1
|
Galvão GF, Petrilli R, Arfelli VC, Carvalho AN, Martins YA, Rosales RRC, Archangelo LF, daSilva LLP, Lopez RFV. Iontophoresis-driven alterations in nanoparticle uptake pathway and intracellular trafficking in carcinoma skin cancer cells. Colloids Surf B Biointerfaces 2025; 248:114459. [PMID: 39709939 DOI: 10.1016/j.colsurfb.2024.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Effective treatment of squamous cell carcinoma (SCC) poses challenges due to intrinsic drug resistance and limited drug penetration into tumor cells. Nanoparticle-based drug delivery systems have emerged as a promising approach to enhance therapeutic efficacy; however, they often face hurdles such as inadequate cellular uptake and rapid lysosomal degradation. This study explores the potential of iontophoresis to augment the efficacy of liposome and immunoliposome-based drug delivery systems for SCC treatment. The study assessed iontophoresis effects on SCC cell line (A431) viability, nanoparticle uptake dynamics, and intracellular distribution patterns. Specific inhibitors were employed to delineate cellular internalization pathways, while fluorescence microscopy and immunohistochemistry examined changes in EGFR expression and lysosomal activity. Results demonstrated that iontophoresis significantly increased cellular uptake of liposomes and immunoliposomes, achieving approximately 50 % uptake compared to 10 % with passive treatment. This enhancement correlated with modifications in endocytic pathways, favoring macropinocytosis and caveolin-mediated endocytosis for liposomes, and macropinocytosis and clathrin-mediated pathways for immunoliposomes. Moreover, iontophoresis induced alterations in EGFR distribution and triggered syncytium-like cellular clustering. It also attenuated lysosomal activity, thereby reducing nanoparticle degradation and prolonging intracellular retention of therapeutic agents. These findings underscore the role of iontophoresis in modulating nanoparticle internalization pathways, offering insights that could advance targeted drug delivery strategies and mitigate therapeutic resistance in SCC and other malignancies.
Collapse
Affiliation(s)
- Gabriela Fávero Galvão
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil; Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Redenção, CE, Brazil; Federal University of Ceara, Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza, Ceará, Brazil
| | - Vanessa Cristina Arfelli
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andréia Nogueira Carvalho
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil
| | - Roberta Ribeiro Costa Rosales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leticia Fröhlich Archangelo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Lamberti Pinto daSilva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14020-630, Brazil.
| |
Collapse
|
2
|
Swallah MS, Bondzie-Quaye P, Yu X, Fetisoa MR, Shao CS, Huang Q. Elucidating the protective mechanism of ganoderic acid DM on breast cancer based on network pharmacology and in vitro experimental validation. Biotechnol Appl Biochem 2025; 72:415-436. [PMID: 39318248 DOI: 10.1002/bab.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
Ganoderma lucidum, a popular medicinal fungus, has been utilized to treat a variety of diseases. It possesses a unique therapeutic and pharmacological reputation in suppressing cancer/tumor progression, especially breast cancer, due to its embedded rich bioactive chemical constituents, mainly triterpenoids (ganoderic acids). The most prevalent malignant tumor in women with a high mortality and morbidity rate is breast cancer. Ganoderic acids A, D, DM, F, and H are evidenced in previous research to have breast cancer-preventive properties by exhibiting autophagic and apoptosis, anti-proliferative, and anti-angiogenesis effects. However, the anti-breast cancer mechanism remains unclear. The putative targets of the ganoderic acids were further determined using bioinformatics techniques and molecular docking calculation. Finally, the key targets were verified in vitro. A total of 53 potential target proteins associated with 202 pathways were predicted to be related to breast cancer. The potential targets were narrowed down to six key targets (AKT1, PIK3CA, epidermal growth factor receptor [EGFR], STAT1, ESR1, and CTNNB1), using different algorithms of the CytoHubba plugin, which were further validated using molecular docking analysis. The ganoderic acid DM (GADM) and the targets (PIK3CA and EGFR) with the strongest interactions were validated via MDA-MB-231 and MCF7 cells. The expression level of PIK3CA in both MDA-MB-231 and MCF7 cells was dose-dependently suppressed by GADM, whereas EGFR expression was unexpectedly increased, which warrants further investigation. These data indicated that the network pharmacology-based prediction of GADM targets for treating human breast cancer could be reliable.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xin Yu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Monia Ravelonandrasana Fetisoa
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chang-Sheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Li H, Shi Y, Ding X, Zhen C, Lin G, Wang F, Tang B, Li X. Recent advances in transdermal insulin delivery technology: A review. Int J Biol Macromol 2024; 274:133452. [PMID: 38942414 DOI: 10.1016/j.ijbiomac.2024.133452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Transdermal drug delivery refers to the administration of drugs through the skin, after which the drugs can directly act on or circulate through the body to the target organs or cells and avoid the first-pass metabolism in the liver and kidneys experienced by oral drugs, reducing the risk of drug poisoning. From the initial singular approach to transdermal drug delivery, there has been a shift toward combining multiple methods to enhance drug permeation efficiency and address the limitations of individual approaches. Technological advancements have also improved the accuracy of drug delivery. Optimizing insulin itself also enables its long-term release via needle-free injectors. In this review, the diverse transdermal delivery methods employed in insulin therapy and their respective advantages and limitations are discussed. By considering factors such as the principles of transdermal penetration, drug delivery efficiency, research progress, synergistic innovations among different methods, patient compliance, skin damage, and posttreatment skin recovery, a comprehensive evaluation is presented, along with prospects for potential novel combinatorial approaches. Furthermore, as insulin is a macromolecular drug, insights gained from its transdermal delivery may also serve as a valuable reference for the use of other macromolecular drugs for treatment.
Collapse
Affiliation(s)
- Heng Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinbing Ding
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Chengdong Zhen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
4
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
5
|
Akyol E, Ulusoy Hİ, Yilmaz E, Polat Ü, Soylak M. Application of magnetic solid-phase extraction for sensitive determination of anticancer drugs in urine by means of diamino benzidine tetrachlorohydrate modified magnetic nanoparticles. Pharmacol Rep 2023; 75:456-464. [PMID: 36840823 DOI: 10.1007/s43440-023-00465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND The analysis of drug active molecules and residues in the treatment of cancer is important for the sustainability of human life and therapeutic effects. For this purpose, a new magnetic sorbent was developed to use in solid phase extraction prior to conventional high-performance liquid chromatography (HPLC) analysis of Paclitaxel (PAC) and Gemcitabine (GEM) molecules. METHODS In this study, a separation and pre-concentration approach based on magnetic solid phase extraction (MSPE) was proposed for PAC and GEM by means of using a newly synthesized magnetic sorbent. After the MSPE procedure, an HPLC system with a diode array detector (DAD) was used to analyze trace amounts of PAC and GEM anticarcinogenic drugs in urine samples. Surface modification of magnetic Fe3O4 nanoparticles was carried out by diaminobenzidinetetrachloro hydrate (DABTC) for the first time and a useful sorbent was obtained for MSPE experiments. RESULTS In the proposed method, PAC and GEM molecules were retained on the c in the presence of a pH 5.0 medium and desorbed to 300 μL of acetonitrile: methyl alcohol (1:1) eluent phase before HPLC-DAD analysis. Under the optimized conditions, the limit of detection (LOD) values for PAC and GEM were 1.38 and 1.44 ng mL-1 while the enhancement factor for PAC and GEM were 139.5 and 145.3, respectively. The relative standard deviations (RSD %) for PAC and GEM were below 3.50% in inter-day repeated experiments by means of model solutions containing 100 ng mL-1 drug active ingredients. CONCLUSIONS Synthesis and characterization of DABTC-Fe3O4 nanoparticles were performed using suitable methodologies. Optimization of MSPE was done step by step. And finally, the developed method was successfully applied to urine samples with quantitative recoveries in the range of 99.0% and 105.0%.
Collapse
Affiliation(s)
- Emin Akyol
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Application and Research Center, Ernam Erciyes University, Kayseri, Turkey
| | - Ümmügülsüm Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Portable Iontophoresis Device for Efficient Drug Delivery. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010088. [PMID: 36671660 PMCID: PMC9854461 DOI: 10.3390/bioengineering10010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The timely delivery of drugs to specific locations in the body is imperative to ensure the efficacy of treatment. This study introduces a portable facial device that can deliver drugs efficiently using iontophoresis. Two types of power supplies-direct current and pulse ionization supplies-were manufactured by injection molding. Electrical stimulation elements, which contained Ag metal wires, were woven into facial mask packs. The diffusion phenomenon in the skin and iontophoresis were numerically modeled. Injection molding was simulated before the device was manufactured. Analysis using rhodamine B demonstrated a remarkable increase in the moisture content of the skin and effective absorption of the drug under an applied electric field upon the application of iontophoresis. The proposed concept and design constitute a new method of achieving effective drug absorption with wearable devices.
Collapse
|
7
|
Soman S, Kulkarni S, Pandey A, Dhas N, Subramanian S, Mukherjee A, Mutalik S. 2D Hetero-Nanoconstructs of Black Phosphorus for Breast Cancer Theragnosis: Technological Advancements. BIOSENSORS 2022; 12:1009. [PMID: 36421127 PMCID: PMC9688887 DOI: 10.3390/bios12111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As per global cancer statistics of 2020, female breast cancer is the most commonly diagnosed cancer and also the foremost cause of cancer death in women. Traditional treatments include a number of negative effects, making it necessary to investigate novel smart drug delivery methods and identify new therapeutic approaches. Efforts for developing novel strategies for breast cancer therapy are being devised worldwide by various research groups. Currently, two-dimensional black phosphorus nanosheets (BPNSs) have attracted considerable attention and are best suited for theranostic nanomedicine. Particularly, their characteristics, including drug loading efficacy, biocompatibility, optical, thermal, electrical, and phototherapeutic characteristics, support their growing demand as a potential substitute for graphene-based nanomaterials in biomedical applications. In this review, we have explained different platforms of BP nanomaterials for breast cancer management, their structures, functionalization approaches, and general methods of synthesis. Various characteristics of BP nanomaterials that make them suitable for cancer therapy and diagnosis, such as large surface area, nontoxicity, solubility, biodegradability, and excellent near-infrared (NIR) absorption capability, are discussed in the later sections. Next, we summarize targeting approaches using various strategies for effective therapy with BP nanoplatforms. Then, we describe applications of BP nanomaterials for breast cancer treatment, which include drug delivery, codelivery of drugs, photodynamic therapy, photothermal therapy, combined therapy, gene therapy, immunotherapy, and multidrug resistance reversal strategy. Finally, the present challenges and future aspects of BP nanomaterials are discussed.
Collapse
Affiliation(s)
- Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
8
|
Thyagarajan A, Awasthi K, Rapp CM, Johnson RM, Chen Y, Miller KLR, Travers JB, Sahu RP. Topical application of gemcitabine generates microvesicle particles in human and murine skin. Biofactors 2022; 48:1295-1304. [PMID: 36504167 PMCID: PMC9789190 DOI: 10.1002/biof.1924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
Chemotherapy has remained the mainstay for the treatment of multiple types of cancers. In particular, topical use of chemotherapy has been used for skin cancers. Though effective, topical chemotherapy has been limited due to adverse effects such as local and even systemic toxicities. Our recent studies demonstrated that exposure to pro-oxidative stressors, including therapeutic agents induces the generation of extracellular vesicles known as microvesicle particles (MVP) which are dependent on activation of the Platelet-activating factor-receptor (PAFR), a G-protein coupled receptor present on various cell types, and acid sphingomyelinase (aSMase), an enzyme required for MVP biogenesis. Based upon this premise, we tested the hypothesis that topical application of gemcitabine will induce MVP generation in human and murine skin. Our ex vivo studies using human skin explants demonstrate that gemcitabine treatment results in MVP generation in a dose-dependent manner in a process blocked by PAFR antagonist and aSMase inhibitor. Importantly, gemcitabine-induced MVPs carry PAFR agonists. To confirm the mechanisms, we employed PAFR-expressing and deficient (Ptafr-/- ) mouse models as well as mice deficient in aSMase enzyme (Spmd1-/- ). Similar to the findings using pharmacologic tools, genetic-based approaches demonstrate that gemcitabine-induced MVP release in WT mice was blunted in Ptafr-/- and Spmd1-/- mice. These findings demonstrate a novel mechanism by which local chemotherapy can generate bioactive components as a bystander effect in a process that is dependent upon the PAFR-aSMase pathway.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| | - Krishna Awasthi
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| | - Christine M. Rapp
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| | - R. Michael Johnson
- Department of Orthopedics and Plastic SurgeryBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| | - Yanfang Chen
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| | - Kelly L. R. Miller
- Department of Internal MedicineBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| | - Jeffrey B. Travers
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
- Department of DermatologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
- Dayton VA Medical CenterDaytonOhioUSA
| | - Ravi P. Sahu
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| |
Collapse
|
9
|
Ruangmak K, Paradee N, Niamlang S, Sakunpongpitiporn P, Sirivat A. Electrically controlled transdermal delivery of naproxen and indomethacin from porous cis-1,4-polyisoprene matrix. J Biomed Mater Res B Appl Biomater 2021; 110:478-488. [PMID: 34399032 DOI: 10.1002/jbm.b.34926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022]
Abstract
This study is focused on the inquiry of using a porous polymeric structure to absorb and release transdermally two drugs through a skin from deproteinized natural rubber latex (DPNR). The porous DPNR films were fabricated from the internal formation of surfactant micelles and their subsequent leaching out to generate porous structures. The pore size of DPNR films increased with increasing surfactant amount. The model drugs were naproxen and indomethacin; their releases and release-permeations were investigated under the effects of surfactant amount, electrical potential, and drug size. Without electric field, the drug release mechanism was mainly driven by concentration gradient. The higher amount of drug released was obtained from the matrix with a larger pore size. Under electric field, the higher amounts of drug release were obtained in the shorter drug release durations, via the electrorepulsive force between the negatively charged drugs and the cathode electrode. The molecular drug size was a factor for the drug absorption, release rate and amount. For the drug release-permeation experiment through the pig skin, there were two release-permeation periods as governed by the combination of concentration gradient and swelling in the first period, and the matrix erosion in the second period. The fabricated porous DPNR films have been shown here to be potential to be used as a transdermal patch with electrically controllable drug release rate, amount and duration along with the facile drug-matrix loading and absorption.
Collapse
Affiliation(s)
- Kamonpan Ruangmak
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Nophawan Paradee
- Sustainable Polymer & Innovative Composite Materials Research Group, Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sumonman Niamlang
- Advanced Materials Research Group, Faculty of Engineering, Department of Materials and Metallurgical Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani, Thailand
| | | | - Anuvat Sirivat
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
11
|
Hegde AR, Raychaudhuri R, Pandey A, Kalthur G, Mutalik S. Exploring potential formulation strategies for chemoprevention of breast cancer: a localized delivery perspective. Nanomedicine (Lond) 2021; 16:1111-1132. [PMID: 33949895 DOI: 10.2217/nnm-2021-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review focuses on the various formulation approaches that have been explored to achieve localized delivery in breast cancer. The rationale behind the necessity of localized drug delivery has been extensively reviewed. The review also emphasizes the various possible routes for achieving localized drug delivery. Particularly, different types of nanoplatforms like lipid-based drug carriers, polymeric particles, hydrogels, drug conjugates and other formulation strategies like microneedles and drug-eluting implants, which have been used to increase tumor retention and subsequently halt tumor progression, have been deliberated here. In addition, the significant challenges that may be encountered in the delivery of anticancer drugs and the aspects that require careful evaluation for effective localized delivery of chemotherapeutic agents have been discussed.
Collapse
Affiliation(s)
- Aswathi R Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
12
|
Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res 2021; 12:758-791. [PMID: 33474709 PMCID: PMC7817074 DOI: 10.1007/s13346-021-00909-6] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Transdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems.
Collapse
|
13
|
Wani TU, Mohi-Ud-Din R, Majeed A, Kawoosa S, Pottoo FH. Skin Permeation of Nanoparticles: Mechanisms Involved and Critical Factors Governing Topical Drug Delivery. Curr Pharm Des 2020; 26:4601-4614. [PMID: 32611291 DOI: 10.2174/1381612826666200701204010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Transdermal route has been an ever sought-after means of drug administration, regarded as being the most convenient and patient compliant. However, skin poses a great barrier to the entry of the external particles including bacteria, viruses, allergens, and drugs as well (mostly hydrophilic or high molecular weight drugs), consequent to its complex structure and composition. Among the various means of enhancing drug permeation through the skin, e.g. chemical permeation enhancers, electroporation, thermophoresis, etc. drug delivery through nanoparticles has been of great interest. Current literature reports a vast number of nanoparticles that have been implicated for drug delivery through the skin. However, a precise account of critical factors involved in drug delivery and mechanisms concerning the permeation of nanoparticles through the skin is necessary. The purpose of this review is to enumerate the factors crucial in governing the prospect of drug delivery through skin and classify the skin permeation mechanisms of nanoparticles. Among the various mechanisms discussed are the ones governed by principles of kinetics, osmotic gradient, adhesion, hydration, diffusion, occlusion, electrostatic interaction, thermodynamics, etc. Among the most common factors affecting skin permeation of nanoparticles that are discussed include size, shape, surface charge density, composition of nanoparticles, mechanical stress, pH, etc.
Collapse
Affiliation(s)
- Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Pharmacogosy and Phytochemistry Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Asmat Majeed
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Shabnam Kawoosa
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, P.O. BOX 1982, Dammam, Saudi Arabia
| |
Collapse
|
14
|
Khan D, Qindeel M, Ahmed N, Khan AU, Khan S, Rehman AU. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine (Lond) 2020; 15:603-624. [PMID: 32098563 DOI: 10.2217/nnm-2019-0385] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To formulate and evaluate a pH-responsive nanoparticle (NP)-based patch for efficient transdermal delivery of flurbiprofen against rheumatoid arthritis. Materials & methods: Nanoprecipitation technique was used for preparation of NPs and central composite design was employed for optimization purposes. Optimized NPs were loaded into the transdermal patch by the solvent evaporation method. Results: Prepared NPs exhibited an average size of 69 nm, while NPs loaded onto the transdermal patch showed sustained release and high permeation through the skin. In in vivo studies, the prepared carrier system elucidated high therapeutic potential in both acute and chronic inflammatory models as evident from the results of behavioral, radiological, histopathological and antioxidant analyses. Conclusion: The flurbiprofen-loaded pH-sensitive NP-based transdermal patch has the potential to manage rheumatoid arthritis effectively.
Collapse
Affiliation(s)
- Dildar Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ashraf U Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
15
|
Tian T, Zhang X, Sun Y, Li X, Wang Q. Synthesis, characterization, and evaluation of novel cell-penetrating peptides based on TD-34. J Pept Sci 2019; 25:e3205. [PMID: 31612571 DOI: 10.1002/psc.3205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 11/05/2022]
Abstract
In this study, six N-1, N-2, or N-11 derivatives of TD-34 (a cationic cyclic cell-penetrating peptide [CPP], ACSSKKSKHCG) were designed and synthesized including both linear peptides and cyclic peptides, such as DL-1 (KWSSKKSKHCG), DLCC-1 (cyclopeptide, KWSSKKSKHCG), DL-2 (KWSSKKSKHCG-NH2 ), DLCC-2 (cyclopeptide, KWSSKKSKHCG-NH2 ), DL-3 (RWSSKKSKHCG), and DLCC-3 (cyclopeptide, RWSSKKSKHCG). The cyclic peptides were synthesized by disulfide bound linkages formed by N-2 and N-10 cysteine. In vitro penetration experiment was conducted to investigate the transdermal enhancement ability of these derivatives, using triptolide (TP) as model drug. The results display that at the presence of DLCC-2, the accumulative penetration amount of TP increased 1.71-fold (P < .05) within 12 hours, displaying better transdermal enhancing ability than TD-34. Meanwhile, DL-3 and DLCC-3 slightly decreased the transdermal delivery of TP, and the presence of DL-1 and DLCC-1 shows no obvious effect. In order to clarify the factors on the transdermal ability of peptides, the solubility of TP in phosphate buffer saline (PBS) at the presence of different peptides and the mechanism of transdermal delivery of CPPs was investigated. The result shows that most of these peptides have no significant effect on the solubility of TP except DLCC-3 (the solubility of TP slightly increased). And in order to investigate transdermal absorption route of DLCC-2, polyarginine linked to rhodamine b (Rh b) derivative is used. The result proved that the transdermal route of polyarginine is via hair follicle, which may change the transdermal route of its cargo molecule (TP). Our group previously proved that polyarginine and TD-34 have similar transdermal enhancing mechanism (changing the transdermal route of their cargo molecule); it is reasonably speculated that the transdermal route of DLCC-2 is the same as polyarginine and then changes the transdermal absorption route of TP. Furthermore, such results have laid a solid foundation for further investigation of CPPs and paved a way for both designing and synthesizing of new drug delivery system for therapy molecules.
Collapse
Affiliation(s)
- Tian Tian
- Department of Pharmacy, College of Chemistry Engineering, Dalian University of Technology, Dalian, China
| | - Xiaodong Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yuming Sun
- Chemical Analysis and Research Center, Dalian University of Technology, Dalian, China
| | - Xiaohui Li
- Biotechnology Medicines Laboratory School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qing Wang
- Department of Pharmacy, College of Chemistry Engineering, Dalian University of Technology, Dalian, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
16
|
|
17
|
Manikkath J, Shenoy GG, Pandey S, Mutalik S. Response Surface Methodology for Optimization of Ultrasound-Assisted Transdermal Delivery and Skin Retention of Asenapine Maleate. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|