rasekh
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Rita Haj‐Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | | | - Susanna der Merwe
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - M.‐W. Chang
- College of Biomedical Engineering and Instrument ScienceZhejiang University Hangzhou 310027 China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 China
| | - Z. Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| |
Collapse
|
21
|
Wu S, Li JS, Mai J, Chang MW. Three-Dimensional Electrohydrodynamic Printing and Spinning of Flexible Composite Structures for Oral Multidrug Forms. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24876-24885. [PMID: 29953813 DOI: 10.1021/acsami.8b08880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple method to rapidly customize and to also mass produce oral dosage forms is arguably a current bottleneck in the development of modern personalized medicine. Specifically, delayed-release mechanisms with well-controlled dosage profiles for combinations of traditional Chinese herbal extracts and Western medications are not well established. Herein, we demonstrate a novel multidrug-loaded membrane sandwich with structures infused with ibuprofen (IBU) and Ganoderma lucidum polysaccharide (GLP) using three-dimensional electrohydrodynamic printing and electrospinning techniques. The resulting flexible membrane consists of microscaled, multilayered cellulose acetate (CA) membranes loaded with IBU in the shape of either concentric squares or circles, as the top and bottom layers of a sandwich structure. In between the CA-IBU layers are randomly electrospun polyvinyl pyrrolidone (PVP) layers loaded with GLP. The complete fibrous membrane sandwich can be folded and embedded into a 0-size capsule to achieve oral compliance. Simulated in vitro testing of gastric and intestinal fluids demonstrated a triphasic release profile. There was an immediate release of GLP after gastric juices dissolved the capsule shell and the PVP, followed by the short-term release of 60% of the IBU within an hour afterward, and the remaining IBU was released in a sustained manner following a Fickian diffusion profile. In summary, this multidrug (both hydrophilic and/or hydrophobic) oral system with precision-designed structures should enable personalized therapeutic dosing.
Collapse
Affiliation(s)
| | | | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California , Los Angeles 90007 , California , United States
| | | |
Collapse
|
22
|
Co-printing of vertical axis aligned micron-scaled filaments via simultaneous dual needle electrohydrodynamic printing. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Novel synergistic activities of tetracycline copper oxide nanoparticles integrated into chitosan micro particles for delivery against multiple drug resistant strains: Generation of reactive oxygen species (ROS) and cell death. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Yao ZC, Yuan Q, Ahmad Z, Huang J, Li JS, Chang MW. Controlled Morphing of Microbubbles to Beaded Nanofibers via Electrically Forced Thin Film Stretching. Polymers (Basel) 2017; 9:E265. [PMID: 30970941 PMCID: PMC6432371 DOI: 10.3390/polym9070265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
Topography and microstructure engineering are rapidly evolving areas of importance for biomedical and pharmaceutical remits. Here, PVA (Polyvinyl alcohol) microbubbles (diameter range ~126 to 414 μm) were used to fabricate beaded (beads-on) nanofibers using an electrohydrodynamic atomization (EHDA) technique. Mean fiber diameter, inter-bead distance, and aspect ratio (AR) were investigated by regulating EHDA process parameters. PVA fibers (diameter range ~233 to 737 nm) were obtained possessing bead ARs in the range of ~10 to 56%. AR was used to modulate hydrophilicity and active release.
Collapse
Affiliation(s)
- Zhi-Cheng Yao
- Key Laboratory for Biomedical Engineering of Education, Ministry of China, Hangzhou 310027, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| | - Qiantailang Yuan
- Key Laboratory for Biomedical Engineering of Education, Ministry of China, Hangzhou 310027, China.
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.
| | - Jing-Song Li
- Key Laboratory for Biomedical Engineering of Education, Ministry of China, Hangzhou 310027, China.
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education, Ministry of China, Hangzhou 310027, China.
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
25
|
Santamaria-Echart A, Ugarte L, Gonzalez K, Martin L, Irusta L, Gonzalez A, Corcuera MA, Eceiza A. The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats. Carbohydr Polym 2017; 166:146-155. [PMID: 28385218 DOI: 10.1016/j.carbpol.2017.02.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 11/26/2022]
Abstract
Electrospinning offers the possibility of obtaining fibers mats from polymer solutions. The use of environmentally-friendly waterborne polyurethane (WBPU) allows obtaining electrospun polyurethane mats in water medium. Furthermore, the incorporation of water dispersible nanoentities, like renewable cellulose nanocrystals (CNC), is facilitated. Therefore, in this work, a WBPU was synthesized and CNC were isolated for preparing WBPU-CNC dispersions nanocomposites with 1 and 3wt% of CNC following both the classical mixing by sonication, and the innovative in-situ route. The dispersions were used for obtaining electrospun mats assisted by poly(ethylene oxide) (PEO) as polymer template. Moreover, the extraction of PEO with water resulted in continuous WBPU-CNC mats, showing different properties respect to WBPU-CNC mats containing PEO. The effective addition of CNC led to more defined cylindrical morphologies and the two alternative incorporation routes induced to different CNC dispositions in the matrix, which modified fibers diameters, and thus, mats final properties.
Collapse
Affiliation(s)
- Arantzazu Santamaria-Echart
- Group 'Materials+Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering Gipuzkoa, University of the Basque Country, Pza Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Lorena Ugarte
- Group 'Materials+Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering Gipuzkoa, University of the Basque Country, Pza Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Kizkitza Gonzalez
- Group 'Materials+Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering Gipuzkoa, University of the Basque Country, Pza Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Loli Martin
- Macrobehavior-Mesostructure-Nanotechnology Unit, General Research Services (SGIker), University of the Basque Country (UPV-EHU), Plaza Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Lourdes Irusta
- POLYMAT, Department of Polymer Science and Technology, Faculty of Chemistry, University of the Basque Country, P° Manuel Lardizabal 3, 2018 Donostia-San Sebastián, Spain.
| | - Alba Gonzalez
- POLYMAT, Department of Polymer Science and Technology, Faculty of Chemistry, University of the Basque Country, P° Manuel Lardizabal 3, 2018 Donostia-San Sebastián, Spain.
| | - Maria Angeles Corcuera
- Group 'Materials+Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering Gipuzkoa, University of the Basque Country, Pza Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Arantxa Eceiza
- Group 'Materials+Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering Gipuzkoa, University of the Basque Country, Pza Europa 1, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
26
|
Mehta P, Haj-Ahmad R, Rasekh M, Arshad MS, Smith A, van der Merwe SM, Li X, Chang MW, Ahmad Z. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies. Drug Discov Today 2017; 22:157-165. [DOI: 10.1016/j.drudis.2016.09.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/17/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
27
|
Oyunbaatar NE, Lee DH, Patil SJ, Kim ES, Lee DW. Biomechanical Characterization of Cardiomyocyte Using PDMS Pillar with Microgrooves. SENSORS 2016; 16:s16081258. [PMID: 27517924 PMCID: PMC5017423 DOI: 10.3390/s16081258] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022]
Abstract
This paper describes the surface-patterned polydimethylsiloxane (PDMS) pillar arrays for enhancing cell alignment and contraction force in cardiomyocytes. The PDMS micropillar (μpillar) arrays with microgrooves (μgrooves) were fabricated using a unique micro-mold made using SU-8 double layer processes. The spring constant of the μpillar arrays was experimentally confirmed using atomic force microscopy (AFM). After culturing cardiac cells on the two different types of μpillar arrays, with and without grooves on the top of μpillar, the characteristics of the cardiomyocytes were analyzed using a custom-made image analysis system. The alignment of the cardiomyocytes on the μgrooves of the μpillars was clearly observed using a DAPI staining process. The mechanical force generated by the contraction force of the cardiomyocytes was derived from the displacement of the μpillar arrays. The contraction force of the cardiomyocytes aligned on the μgrooves was 20% higher than that of the μpillar arrays without μgrooves. The experimental results prove that applied geometrical stimulus is an effective method for aligning and improving the contraction force of cardiomyocytes.
Collapse
Affiliation(s)
- Nomin-Erdene Oyunbaatar
- MEMS and Nanotechnology Laboratory, Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Deok-Hyu Lee
- MEMS and Nanotechnology Laboratory, Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Swati J Patil
- MEMS and Nanotechnology Laboratory, Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Korea.
| | - Dong-Weon Lee
- MEMS and Nanotechnology Laboratory, Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|