1
|
Ngo HV, Nguyen HD, Lee BJ. Triple synergistic cancer targeting strategies utilizing redox-sensitive fattigated hyaluronic acid nanoparticles encapsulating doxorubicin. Int J Biol Macromol 2025; 313:144168. [PMID: 40379189 DOI: 10.1016/j.ijbiomac.2025.144168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/30/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Antitumor potentials of dietary oleic acid (OA), primarily through enhancing intracellular lipid accumulation in various human cancers are hindered by poor selectivity and tumor targetability. Cancer cells are also challenged by high concentration of glutathione (GSH) and favorable binding affinity of hyaluronic acid (HA) to the CD44 (acidic cell surface adhesion protein) receptor. A novel conjugate (HA-CYS-OA, HOC) was synthesized by linking GSH-sensitive cystamine (CYS) to OA and HA. This amphiphilic HOC could self-assemble into redox-sensitive nanoparticles (HON) to co-deliver OA and encapsulated doxorubicin (DOX). HON synergistically enhanced anticancer efficacy by facilitating HA-mediated cellular uptake and GSH-triggered OA release in a targeted manner. Encapsulation of DOX in HON resulted in higher cellular uptake and more efficient DOX release compared to the commercially available liposomal DOX formulation. Furthermore, DOX-HON protected non-cancerous cells, while significantly increasing cytotoxicity and higher rate of apoptosis of human breast carcinoma cells, demonstrating superior selectivity indices. This enhanced performance was attributed to the triple synergistic actions of HA-mediated DOX targeting and OA-induced lipid accumulation from the redox-sensitive nanoformulation. Collectively, our results suggested that enzyme specific HON could be a bioactive and selective nanocarrier model for the co-delivery of fatty acids and chemotherapeutic drugs in synergistic cancer therapy.
Collapse
Affiliation(s)
- Hai Van Ngo
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Hy Dinh Nguyen
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
2
|
Ngo HV, Nguyen HD, Lee BJ. Hyaluronic acid conjugates with controlled oleic acid substitution as new nanomaterials for improving ocular co-delivery of cyclosporine A and oleic acid. Asian J Pharm Sci 2025; 20:101009. [PMID: 39926634 PMCID: PMC11804554 DOI: 10.1016/j.ajps.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025] Open
Abstract
A structural conjugate (HOC) of polysaccharide, hyaluronic acid (HA) with different ratios of oleic acid (OA) via cystamine (CYS) linker as a new ocular biomaterial was developed. The HOCs with controlled degrees of substitution of OA (4.6 %, 8.3 % and 12.2 %) were synthesized to form self-assembled HA-CYS-OA nanoparticles (HONs, HON1, HON2, HON3). A poorly water-soluble cyclosporine A (CsA) to be used for the treatment of multifactorial dry eye disease (DED) was chosen as model drug. CsA-loaded HONs exhibited improved solution transparency via solubilizing capacity of HON, and increased in vitro drug permeation compared to Restasis®. The physicochemical properties of CsA-loaded HONs such as nano behaviors, solution transparency, drug release, drug permeation and ocular cytocompatibility were highly variable according to the ratios of OA substitution. Interestingly, this CsA-loaded HON1 as optimal ocular nanoformulation showed markedly augmented macrophage polarization into the M2 phenotype, downregulated the expression of proinflammatory cytokines levels in LPS-induced M1 macrophage, and effectively inhibited VEGF-induced endothelial cell proliferation and capillary-like tube formation by the synergistic effect of CsA and HON1 containing OA at the same time. Collectively, the current fatty acid conjugated to HA, named fattigation platform, providing the roles and physicochemical properties via structural features of HA could be a promising co-delivery strategy of drug and fatty acid for DED and other ophthalmic disease treatments.
Collapse
Affiliation(s)
- Hai V. Ngo
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hy D. Nguyen
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
4
|
Park J, Ngo HV, Jin HE, Lee KW, Lee BJ. Hydroxyl Group-Targeted Conjugate and Its Self-Assembled Nanoparticle of Peptide Drug: Effect of Degree of Saturation of Fatty Acids and Modification of Physicochemical Properties. Int J Nanomedicine 2022; 17:2243-2260. [PMID: 35615542 PMCID: PMC9124699 DOI: 10.2147/ijn.s356804] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To conjugate different degree of saturation of C18 fatty acids (stearic acid, oleic acid, and linoleic acid) with the hydroxyl groups of leuprolide acetate (LEU acetate) and to investigate the controlled release and enhanced permeability through self-assembled nanoparticles (L18FNs). Methods Yamaguchi esterification with benzoyl chloride and DMAP (4-Dimethylaminopyridine) allowed the conjugation of the fatty acid to the hydroxyl group of LEU. The three conjugates were then designated as stearic acid-conjugated LEU, LSC, oleic acid-conjugated LEU, LOC, and linoleic acid-conjugated LEU, LLC, respectively. The conjugates (L18FCs) were purified using preparative HPLC (Prep-HPLC) and identified through various instrumental analyses. Results The zeta potential, particle size, and morphology of each L18FNs were evaluated. In the case of LSNs, the zeta potential value was relatively low and the particle size was larger than LONs and LLNs owing to the higher hydrophobicity of saturated fatty chain, while the LLNs showed a higher zeta potential and smaller particle size. In human plasma, LLC showed the fastest degradation rate with the highest accumulative drug release. The permeability of L18FNs was analyzed through the Franz diffusion cell experiment, confirming that the degree of saturation of fatty acids affects the permeability of LFNs. While the permeability of LSNs was not significantly enhanced due to higher particle size after nanonization, LONs and LLNs increased 1.56 and 1.85 times in permeation, respectively, compared to LEU. Conclusion Utilization of different degree of saturation of fatty acids to conjugate a peptide drug could provide pharmaceutical versatility via self-assembly and modification of physicochemical properties.
Collapse
Affiliation(s)
- Jisoo Park
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Hai V Ngo
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyo-Eon Jin
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Kye Wan Lee
- Dongkook Pharmaceutical Co., Ltd, Seoul, Republic of Korea
| | - Beom-Jin Lee
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
- Correspondence: Beom-Jin Lee, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea, Tel +82 312193442, Fax +82 312193435, Email
| |
Collapse
|
5
|
ACAR T, UÇAR B. Angiotensin(1-7)-Stearic Acid Conjugate: Synthesis and Characterization. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1032642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
Transferrin conjugated Stealth liposomes for sirolimus active targeting in breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Demirbolat GM, Coskun GP, Erdogan O, Cevik O. Long chain fatty acids can form aggregates and affect the membrane integrity. Colloids Surf B Biointerfaces 2021; 204:111795. [PMID: 33945967 DOI: 10.1016/j.colsurfb.2021.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Stearic acid (SA) and oleic acid (OA) which are inherently existing fatty acids (FAs) in the body can alter cell membrane function and interact with each other. However, discrepancies arise as to whether these effects are beneficial or harmful on the body. To resolve this ambiguity, there is a dire need to study how FAs can affect the etiology of diseases and their treatment. In this study, we aimed to investigate long chain FAs aggregation behaviors and their effects on membrane integrity and cell viability. We determined the critical aggregation concentration (CAC) of SA and OA (1110 μM and 300 μM, respectively which were less amount than that used in nanocarriers). In TEM images, hexagonal overlapped or fused structures of SA were seen, whereas quite small spherical clusters of OA were obtained. Membrane integrity assessments demonstrated that SA and OA at their own CAC and below could crack the lipid junctions on membrane mimicking systems. Moreover, they completely disrupt the membrane integrity above the CAC at pH 7.2. Cell viabilities on various cell lines were assessed after exposed to SA or OA aggregates. SA was more aggressive than OA on cell death in all cell lines. The effect of SA on PC3 cell lines was in a concentration-dependent manner. The effect of SA above CAC boosted the inhibition of cell viability. Furthermore, OA showed a proliferation effect on PC3 cells. Consequently, the aggregation behavior of FAs should be considered as a noteworthy factor in physiological functions.
Collapse
Affiliation(s)
- Gulen Melike Demirbolat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Biruni University, Zeytinburnu, Istanbul, 34010, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, 58140, Turkey.
| | - Goknil Pelin Coskun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, 34684, Istanbul, Turkey.
| | - Omer Erdogan
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin, 09010, Turkey.
| | - Ozge Cevik
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin, 09010, Turkey.
| |
Collapse
|
8
|
Yu Y, Ngo HV, Jin G, Tran PHL, Tran TTD, Nguyen VH, Park C, Lee BJ. Double-Controlled Release of Poorly Water-Soluble Paliperidone Palmitate from Self-Assembled Albumin-Oleic Acid Nanoparticles in PLGA in situ Forming Implant. Int J Nanomedicine 2021; 16:2819-2831. [PMID: 33888982 PMCID: PMC8056066 DOI: 10.2147/ijn.s302514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose To investigate the effects of solvents on the formation of self-assembled nanonization of albumin-oleic acid conjugates (AOCs) using a solvent exchange mechanism for the construction of in situ forming implants (ISFI). Methods A poorly water-soluble drug, paliperidone palmitate (PPP), was chosen as the model drug. AOC was synthesized with the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) reaction. Dichloromethane, tetrahydrofuran, ethanol, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and deionized water were selected to investigate the formation of self-assembled AOC nanoparticles (AONs). The volume ratios of organic solvents against water could determine the miscibility, injectability, and in situ nanonizing capability without aggregation. Results As the polarity of the organic solvents increased, the AONs exhibited a spherical shape, and the larger the volume of the solvent, the smaller the size of the AONs. To use AOC in ISFI for controlled release of PPP, poly(d,l-lactide-co-glycolide) (PLGA) was combined with the AOC in 2 mL of N-methyl-2-pyrrolidone and water solution (1.8/0.2 ratio). The release rates of all formulations exhibited similar curve patterns overall but were more controlled in decreasing order as follows: AOC, PLGA, and AOC/PLGA for 14 days. Conclusion A combined formulation of AOC and PLGA was found to effectively control the initial burst release of the drug.
Collapse
Affiliation(s)
- Yongjun Yu
- College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Hai V Ngo
- College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Gang Jin
- College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | | | - Thao T D Tran
- Institute of Research and Development, Duy Tan University, Danang, 550000, Vietnam.,The Faculty of Pharmacy, Duy Tan University, Danang, 550000, Vietnam
| | - Van Hong Nguyen
- Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City, 70000, Vietnam
| | - Chulhun Park
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
9
|
Rehan F, Ahemad N, Islam RA, Gupta M, Gan SH, Chowdhury EH. Optimization and Formulation of Nanostructured and Self-Assembled Caseinate Micelles for Enhanced Cytotoxic Effects of Paclitaxel on Breast Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12100984. [PMID: 33080962 PMCID: PMC7589039 DOI: 10.3390/pharmaceutics12100984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Paclitaxel (PTX) is a widely used anti-cancer drug for treating various types of solid malignant tumors including breast, ovarian and lung cancers. However, PTX has a low therapeutic response and is linked with acquired resistance, as well as a high incidence of adverse events, such as allergic reactions, neurotoxicity and myelosuppression. The situation is compounded when its complex chemical structure contributes towards hydrophobicity, shortening its circulation time in blood, causing off-target effects and limiting its therapeutic activity against cancer cells. Formulating a smart nano-carrier may overcome the solubility and toxicity issues of the drug and enable its more selective delivery to the cancerous cells. Among the nano-carriers, natural polymers are of great importance due to their excellent biodegradability, non-toxicity and good accessibility. The aim of the present research is to develop self-assembled sodium caseinate nanomicelles (NaCNs) with PTX loaded into the hydrophobic core of NaCNs for effective uptake of the drug in cancer cells and its subsequent intracellular release. METHODS The PTX-loaded micelle was characterized with high-performance liquid chromatography (HPLC), Fourier Transform Infrared Spectra (FTIR), High Resolution-Transmission Electron Microscope (HR-TEM), Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). Following treatment with PTX-loaded NaCNs, cell viability, cellular uptake and morphological changes were analyzed using MCF-7 and MDA-MB 231 human breast cancer cell lines. RESULTS We found that PTX-loaded NaCNs efficiently released PTX in an acidic tumor environment, while showing an enhanced cytotoxicity, cellular uptake and in-vivo anti-tumor efficacy in a mouse model of breast cancer when compared to free drug and blank micelles. Additionally, the nanomicelles also presented improved colloidal stability for three months at 4 °C and -20 °C and when placed at a temperature of 37 °C. CONCLUSIONS We conclude that the newly developed NaCNs is a promising carrier of PTX to enhance tumor accumulation of the drug while addressing its toxicity issues as well.
Collapse
Affiliation(s)
- Farah Rehan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Global Asia in the 21st century Research Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
| | - Manish Gupta
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
- School of Pharmaceutical and Population Health Informatics, DIT University, Mussoorie-Diversion Road, Dehradun, Uttarakhand-248009, India
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia; (F.R.); (N.A.); (M.G.); (S.H.G.)
| | - Ezharul Hoque Chowdhury
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
10
|
Park C, Baek N, Loebenberg R, Lee BJ. Importance of the fatty acid chain length on in vitro and in vivo anticancer activity of fattigation-platform albumin nanoparticles in human colorectal cancer xenograft mice model. J Control Release 2020; 324:55-68. [PMID: 32380202 DOI: 10.1016/j.jconrel.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 11/24/2022]
Abstract
The aims of this study were to design different chain length fatty acid-conjugated albumin nanoparticles (ANPs) and evaluate their anticancer activity in the HCT116 human colorectal cancer xenograft mouse model. Doxorubicin hydrochloride (DOX·HCl) was chosen as a model drug. The different chain lengths of fatty acids (butyric acid; C4, and stearic acid; C18) in albumin conjugates exhibited different physicochemical properties and anticancer activity. Fatty acid-conjugated albumin aided the formation of self-assembled structures with an average size of approximately 200 nm and a negative charge when incubated with excess DOX in an aqueous solution. DOX-loaded long-chain C18-conjugated ANPs allowed efficient encapsulation of hydrophobic DOX into the core of the self-assembled structure, enabling higher drug loading, enhanced colloidal stability and controlled release behavior in PBS pH 7.4 medium as compared with free DOX·HCl or non-fatty acid conjugated ANPs. Furthermore, DOX-loaded fatty acid-conjugated ANPs showed an increased cellular uptake intensity and cytotoxic effects in vitro. In vivo, HCT116 xenograft model experiments confirmed that DOX-loaded C18-conjugated ANPs showed improved anticancer activity and reduced side effects compared with the DOX-treated groups. The long-chain fatty acid-conjugated ANPs synergistically activated the interaction with the free-fatty acid receptor (FFAR) on HCT116 colorectal cancer cells as compared with short-chain C4 or other non-conjugated ANPs. Specifically, DOX-loaded C18-conjugated NPs exhibited significant performance to overexpressed FFAR4 on HCT116 colorectal cancer cells. The fatty acid chain length in the fattigation-platform system could be a promising molecular moiety to improve targeting efficiency and drug accumulation in various cancer therapy.
Collapse
Affiliation(s)
- Chulhun Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Namhyun Baek
- Formulation Research Lab. DONG-WHA PHARM. Research Institute, Yongin 17084, Republic of Korea.
| | - Raimar Loebenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
11
|
Evaluation and live monitoring of pH-responsive HSA-ZnO nanoparticles using a lung-on-a-chip model. Arch Pharm Res 2020; 43:503-513. [DOI: 10.1007/s12272-020-01236-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
|
12
|
Park C, Meghani N, Loebenberg R, Cui JH, Cao QR, Lee BJ. Fatty acid chain length impacts nanonizing capacity of albumin-fatty acid nanomicelles: Enhanced physicochemical property and cellular delivery of poorly water-soluble drug. Eur J Pharm Biopharm 2020; 152:257-269. [PMID: 32422167 DOI: 10.1016/j.ejpb.2020.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to design the ideal nanonizing vehicle for poorly water-soluble model curcumin (CCM) using fattigation-platform nanotechnology, and to investigate the effects of fatty acid salts chain length on nanonizing CCM and its efficient delivery to different cancer cells. HSA-fatty acid conjugates were synthesized by EDC/NHS coupling. Fattigation-platform nanomicelles (NMs), prepared by film hydration, exhibited uniform and spherical morphology, although, each NM varied in particle size, zeta potential, and critical micelle concentration according to the types of fatty acid. Preliminary solubility studies of albumin conjugates with 5 types of fatty acid salts of different chain lengths revealed that C14 exhibited the highest solubilization of CCM. CCM-loaded HSA-C14 NMs demonstrated the highest drug content (5.35 ± 0.48%) and loading efficiency (95.93 ± 1.87%) compared to other NMs. It exhibited enhanced drug release rate and reduced micelle size in biorelevant dissolution medium. Interestingly, this solubilization approach was well applied in poorly water-soluble docetaxel trihydrate (DTX). Preliminary solubility results of DTX was also corresponded to the stable nanonization phenomenon in biorelevant dissolution medium. Compared to the CCM EtOH solution, HSA-C14 NMs showed higher internalization in cancer cell lines A549 and MCF-7, and consequently, exhibited significantly increased cytotoxicity against both cell lines. Therefore, this study provides a new solubilization approach for poorly water-soluble drugs using fatty acid salts of different chain lengths and their micellar formations via nanonization, which could be a promising tool for targeted cancer therapy using poorly water-soluble drugs.
Collapse
Affiliation(s)
- Chulhun Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | | - Raimar Loebenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Qing-Ri Cao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
13
|
Meghani NM, Amin H, Park C, Cui JH, Cao QR, Choi KH, Lee BJ. Combinatory interpretation of protein corona and shear stress for active cancer targeting of bioorthogonally clickable gelatin-oleic nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110760. [PMID: 32279783 DOI: 10.1016/j.msec.2020.110760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 12/20/2022]
Abstract
Nanoparticle-protein interactions under conditions mimicking physiology determine how nanoparticles (NPs) will behave inside blood vessels and, therefore, the overall outcome of the drug-delivery system. Here, for the first time, we explore the effects of bio-mimicking shear stress and protein corona conditions on novel active targeting of clickable fattigation nanoparticles (NPs) for cancer therapy. Active targeting dibenzocyclooctyne-functionalized biocompatible gelatin-oleic NPs (GON-DBCOs) via a bioorthogonal click reaction were prepared by the desolvation method for delivery of docetaxel (DTX) to lung and breast cancer models. The effect of shear stress (5 dyne/cm2) and human serum albumin (HSA) protein corona on the cellular behavior of NPs was explored under a dynamic microfluidic system in lung (A549) and breast (MCF-7) cancer cell lines. The developed drug-loaded NPs had a particle size of 300 nm, a narrow size distribution, positive zeta potential, high encapsulation efficacy (72.4%), and spherical morphology. The particle size of the protein corona-coated NPs increased to 341 nm with a negative zeta potential. The inhibitory dose (IC50) increased approximately 3- and 42-fold in A549 and MCF-7 cells, respectively, under dynamic microfluidic conditions compared to static conditions. Cellular uptake was significantly decreased in the presence of shear stress and a protein corona, compared with static conditions, in both lung (A549, **p < 0.01) and breast (MCF-7, *p < 0.05) cancer cell lines. Clathrin-and energy-dependent pathways were found to be involved in the cellular uptake of NPs. This study could serve as a vital tool for the evaluation of NPs under aggressive bio-mimicking conditions comprising shear stress and a protein corona to predict the in vivo performance of NPs and support the preclinical and clinical translation of NP drug delivery systems.
Collapse
Affiliation(s)
- Nileshkumar M Meghani
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Advanced Micro-Mechatronics Lab, Mechatronics Engineering, Jeju National University, Jeju City 63243, Republic of Korea.
| | - Hardik Amin
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Chulhun Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Qing-Ri Cao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Kyung Hyun Choi
- Advanced Micro-Mechatronics Lab, Mechatronics Engineering, Jeju National University, Jeju City 63243, Republic of Korea.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
14
|
Kim HB, Meghani N, Park M, Lee SH, Lee SR, Cho YJ, Doh YH, Choi KH. Electrohydrodynamically Atomized pH-Responsive PLGA/ZnO Quantum Dots for Local Delivery in Lung Cancer. Macromol Res 2020. [DOI: 10.1007/s13233-020-8053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Kim D, Park C, Meghani NM, Tran TTD, Tran PHL, Park JB, Lee BJ. Utilization of a fattigation platform gelatin-oleic acid sodium salt conjugate as a novel solubilizing adjuvant for poorly water-soluble drugs via self-assembly and nanonization. Int J Pharm 2019; 575:118892. [PMID: 31786354 DOI: 10.1016/j.ijpharm.2019.118892] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 12/18/2022]
Abstract
Solubilizing adjuvants are commonly used to dissolve insoluble drugs by simply adding in a formulation. In this study, gelatin and oleic acid sodium salt (OAS), a generally recognized as safe-listed material were chosen and conjugated to develop a natural solubilizing adjuvant using the fattigation platform technology to enhance solubility and dissolution rate of poorly water-soluble drugs according to self-assembly and nanonization principle when simply mixed with poorly water-soluble drugs. We synthesized the gelatin and OAS conjugates (GOC) at three different ratios (1:1, 1:3, 1:5; GOC 1, GOC 2, and GOC 3, respectively) via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide reaction using a spray dryer. This amphiphilic micronized GOC was self-assembled into nanoparticles. The synthesis of new amphiphilic conjugates was identified through Fourier transform-infrared (FT-IR) spectroscopy. The powder properties of the GOCs, such as angle of repose, bulk density, and tapped density were varied with the oleic acid bonding ratio. Then, GOCs were utilized to investigate the enhanced solubility and release rate of various poorly water-soluble drugs such as cilostazol (CSZ), coenzyme Q10, ticagrelor, telmisartan, aprepitant and itraconazole as model drugs. Based on the solubility studies by concentration and type of GOCs, 3% GOC 2 was selected. When this GOC was mixed with these model drugs by the physical mixing, wetting and hot melting methoods, the solubility was highly enhanced compared to the pure control drug, ranging from 20 to 150,000 times. In case of CSZ, all formulations were significantly improved release rate compared to the of CSZ alone and the reference tablet, cilostan® (Korea United Pharm) in simulated intestinal fluid containing 0.2% sodium lauryl sulfate. Differential scanning calorimetry and powder X-ray diffraction were conducted to confirm the crystal polymorphic structure of CSZ, and as a result they changed to diminutive peak intensity compared to CSZ alone. Field-emission scanning electron microscopy indicated that GOC was round with a reduced size of about 100 nm. The reduction of drug particles via nanonization and self-assembly of amphiphilic GOC in an aqueous media could be a key factor to improve poor water solubility by providing a favorable dispersion of drug molecules in an amphiphilic network.
Collapse
Affiliation(s)
- Dayoung Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Chulhun Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | | | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Phuong H L Tran
- Deakin University, Geelong Australia, School of Medicine, Australia
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
16
|
Nguyen VH, Meghani NM, Amin HH, Tran TTD, Tran PHL, Park C, Lee BJ. Modulation of serum albumin protein corona for exploring cellular behaviors of fattigation-platform nanoparticles. Colloids Surf B Biointerfaces 2018; 170:179-186. [PMID: 29906703 DOI: 10.1016/j.colsurfb.2018.05.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 05/26/2018] [Indexed: 12/15/2022]
Abstract
Albumin is the most abundant protein in blood, and is the most frequently identified protein in the protein corona of nanoparticles (NPs). Thus, albumin plays an important role in modulating NPs' physicochemical properties and bioavailability. In this study, the effect of bovine serum albumin (BSA) on gelatin-oleic nanoparticles' (GONs) physicochemical properties and cellular uptake were evaluated. Coumarin-6 was used as indicator to track the cellular uptake of GONs. The binding of BSA onto the GON surface increased the size, slightly reduced the negative net charge of the GON, and improved GON stability. The presence of BSA in cell culture media reduced the cellular uptake of BSA-uncoated GONs on human embryonic kidney cells 293 (HEK 293) and human adenocarcinoma alveolar basal epithelial cells (A549) in the media without FBS addition. Pre-coated BSA corona decreased cellular uptake of GONs in A549 cells in the media, with and without supplemented with 10% fetal bovine serum (FBS) but drastically increased cellular uptake on HEK 293 cells. BSA could be used to modulate protein corona as an endogenous ligand in NP design simply by mixing or incubating BSA with NPs before in vivo administration to inhibit or induce cellular uptake in specific cell types.
Collapse
Affiliation(s)
- Van Hong Nguyen
- Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City, 70000, Vietnam
| | - Nilesh M Meghani
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hardik H Amin
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | | - Chulhun Park
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|