1
|
AlMousa LA, Pandey P, Lakhanpal S, Kyada AK, H M, Nayak PP, Hussain A, Hasan TN, Alagal RI, Khan F. An updated review deciphering the anticancer potential of pentacyclic triterpene lupeol and its nanoformulations. Front Pharmacol 2025; 16:1594901. [PMID: 40417209 PMCID: PMC12098293 DOI: 10.3389/fphar.2025.1594901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/23/2025] [Indexed: 05/27/2025] Open
Abstract
Triterpenoids from plants are essential sources of nutraceuticals, which possess numerous positive effects on human health. Lupeol (a pentacyclic dietary triterpenoid) is commonly present in edible fruits, vegetables, and medicinal plants. Numerous investigations on the pharmacological properties of lupeol have been carried out in the past 10 years, and the results have shown that the compound has enormous pharmacological properties, including antioxidant, anti-inflammatory, and anticancer properties. Research has shown that lupeol affects the functioning of numerous molecules, including the cytokines IL-2, NFκB, IL4, IL5, cFLIP, ILβ, and Bcl-2. Our review discusses recent advancements in plant lupeol and its underlying mode of action in combating human carcinoma within the timeframe spanning from 2010 to 2024. Also, we have tried to incorporate recent studies reported till date of the finalization of this review. In order to give researchers the most recent information, highlight the limitations of pertinent research at this time, and highlight both the mechanisms of action of lupeol and recent advances in its formulations that should be strengthened in future studies.
Collapse
Affiliation(s)
- Lujain A. AlMousa
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar Kyada
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| | - Malathi. H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology, IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Tarique Noorul Hasan
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
- Department of Molecular Genetics, Sh. Tahnoon Bin Mohammed Medical City (STMC), Pure Health, Al Ain, United Arab Emirates
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Parvez A, Rahman MA, Rahman MM, Shimki AI, Ahmmed S, Supti FA, Hasan MH, Bristi MSA, Ansari SA, Islam MT. Broad-Spectrum Therapeutic Potentials of the Multifaceted Triterpene Lupeol and Its Derivatives. Chem Biodivers 2025:e202402286. [PMID: 39982855 DOI: 10.1002/cbdv.202402286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 02/23/2025]
Abstract
Lupeol (LUP), a naturally occurring pentacyclic triterpene, is found in various fruits, vegetables, and medicinal plants and is evident to possess diverse pharmacological activities. This study aimed to consolidate its findings based on updated database reports. Findings suggest that LUP and some of its derivatives have promising biological roles, including anticancer effects. Notably, LUP induces apoptosis and cell cycle arrest in cancer cells while sparing normal cells, highlighting its selective cytotoxicity. By modifying pathways such as NF-κB and phosphatidyl inositol 3-kinase (PI3K)/Akt, LUP demonstrates anticancer activity, reducing LDL oxidation by 34.4% and causing cancer cells to undergo apoptosis while leaving healthy cells unaffected. Moreover, it has strong antioxidant and anti-inflammatory properties; thus, it may act against conditions like arthritis, asthma, and cardiovascular diseases. It has broad-spectrum antimicrobial activities and can be used as an alternative to conventional antibiotics. LUP and its nanoformulations (PEGylated liposomes) improved biopharmaceutical profiles in test systems. It also showed neuroprotective effects, particularly against Alzheimer's and Parkinson's diseases. Taken together, LUP has multi-target therapeutic approaches against various diseases and pathological conditions, advocating for its inclusion in future clinical trials.
Collapse
Affiliation(s)
- Anwar Parvez
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | | | - Md Mahfuzur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | | | - Shakil Ahmmed
- Department of Biochemistry and Molecular Biology, Gopalganj Science and Technology University, Gopalgonj, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Md Hasibul Hasan
- Department of Food Engineering, Gopalganj Science and Technology University, Gopalganj, Bangladesh
| | - Mst Sonia Akter Bristi
- Department of Chemistry, Kabi Nazrul Govt. College, University of Dhaka, Dhaka, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Torequl Islam
- Department of Pharmacy, Gopalganj Science and Technology University, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| |
Collapse
|
3
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
4
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
5
|
Sen K, Kumar Das S, Ghosh N, Sinha K, Sil PC. Lupeol: A dietary and medicinal triterpene with therapeutic potential. Biochem Pharmacol 2024; 229:116545. [PMID: 39293501 DOI: 10.1016/j.bcp.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Lupeol, a triterpene derived from various plants, has emerged as a potent dietary supplement with extensive therapeutic potential. This review offers a comprehensive examination of lupeol's applications across diverse health conditions. By meticulously analyzing current scientific literature, we have synthesized findings that underscore lupeol's impact on cancer, diabetes, gastrointestinal disorders, neurological diseases, dermatological conditions, nephrological issues, and cardiovascular health. The review delves into molecular studies that reveal lupeol's ability to modulate disease pathways and alleviate symptoms, positioning it as a promising therapeutic agent. Moreover, we discuss the potential role of lupeol in clinical practice and public health strategies, emphasizing its substantial benefits as a natural compound. This thorough analysis serves as a critical resource for researchers, providing insights into the multifaceted therapeutic properties of lupeol and its potential to significantly enhance health outcomes.
Collapse
Affiliation(s)
- Koushik Sen
- Jhargram Raj College, Jhargram 721507, India
| | | | | | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
6
|
Chowdhury R, Bhuia MS, Al Hasan MS, Hossain Snigdha S, Afrin S, Büsselberg D, Habtemariam S, Sönmez Gürer E, Sharifi‐Rad J, Ahmed Aldahish A, Аkhtayeva N, Islam MT. Anticancer potential of phytochemicals derived from mangrove plants: Comprehensive mechanistic insights. Food Sci Nutr 2024; 12:6174-6205. [PMID: 39554337 PMCID: PMC11561795 DOI: 10.1002/fsn3.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a collection of illnesses characterized by aberrant cellular proliferation that can infiltrate or metastasize to distant anatomical sites, posing a notable threat to human well-being due to its substantial morbidity and death rates worldwide. The potential of plant-derived natural compounds as anticancer medicines has been assessed owing to their favorable attributes of few side effects and significant antitumor activity. Mangrove plants and their derived compounds have been scientifically shown to exhibit many significant beneficial biological activities, such as anti-inflammatory, immunomodulatory, antioxidant, neuroprotective, cardioprotective, and hepatoprotective properties. This study summarized mangrove plants and their derived compounds as potential anticancer agents, with an emphasis on the underlying molecular mechanisms. To explore this, we gathered data on the preclinical (in vivo and in vitro) anticancer effects of mangrove plants and their derived compounds from reputable literature spanning 2000 to 2023. We conducted thorough searches in various academic databases, including PubMed, ScienceDirect, Wiley Online, SpringerLink, Google Scholar, Scopus, and the Web of Science. The results demonstrated that mangrove plants and their derived compounds have promising anticancer properties in preclinical pharmacological test systems through various molecular mechanisms, including induction of oxidative stress and mitochondrial dysfunction, cytotoxicity, genotoxicity, cell cycle arrest, apoptosis, autophagy, antiproliferative, antimetastatic, and other miscellaneous actions. Upon thorough observation of the pertinent information, it is suggested that mangrove plants and their derived chemicals may serve as a potential lead in the development of novel drugs for cancer therapy.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Shimul Bhuia
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
| | - Md. Sakib Al Hasan
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | | | - Sadia Afrin
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| | | | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of PharmacognosySivas Cumhuriyet UniversitySivasTurkey
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Afaf Ahmed Aldahish
- Department of Pharmacology, College of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Nursulu Аkhtayeva
- Department of Biodiversity and Bioresources of Al‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research CenterGopalganjBangladesh
- Pharmacy DisciplineKhulna UniversityKhulnaBangladesh
| |
Collapse
|
7
|
Andze L, Vitolina S, Berzins R, Rizikovs J, Godina D, Teresko A, Grinberga S, Sevostjanovs E, Cirule H, Liepinsh E, Paze A. Innovative Approach to Enhance Bioavailability of Birch Bark Extracts: Novel Method of Oleogel Development Contrasted with Other Dispersed Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:145. [PMID: 38202453 PMCID: PMC10780823 DOI: 10.3390/plants13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Birch outer bark extract (BBE), containing pentacyclic triterpenes such as betulin, lupeol, and betulinic acid, is a widely recognized natural product renowned for its diverse pharmacological effects. However, its limited water solubility restricts its bioavailability. Therefore, the main objective is to enhance the bioavailability of BBE for pharmaceutical use. In this study, we aimed to develop a dispersion system utilizing a unique oleogel-producing method through the recrystallization of BBE from an ethanol solution in the oil phase. We generated an oleogel that demonstrates a notable 42-80-fold improvement in betulin and lupeol peroral bioavailability from BBE in Wistar rats, respectively. A physical paste-like BBE hydrogel developed with antisolvent precipitation showed a 16-56-fold increase in the bioavailability of betulin and lupeol from BBE in rat blood plasma, respectively. We also observed that the repeated administration of the BBE oleogel did not exhibit any toxicity at the tested dose (38.5 mg/kg betulin, 5.2 mg/kg lupeol, 1.5 mg/kg betulinic acid daily for 7 days). Betulin and betulinic acid were not detected in rat heart, liver, kidney, or brain tissues after the peroral administration of the oleogel daily for 7 days. Lupeol was found in rat heart, liver, and kidney tissues.
Collapse
Affiliation(s)
- Laura Andze
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
- ZS DOKTUS, 22 Pavila Street, LV-4101 Cesis, Latvia;
| | - Sanita Vitolina
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Rudolfs Berzins
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Janis Rizikovs
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Daniela Godina
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | | | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Aigars Paze
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| |
Collapse
|
8
|
Park JS, Rehman IU, Choe K, Ahmad R, Lee HJ, Kim MO. A Triterpenoid Lupeol as an Antioxidant and Anti-Neuroinflammatory Agent: Impacts on Oxidative Stress in Alzheimer's Disease. Nutrients 2023; 15:3059. [PMID: 37447385 DOI: 10.3390/nu15133059] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease illustrated by neuronal dysfunctions, leading to memory weaknesses and personality changes mostly in the aged population worldwide. The exact cause of AD is unclear, but numerous studies have addressed the involvement of oxidative stress (OS), induced by reactive oxygen species (ROS), to be one of the leading causes in developing AD. OS dysregulates the cellular homeostasis, causing abnormal protein and lipid metabolism. Nutrition plays a pivotal role in modulating the antioxidant system and decreases the neuronal ROS level, thus playing an important therapeutic role in neurodegenerative diseases, especially in AD. Hence, medicinal herbs and their extracts have received global attention as a commercial source of antioxidants Lupeol. Lupeol is a pentacyclic triterpenoid and has many biological functions. It is available in fruits, vegetables, and medicinal plants. It has shown effective antioxidant and anti-inflammatory properties, and higher blood-brain barrier permeability. Also, the binding and inhibitory potentials of Lupeol have been investigated and proved to be effective against certain receptor proteins and enzymes in AD studies by computational molecular docking approaches. Therefore, AD-related research has gained interest in investigating the therapeutic effects of Lupeol. However, despite its beneficial effects in AD, there is still a lack of research in Lupeol. Hence, we compiled in this analysis all preclinical research that looked at Lupeol as an antioxidant and anti-inflammatory agent for AD.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Sohag AAM, Hossain MT, Rahaman MA, Rahman P, Hasan MS, Das RC, Khan MK, Sikder MH, Alam M, Uddin MJ, Rahman MH, Tahjib-Ul-Arif M, Islam T, Moon IS, Hannan MA. Molecular pharmacology and therapeutic advances of the pentacyclic triterpene lupeol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154012. [PMID: 35286936 DOI: 10.1016/j.phymed.2022.154012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant triterpenoids are major sources of nutraceuticals that provide many health benefits to humans. Lupeol is one of the pentacyclic dietary triterpenoids commonly found in many fruits and vegetables, which is highly investigated for its pharmacological effect and benefit to human health. PURPOSE This systematic review critically discussed the potential pharmacological benefits of lupeol and its derivatives as evidenced by various cellular and animal model studies. To gain insight into the pharmacological effects of lupeol, the network pharmacological approach is applied. Pharmacokinetics and recent developments in nanotechnology-based approaches to targeted delivery of lupeol along with its safety use are also discussed. METHODS This study is dependent on the systematic and non-exhaustive literature survey for related research articles, papers, and books on the chemistry, pharmacological benefits, pharmacokinetics, and safety of lupeol published between 2011 and 2021. For online materials, the popular academic search engines viz. Google Scholar, PubMed, Science Direct, Scopus, ResearchGate, Springer, as well as official websites were explored with selected keywords. RESULTS Lupeol has shown promising benefits in the management of cancer and many other human diseases such as diabetes, obesity, cardiovascular diseases, kidney and liver problems, skin diseases, and neurological disorders. The pharmacological effects of lupeol primarily rely on its capacity to revitalize the cellular antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Network pharmacological approach revealed some prospective molecular targets and pathways and presented some significant information that could help explain the pharmacological effects of lupeol and its derivatives. Despite significant progress in molecular pharmacology, the clinical application of lupeol is limited due to poor bioavailability and insufficient knowledge on its mode of action. Structural modification and nanotechnology-guided targeted delivery of lupeol improve the bioavailability and bioactivity of lupeol. CONCLUSION The pentacyclic triterpene lupeol possesses numerous human health-benefiting properties. This review updates current knowledge and critically discusses the pharmacological effects and potential applications of lupeol and its derivatives in human health and diseases. Future studies are needed to evaluate the efficacies of lupeol and its derivatives in the management and pathobiology of human diseases.
Collapse
Affiliation(s)
- Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Arifur Rahaman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Papia Rahman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Rakhal Chandra Das
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Kibria Khan
- Department of Pharmacy, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; Division of Chemistry and Biotechnology, Dongguk University, Gyeongju, 780-714, Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| |
Collapse
|
10
|
Tan OJ, Loo HL, Thiagarajah G, Palanisamy UD, Sundralingam U. Improving oral bioavailability of medicinal herbal compounds through lipid-based formulations - A Scoping Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153651. [PMID: 34340903 DOI: 10.1016/j.phymed.2021.153651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although numerous medicinal herbal compounds demonstrate promising therapeutic potential, their clinical application is often limited by their poor oral bioavailability. To circumvent this barrier, various lipid-based herbal formulations have been developed and trialled with promising experimental results. PURPOSE This scoping review aims to describe the effect of lipid-based formulations on the oral bioavailability of herbal compounds. METHODS A systematic search was conducted across three electronic databases (Medline, Embase and Cochrane Library) between January 2010 and January 2021 to identify relevant studies. The articles were rigorously screened for eligibility. Data from eligible studies were then extracted and collated for synthesis and descriptive analysis using Covidence. RESULTS A total of 109 studies were included in the present review: 105 animal studies and four clinical trials. Among the formulations investigated, 50% were emulsions, 34% lipid particulate systems, 12% vesicular systems, and 4% were other types of lipid-based formulations. Within the emulsion system classification, self-emulsifying drug delivery systems were observed to produce the best improvements in oral bioavailability, followed by mixed micellar formulations. The introduction of composite lipid-based formulations and the use of uncommon surfactants such as sodium oleate in emulsion preparation was shown to consistently enhance the bioavailability of herbal compounds with poor oral absorption. Interestingly, the lipid-based formulations of magnesium lithospermate B and Pulsatilla chinensis produced an absolute bioavailability greater than 100% indicating the possibility of prolonged systemic circulation. With respect to chemical conjugation, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was the most frequently used and significantly improved the bioavailability of its phytoconstituents. CONCLUSION Our findings suggest that there is no distinct lipid-based formulation superior to the other. Bioavailability improvements were largely dependent on the nature of the phytoconstituents. This scoping review, however, provided a detailed summary of the most up-to-date evidence on phytoconstituents formulated into lipid preparations and their oral bioavailability. We conclude that a systematic review and meta-analysis between bioavailability improvements of individual phytoconstituents (such as kaempferol, morin and myricetin) in various lipid-based formulations will provide a more detailed association. Such a review will be highly beneficial for both researchers and herbal manufacturers.
Collapse
Affiliation(s)
- Oi Jin Tan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Hooi Leong Loo
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Gayathiri Thiagarajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| |
Collapse
|
11
|
Karunanidhi P, Verma N, Kumar DN, Agrawal AK, Singh S. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes. AAPS PharmSciTech 2021; 22:158. [PMID: 34009603 DOI: 10.1208/s12249-021-02016-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The present study was aimed to enhance the mitochondrial function in oxidative stress-induced diabetes. To achieve this, Ficus religiosa L. extract loaded solid lipid nanoparticles (ETNPs) were prepared and functionalized by using triphenylphosphonium. Developed nanoparticles demonstrated desired quality attributes with sustained release for up to 24 h and excellent storage stability for up to 180 days at 40 ± 2°C and 75 ± 5% relative humidity. In vitro cytotoxicity assessment showed no toxicity of ETNPs. Interestingly, oral administration of ETNPs to diabetic rats demonstrated improved mitochondrial function by normalizing the mitochondrial morphology, intracellular calcium ion concentration, complexes I, II, IV, and V activity, mitochondrial membrane potential, and antioxidant levels. Further, reduction in apoptotic markers viz. cytochrome-C, caspase-3, and caspase-9 was observed following the ETNP treatment. Moreover, significant reduction in blood glucose and glycosylated hemoglobin while significant improvement in plasma insulin was observed as compared to the diabetic group following the treatment with developed formulation. Furthermore, histopathology studies confirmed the safety of the developed formulation and thus, data in hand collectively suggest that proposed strategy can be effectively used to improve the mitochondrial function in oxidative stress-induced diabetes along with better control over blood glucose and glycosylated hemoglobin.
Collapse
|
12
|
Gawande V, Morlock G. Effect-directed profiling of Ficus religiosa leaf extracts for multipotent compounds via 12 effect-directed assays. J Chromatogr A 2020; 1637:461836. [PMID: 33422795 DOI: 10.1016/j.chroma.2020.461836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
The interest in the therapeutic values of natural compounds from plants is growing worldwide because the development of modern synthetic drugs has not lived up to expectations. The tree Ficus religiosa native to India, China and Southeast Asia is traditionally used for curing almost 50 ailments, although the majority of the individual active compounds are not known. Hence, a hyphenated high-performance thin-layer chromatography (HPTLC) method was newly developed. It allowed a physicochemical, but especially effect-directed profiling of individual compounds present in Ficus religiosa leaves obtained from four locations (in India and Germany). Extracts of different polarities were screened for bioactivity responses and most bioactivities were found in the ethyl acetate extracts. A multi-imaging via 26 different detection modes was performed, i. e. UV/Vis/FLD, 11 microchemical derivatizations and 12 effect-directed assays (EDA). By HPTLC-UV/Vis/FLD-EDA, antibiotics against Gram-positive and Gram-negative bacteria as well as acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase, α-glucosidase and β-glucosidase inhibitors and radical scavenging compounds were detected. Estrogen-like or gentotoxic compounds were not detected at higher extract amounts of even 5 mg/band applied. For further characterization of three most important, multipotent, bioactive compound zones, HPTLC was hyphenated with heated electrospray ionization high-resolution mass spectrometry including fragmentation (HPTLC-HESI-HRMS/MS). Multipotent bioactive compounds discovered in the extracts were equivalently calculated in reference to well-known reference inhibitors.
Collapse
Affiliation(s)
- Vandana Gawande
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany; STES's Sinhgad Institute of Pharmacy, Department of Pharmaceutical Chemistry, Off. Smt. Kashibai Navale Hospital, Narhe, Pune, Maharashtra 411041, India
| | - Gertrud Morlock
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| |
Collapse
|
13
|
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 2020; 164:105373. [PMID: 33316380 DOI: 10.1016/j.phrs.2020.105373] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Lupeol is a natural triterpenoid that widely exists in edible fruits and vegetables, and medicinal plants. In the last decade, a plethora of studies on the pharmacological activities of lupeol have been conducted and have demonstrated that lupeol possesses an extensive range of pharmacological activities such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Pharmacokinetic studies have indicated that absorption of lupeol by animals was rapid despite its nonpolar characteristics, and lupeol belongs to class II BCS (biopharmaceutics classification system) compounds. Moreover, the bioactivities of some isolated or synthesized lupeol derivatives have been investigated, and these results showed that, with modification to C-3 or C-19, some derivatives exhibit stronger activities, e.g., antiprotozoal or anticancer activity. This review aims to summarize the advances in pharmacological and pharmacokinetic studies of lupeol in the last decade with an emphasis on its anticancer and anti-inflammatory activities, as well as the research progress of lupeol derivatives thus far, to provide researchers with the latest information, point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
14
|
Wang Z, Wang Y, Yu T, Hu Z, Wang Y. An LC-ESI/MS/MS method for the determination of lupeol via precolumn derivatization and its application to pharmacokinetic studies in rat plasma. Biomed Chromatogr 2020; 35:e5005. [PMID: 33067801 DOI: 10.1002/bmc.5005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 11/09/2022]
Abstract
Lupeol, a phytosterol and triterpene, is widely found in edible fruits and vegetables, and has been reported to exhibit a spectrum of pharmacological activities against various disease conditions. In the present study, a derivative generated by the reaction of lupeol with p-toluenesulfonyl isocyanate was ionizable and fragmentable in the negative mode by electrospray ionization/tandem mass spectrometry. Based on this simple chemical derivatization, a liquid chromatography-electrospray ionization/tandem mass spectrometry method was developed and validated for the quantification of lupeol in rat plasma. The calibration curves were linear (r2 > 0.999) over concentrations from 2.5 to 250 ng/ml for lupeol. The method had an accuracy of 96.0-109.4%, and the intra- and inter-day precisions (RSD) were within ± 15%. The stability data showed that no significant degradation occurred under the experimental conditions. The mean recoveries at three quality control levels were within 88.7-95.7%. No significant matrix effects (105.3-109.8%) were observed in rat plasma. This method was successfully applied to the pharmacokinetic study of lupeol in rat plasma after oral administration.
Collapse
Affiliation(s)
- Ziming Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Center for Bioactive Products, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tao Yu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Center for Bioactive Products, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhiwei Hu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Center for Bioactive Products, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yang Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Center for Bioactive Products, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
15
|
Mohammadi M, Jafari SM, Hamishehkar H, Ghanbarzadeh B. Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101458] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Khatal L, More H. Development and validation of a liquid chromatography-tandem mass spectrometry method for quantification of Lupeol in plasma and its application to pharmacokinetic study in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1121:58-65. [PMID: 31108322 DOI: 10.1016/j.jchromb.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Lupeol, a phytosterol and triterpene, possesses numerous medicinal properties against cancer, inflammation, arthritis, diabetes, heart diseases, etc. A novel, sensitive, specific and reproducible method for quantification of Lupeol in rat plasma using liquid chromatography combined with atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (LC-MS/MS) was developed and validated as per regulatory guidelines. Sample preparation was simple and fast which consisted of one-step protein precipitation using acetonitrile. Testosterone was used as an internal standard. HyPurity Advance column was used to develop the chromatography method using 0.1% formic acid in water and acetonitrile as mobile phases by gradient elution. APCI positive ion mode was used for mass spectrometric detection. Multiple reaction monitoring (MRM) transitions of m/z 409.5 [M + H - H2O]+→137.3 for Lupeol and m/z 289.1 [M + H]+→97.1 for Testosterone were used for quantification. The method was validated over a linear concentration range of 5-5000 ng/mL with a correlation coefficient (r2) of ≥ 0.99. This method showed acceptable accuracy (89.52-97.10%), precision (%CV ≤ 10.75%) and recovery with a negligible matrix effect. Lupeol was found to be stable in the stock solution, autosampler condition and also in plasma for four freeze-thaw cycles, 6 h at ambient temperature and 30 days at -20°C. This method was successfully applied to measurement of Lupeol in plasma samples from pharmacokinetic study in rats and can be easily extended to human pharmacokinetic studies.
Collapse
Affiliation(s)
- Laxman Khatal
- Bharati Vidyapeeth College of Pharmacy, Kolhapur, Near Chitranagri, Kolhapur 416013, Maharashtra, India.
| | - Harinath More
- Bharati Vidyapeeth College of Pharmacy, Kolhapur, Near Chitranagri, Kolhapur 416013, Maharashtra, India
| |
Collapse
|
18
|
Zhang J, Liang H, Yao H, Qiu Z, Chen X, Hu X, Hu J, Zheng G. The preparation, characterization of Lupeol PEGylated liposome and its functional evaluation in vitro as well as pharmacokinetics in rats. Drug Dev Ind Pharm 2019; 45:1052-1060. [DOI: 10.1080/03639045.2019.1569038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jun Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
- Department of Pharmacy, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, People’s Republic of China
| | - Huali Liang
- College of Nursing, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Hui Yao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Xinyan Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Xixi Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| |
Collapse
|
19
|
Cháirez‐Ramírez MH, Gallegos‐Infante JA, Moreno‐Jiménez MR, González‐Laredo RF, Rocha‐Guzmán NE. Absorption and distribution of lupeol in CD‐1 mice evaluated by UPLC–APCI
+
–MS/MS. Biomed Chromatogr 2018; 33:e4432. [DOI: 10.1002/bmc.4432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Manuel Humberto Cháirez‐Ramírez
- Research Group on Functional Foods and Nutraceuticals, Departamento de Ingenierías Química y BioquímicaTecNM/Instituto Tecnológico de Durango Durango Dgo Mexico
| | - Jose Alberto Gallegos‐Infante
- Research Group on Functional Foods and Nutraceuticals, Departamento de Ingenierías Química y BioquímicaTecNM/Instituto Tecnológico de Durango Durango Dgo Mexico
| | - Martha Rocio Moreno‐Jiménez
- Research Group on Functional Foods and Nutraceuticals, Departamento de Ingenierías Química y BioquímicaTecNM/Instituto Tecnológico de Durango Durango Dgo Mexico
| | - Ruben Francisco González‐Laredo
- Research Group on Functional Foods and Nutraceuticals, Departamento de Ingenierías Química y BioquímicaTecNM/Instituto Tecnológico de Durango Durango Dgo Mexico
| | - Nuria Elizabeth Rocha‐Guzmán
- Research Group on Functional Foods and Nutraceuticals, Departamento de Ingenierías Química y BioquímicaTecNM/Instituto Tecnológico de Durango Durango Dgo Mexico
| |
Collapse
|
20
|
Deepa P, Sowndhararajan K, Kim S, Park SJ. A role of Ficus species in the management of diabetes mellitus: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:210-232. [PMID: 29305899 DOI: 10.1016/j.jep.2017.12.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/13/2017] [Accepted: 12/30/2017] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus is one of the most common global health concerns, with a rapidly increasing incidence. A variety of medicinal plants, particularly those belonging to the genus Ficus (Moraceae), and their active compounds have been used to treat diabetes and related chronic disorders since ancient times. AIM OF THE STUDY The aim of this review is to provide information regarding traditional and scientific knowledge of Ficus species with antidiabetic activity to researchers. MATERIALS AND METHODS A literature search was conducted to obtain information about the antidiabetic properties of Ficus from the electronic databases. Common and scientific names of various Ficus species were used as keywords for the search, along with the terms antidiabetic, hypoglycemic and diabetes. RESULTS Among the assorted species of Ficus that were included in our search, F. benghalensis, F. carica, F. glomerata, F. glumosa, F. racemosa, and F. religiosa exhibited remarkable antidiabetic properties with various mechanisms of action. Moreover, Ficus species are versatile sources of bioactive metabolites such as flavonoids, phenolic acids, tannins, alkaloids, glycosides, coumarins, triterpenoids, sterols and vitamin E. These extracts and isolated compounds significantly have enhanced insulin secretion and subsequently reduced blood glucose level in various in vivo studies. CONCLUSION This review summarizes the antidiabetic potentials of the genus Ficus, including pharmacological studies with mechanisms of action as well as ethnobotanical uses. This review can help inform future scientific research towards the development of novel antidiabetic drugs.
Collapse
Affiliation(s)
- Ponnuvel Deepa
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| | - Kandhasamy Sowndhararajan
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| | - Songmun Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|