1
|
Mahmoud A, Rady M, Abdel-Halim M, El-Shenawy BM, Mansour S. Transdermal Delivery of Tofacitinib Citrate via Mannose-Decorated Transferosomes Loaded with Tofacitinib Citrate in Arthritic Joints. Mol Pharm 2024. [PMID: 39562501 DOI: 10.1021/acs.molpharmaceut.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Transdermal drug delivery systems are a promising option for the treatment of rheumatoid arthritis (RA) because they can lower systemic adverse effects of immunosuppressants. Janus kinase (JAK) inhibitors were found to be effective for the treatment of RA by inhibiting the JAK-STAT pathway and preventing autoimmune joint destruction. The aim of this study is to deliver tofacitinib (a JAK 1 and 3 inhibitor) through mannose-decorated transferosomes (MDTs) directly to inflamed joints. Transferosomes are composed of phospholipids, Cremophor A25, PEG400, Labrafac lipophile, and oleic acid to enhance the permeation of tofacitinib and control nanovesicle size (∼70-200 nm). Permeation through rat skin was evaluated, where the skin permeation of MDTs (Q24: 38.8 ± 9.82 μg/cm2) and flux (0.5311 ± 0.072 μg/cm2/h) were significantly greater than those of the uncoated transferosomes (Q24 of T1: 1.522 ± 0.329 μg/cm2, Q24 of T2: 3.5002 ± 0.998 μg/cm2, and Q24 of T3: 18.226 ± 5.25 μg/cm2). In addition, MDTs seem to permeate the skin intact, as shown by the transmission electron microscopy (TEM) images of the recipient buffer removed from the Franz diffusion cell. A histopathology assay was performed during the in vivo evaluation of MDTs in an arthritic rat model, in which, significantly less inflammation was observed when MDTs were applied directly to the joint compared to when applied to the dorsal skin and untreated arthritic joints. Furthermore, significantly lower tumor necrosis factor-α (TNFα), IL-6, and IL-1β levels (P < 0.05) were detected by enzyme-linked immunosorbent assay (ELISA) in homogenates of the joints treated with MDTs than in untreated arthritic joints. In conclusion, this study proposed effective MDTs that could deliver tofacitinib directly to inflamed joints possibly by targeting the macrophages circulating in the proximity of the site of inflammation.
Collapse
Affiliation(s)
- Alaa Mahmoud
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, Cairo 11835, Egypt
| | - Mai Rady
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, Cairo 11835, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Engineering, German International University, New Administrative Capital 4762030, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo 11835, Egypt
| | - Basma M El-Shenawy
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, Cairo 11835, Egypt
| | - Samar Mansour
- Department Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo, Cairo 11835, Egypt
- Department Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Engineering, German International University, New Administrative Capital 4762030, Egypt
| |
Collapse
|
2
|
Kumar A, Bajaj P, Singh B, Paul K, Sharma P, Mehra S, Robin, Kaur P, Jasrotia S, Kumar P, Rajat, Singh V, Tuli HS. Sesamol as a potent anticancer compound: from chemistry to cellular interactions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4961-4979. [PMID: 38180556 DOI: 10.1007/s00210-023-02919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sesamol (SM), a well-known component isolated from sesame seeds (Sesamum indicum), used in traditional medicines in treating numerous ailments. However, numerous molecular investigations revealed the various mechanisms behind its activity, emphasizing its antiproliferative, anti-inflammatory, and apoptosis-inducing properties, preventing cancer cell spread to distant organs. In several cells derived from various malignant tissues, SM-regulated signal transduction pathways and cellular targets have been identified. This review paper comprehensively describes the anticancer properties of SM and SM-viable anticancer drugs. Additionally, the interactions of this natural substance with standard anticancer drugs are examined, and the benefits of using nanotechnology in SM applications are explored. This makes SM a prime example of how ethnopharmacological knowledge can be applied to the development of contemporary drugs.
Collapse
Affiliation(s)
- Ajay Kumar
- University Center for Research & Development (UCRD), Biotechnology Engineering & Food Technology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| | - Payal Bajaj
- Advanced Eye Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kapil Paul
- Kanya Maha Vidyalaya, Jalandhar, 144004, Punjab, India
| | - Pooja Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukanya Mehra
- P.G. Department of Science, Khalsa College For Women, Amritsar, 143001, Punjab, India
| | - Robin
- Regional Water Testing Laboratory, Department of Water Supply and Sanitation, Agilent Technologies India Pvt. Ltd., Amritsar, Punjab, India
| | - Pardeep Kaur
- Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, India
| | - Shivam Jasrotia
- Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Parveen Kumar
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Rajat
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali, 160071, India
| | - Vipourpreet Singh
- Coast Mountain College, Prince Rupert, British Columbia, V8J3S8, Canada
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| |
Collapse
|
3
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Hathout RM, Ishak RAH, Shakshak DH. Do the chitosan nanoparticles really augment the drugs' transdermal fluxes: ending the debate using meta-analysis. Expert Opin Drug Deliv 2024; 21:325-335. [PMID: 38340063 DOI: 10.1080/17425247.2024.2317935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Transdermal delivery has been extensively investigated as a successful alternative to the oral and parenteral routes of administration. The use of polymeric nanoparticles as drug delivery systems through this route has always been controversial. The use of meta-analyses is a useful quantitative means to decide upon the efficiency of this type of vehicles transporting drugs through the skin. AREAS COVERED In this meta-analysis study, polymeric nanoparticles were quantitatively compared to conventional formulations in order to investigate the feasibility of using these particles in transdermal delivery. Natural versus synthetic polymeric sub-groups were also contrasted to determine the most efficient class for transdermal drug enhancement. EXPERT OPINION Meta-analyses are gaining ground in the drug delivery field as they can exploit the mines of the literature and pick up by statistical evidence the superior formulations administered through several routes of administration. This is the first study that utilized the transdermal fluxes as the meta-analysis study effect and could prove the superiority of natural polymeric nanoparticles in transdermal delivery. In our opinion, there is paucity in research work regarding this type of nanocarriers, specifically on chitosan nanoparticles. More studies are warranted for full exploitation of its benefits.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa H Shakshak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Gowtham P, Arumugam VA, Harini K, Pallavi P, Thirumalai A, Girigoswami K, Girigoswami A. Nanostructured proteins for delivering drugs to diseased tissues. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2023; 12:115-129. [DOI: 10.1680/jbibn.23.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
During the last few years, nanostructures based on proteins have been playing a vital role in revolutionizing the nanomedicine era. Since protein nanoparticles are smaller and have a greater surface area, they retain a better capacity to interact with other molecules, resulting in carrying payloads efficiently to diseased tissues. Besides having attractive biocompatibility and biodegradability, protein nanoparticles can also be modified on their surfaces. For the fabrication of these nanostructures, there are several processes involved, including emulsification, desolvation, a combination of complex coacervation and electrospray. This can be achieved by using different proteins such as albumin, gelatin, elastin, gliadin, collagen, legumin and zein, as well as a combination of these proteins. It is possible to functionalize protein nanoparticles by altering their internal and external interfaces so that they can encapsulate drugs, release them in a controlled manner, disassemble them systematically and target tumors. This review highlights the physicochemical properties and engineering of several proteins to nano-dimensions used to deliver drugs to diseased tissues.
Collapse
Affiliation(s)
- Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
6
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Li M, Luo J, Nawaz MA, Stockmann R, Buckow R, Barrow C, Dunshea F, Suleria HAR. Phytochemistry, Bioaccessibility, and Bioactivities of Sesame Seeds: An Overview. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2168280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Minhao Li
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Jiani Luo
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Malik Adil Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, Australia
| | - Regine Stockmann
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, Australia
| | - Roman Buckow
- Centre for Advanced Food Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, Australia
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | - Frank Dunshea
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| |
Collapse
|
8
|
Mo Y, Liu W, Liu P, Liu Q, Yuan Z, Wang Q, Yuan D, Chen XJ, Chen T. Multifunctional Graphene Oxide Nanodelivery Platform for Breast Cancer Treatment. Int J Nanomedicine 2022; 17:6413-6425. [PMID: 36545221 PMCID: PMC9762269 DOI: 10.2147/ijn.s380447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer (BC) has the highest global prevalence among all malignancies in women and the second highest prevalence in the overall population. Paclitaxel (PTX), a tricyclic diterpenoid, is effective against BC. However, its poor solubility in water and the allergenicity of its dissolution medium limited its clinical application. Methods In this work, we established a multifunctional graphene oxide (GO) tumor-targeting drug delivery system using nanosized graphene oxide (nGO) modified with D-tocopherol polyethylene glycol succinate (TPGS) and arginine-glycine-aspartic acid (RGD) for PTX loading. Results The obtained RGD-TPGS-nGO-PTX was 310.20±19.86 nm in size; the polydispersity index (PDI) and zeta potential were 0.21±0.020 and -23.42 mV, respectively. The mean drug loading capacity of RGD-TPGS-nGO-PTX was 48.78%. RGD-TPGS-nGO-PTX showed satisfactory biocompatibility and biosafety and had no significant toxic effects on zebrafish embryos. Importantly, it exerted excellent cytotoxicity against MDA-MB-231 cells, reversed multi-drug resistance (MDR) in MCF-7/ADR cells, and showed significant anti-tumor efficacy in tumor-bearing nude mice. Conclusion These findings strongly suggested that the multifunctional GO tumor-targeting drug delivery system RGD-TPGS-nGO-PTX could be used in clinical settings to improve PTX delivery, reverse MDR and increase the therapeutic efficacy of BC treatment.
Collapse
Affiliation(s)
- Yousheng Mo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People’s Republic of China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Qiao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People’s Republic of China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People’s Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Dongsheng Yuan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People’s Republic of China,Correspondence: Xiao-Jia Chen; Tongkai Chen, Email ;
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People’s Republic of China
| |
Collapse
|
9
|
Zaib S, Saeed Shah H, Usman F, Shahzadi K, Mazhar Asjad H, Khan R, Dera AA, Adel Pashameah R, Alzahrani E, Farouk A, Khan I. Green Synthesis of Gelatin‐Lipid Nanocarriers Incorporating
Berberis aristata
Extract for Cancer Therapy; Physical Characterization, Pharmacological and Molecular Modeling Analysis. ChemistrySelect 2022. [DOI: 10.1002/slct.202203430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences University of Veterinary and Animal Sciences Lahore 54000 Pakistan
| | - Faisal Usman
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan 66000 Pakistan
| | - Kiran Shahzadi
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hafiz Mazhar Asjad
- Department of Pharmacy Forman Christian College (A Chartered University) Lahore Pakistan
| | - Riffat Khan
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Khalid University Abha Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry Faculty of Applied Science Umm Al-Qura University Makkah 24230 Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry College of Science Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Abd‐ElAziem Farouk
- Department of Biotechnology College of Science Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
10
|
Nair AB, Dalal P, Kadian V, Kumar S, Kapoor A, Garg M, Rao R, Aldhubiab B, Sreeharsha N, Almuqbil RM, Attimarad M, Elsewedy HS, Shinu P. Formulation, Characterization, Anti-Inflammatory and Cytotoxicity Study of Sesamol-Laden Nanosponges. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4211. [PMID: 36500833 PMCID: PMC9740471 DOI: 10.3390/nano12234211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into β-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (-17 to -26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (β-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 μg/mL) in comparison to SES (106 μg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| |
Collapse
|
11
|
Hathout RM, El-Marakby EM. Meta-Analysis: A Convenient Tool for the Choice of Nose-to-Brain Nanocarriers. Bioengineering (Basel) 2022; 9:647. [PMID: 36354558 PMCID: PMC9687115 DOI: 10.3390/bioengineering9110647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVES The intranasal route represents a high promising route of administration aiming for brain delivery. Yet, it represents one of the most difficult and complicated routes. Accordingly, scientists are in a continuous search for novel drug delivery vehicles such as the lipid and polymeric nanoparticles that are apt to enhance the bioavailability of the administered drugs to reach the brain. In this study, a certain number of publications were selected from different databases and literature. Meta-analysis studies using two different algorithms (DerSimonian-Laird and inverse variance) followed aiming to explore the published studies and confirm by evidence the superiority of nanocarriers in enhancing the brain bioavailability of various drugs. Furthermore, the quantitative comparison of lipid versus polymeric nanosystems was performed. METHODS The area under the curve (AUC) as an important pharmacokinetic parameter extracted from in vivo animal studies was designated as the "effect" in the performed meta-analysis after normalization. Forest plots were generated. KEY FINDINGS AND CONCLUSIONS The meta-analysis confirmed the augmentation of the AUC after the comparison with traditional preparations such as solutions and suspensions. Most importantly, lipid nanoparticles were proven to be significantly superior to the polymeric counterparts.
Collapse
Affiliation(s)
- Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo 11566, Egypt
| | | |
Collapse
|
12
|
Hesham H, Rady M, Hathout RM, Abdel-Halim M, Mansour S. The skin delivery of Tofacitinib citrate using transethosomes and hybridized ethosomes/nanostructured lipid carriers for vitiligo therapy: Dermatopharmacokinetics and in vivo assays. Int J Pharm 2022; 629:122387. [DOI: 10.1016/j.ijpharm.2022.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
13
|
Durgapal S, Goswami L, Nair AB, Juyal V, Verma A. Enhanced anti-cataract effect of microemulsion containing Cineraria maritima: Formulation, optimization and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Zaher S, Soliman ME, Elsabahy M, Hathout RM. Protein nanoparticles as natural drugs carriers for cancer therapy. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment. Int J Biol Macromol 2022; 221:435-445. [PMID: 36067850 DOI: 10.1016/j.ijbiomac.2022.08.210] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
This study aims to develop chitosan-coated PLGA nanoparticles intended for nose-to-brain delivery of carmustine. Formulations were prepared by the double emulsion solvent evaporation method and optimized by using Box-Behnken Design. The optimized nanoparticles were obtained to satisfactory levels in terms of particle size, PDI, entrapment efficiency, and drug loading. In vitro drug release and ex-vivo permeation showed sustained release and enhanced permeability (approx. 2 fold) of carmustine compared to drug suspension. The AUC0-t of brain obtained with carmustine-loaded nanoparticles via nasal administration in Albino Wistar rats was 2.8 and 14.7 times that of intranasal carmustine suspension and intravenous carmustine, respectively. The MTT assay on U87 MG cell line showed a significant decrease (P < 0.05) in the IC50 value of the formulation (71.23 μg ml-1) as compared to drug suspension (90.02 μg ml-1).These findings suggest chitosan coated nanoparticles could be used to deliver carmustine via intranasal administration to treat Glioblastoma multiforme.
Collapse
|
16
|
Optimization of nanoemulsified systems containing lamellar phases for co-delivery of celecoxib and endoxifen to the skin aiming for breast cancer chemoprevention and treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
|
18
|
Khan S, Minhas MU, Singh Thakur RR, Aqeel MT. Microneedles Assisted Controlled and Improved Transdermal Delivery of High Molecular Drugs via Insitu Forming Depot Thermoresponsive Poloxamers Gels in Skin Microchannels. Drug Dev Ind Pharm 2022; 48:265-278. [PMID: 35899871 DOI: 10.1080/03639045.2022.2107662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin considered as an attractive route for variety of drug molecules administration. However it proved to be the main physical barrier for drug flux owing to their poor permeability and low bioavailability across stratum corneum layer. In current study novel approach has been used to enhance transdermal delivery via microporation through combination of poloxamers gels and microneedles arrays. The phase transition of poloxamers at various concentrations from sol-gel was evaluated using AR2000 rheometer to confirm microneedles-assisted insitu forming depots. Temperature test confirmed gelation between 32-37 °C. Curcumin was loaded in poloxamer formulations at variable concentrations and its effect showed reduction in critical gelation temperature (CGT) owing to its hydrophobic nature. Microneedles (MNs) arrays (600 µm) prepared from Gantrez S-97, PEG 10000 and Gelatin B using (19 × 19) laser-engineered silicone micromoulds showed high mechanical stability investigated via Texture analyzer. From insitu dissolution profile Gelatin 15% w/w based MNs displayed quicker dissolution rate in comparison to PG10000. VivoSight® OCT scanner and dye tracking confirmed that PG10000 MNs arrays pierced SC layer, infiltrate the epidermis and goes to dermis layer. From invitro permeation, it was concluded that 20% w/w PF127® gel formulations containing (0.1% and 0.3%) curcumin displayed high curcumin permeation for comparatively longer time through microporated skin samples in comparison to non-microporated skin. The curcumin distribution in skin tissues with higher florescence intensity was noted in MNs treated skin samples by confocal microscopy. FTIR confirmed the structure formation of fabricated MNs, while TGA showed dry, brittle and rigid nature of Gelatin MNs.
Collapse
Affiliation(s)
- Samiullah Khan
- Margalla College of Pharmacy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan
| | | | | | - Muhammad Tahir Aqeel
- Margalla College of Pharmacy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan
| |
Collapse
|
19
|
Hassan EA, Hathout RM, Gad HA, Sammour OA. A holistic review on zein nanoparticles and their use in phytochemicals delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Zaher S, Soliman ME, Elsabahy M, Hathout RM. Sesamol Loaded Albumin Nanoparticles: A Boosted Protective Property in Animal Models of Oxidative Stress. Pharmaceuticals (Basel) 2022; 15:ph15060733. [PMID: 35745652 PMCID: PMC9228363 DOI: 10.3390/ph15060733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
The current study evaluated the ability of sesamol-loaded albumin nanoparticles to impart protection against oxidative stress induced by anthracyclines in comparison to the free drug. Albumin nanoparticles were prepared via the desolvation technique and then freeze-dried with the cryoprotectant, trehalose. Albumin concentration, pH, and type of desolvating agent were assessed as determining factors for successful albumin nanoparticle fabrication. The optimal nanoparticles were spherical in shape, and they had an average particle diameter of 127.24 ± 2.12 nm with a sesamol payload of 96.89 ± 2.4 μg/mg. The drug cellular protection was tested on rat hepatocytes pretreated with 1 µM doxorubicin, which showed a 1.2-fold higher protective activity than the free sesamol. In a pharmacokinetic study, the loading of a drug onto nanoparticles resulted in a longer half-life and mean residence time, as compared to the free drug. Furthermore, in vivo efficacy and biochemical assessment of lipid peroxidation, cardiac biomarkers, and liver enzymes were significantly ameliorated after administration of the sesamol-loaded albumin nanoparticles. The biochemical assessments were also corroborated with the histopathological examination data. Sesamol-loaded albumin nanoparticles, prepared under controlled conditions, may provide an enhanced protective effect against off-target doxorubicin toxicity.
Collapse
Affiliation(s)
- Sara Zaher
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt;
| | - Mahmoud E. Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Pharm D Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Correspondence:
| |
Collapse
|
21
|
Abdel Azim EA, Elkheshen SA, Hathout RM, Fouly MA, El Hoffy NM. Augmented in vitro and in vivo Profiles of Brimonidine Tartrate Using Gelatinized-Core Liposomes. Int J Nanomedicine 2022; 17:2753-2776. [PMID: 35782018 PMCID: PMC9243147 DOI: 10.2147/ijn.s370192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background The low entrapment efficiency of the hydrophilic drugs such as brimonidine tartrate (BRT) in liposomes represents a challenge that requires interventions. Gelatinized core liposomes (GCLs) were fabricated to increase the drug entrapment, corneal penetration, and physical stability of the investigated molecule. Research Design and Methods GCLs encapsulating BRT were prepared and optimized utilizing D-optimal design (DOD). The effect of plasticizer incorporation on the physicochemical characteristics and on the in vivo performance was studied. The optimized formulations were investigated for pH, rheological properties, morphological characteristics, in vitro release profiles, biological performance, safety profile. The effects of storage and gamma sterilization were also investigated. Results The results revealed the great success of the prepared formulations to achieve high entrapment efficiency reaching 98% after a maturation period of 10 days. The addition of glycerol as plasticizer significantly minimized the particle size and shortened the maturation period to 7 days. The selected formulations were stable for 3 months after gamma sterilization. The formulations showed significant lowering of intra-ocular pressure (IOP) in glaucomatous rabbits with sustainment of the pharmacological effect for 24 hours compared to drug solution. Conclusions Enhanced in vitro and in vivo profiles of brimonidine tartrate loaded gelatinized-core-liposomes were obtained.
Collapse
Affiliation(s)
- Engy A Abdel Azim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Cairo, 11835, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Correspondence: Rania M Hathout, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, P.O. Box: 11566, Abbassia, Cairo, Egypt, Email ;
| | - Marwa A Fouly
- Research Institute of Ophthalmology, Giza, Cairo, 12557, Egypt
| | - Nada M El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Cairo, 11835, Egypt
| |
Collapse
|
22
|
Zewail M, E Gaafar PM, Ali MM, Abbas H. Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management. Drug Deliv 2022; 29:1663-1674. [PMID: 35616281 PMCID: PMC9154769 DOI: 10.1080/10717544.2022.2079770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the fact of availability of several treatments for breast cancer, most of them fail to attain the desired therapeutic response due to their poor bioavailability, high doses, non-selectivity and as a result systemic toxicity. Here in an attempt made to study the transdermal effect of leflunomide (LEF) against breast cancer. In order to improve the poor physicochemical properties of LEF, it was loaded into cubosomes. Cubosomes were prepared by the emulsification method. Colloidal characteristics of cubosomes including particle size, ζ-potential, entrapment efficiency, in-vitro release profile and ex-vivo permeation were studied. In addition, morphology, stability, cytotoxicity and cell uptake in MDA-MB-231 cell line were carried out for the selected cubosomal formulation. The selected LEF loaded cubosomal formulation showed a small particle size (168 ± 1.08) with narrow size distribution (PI 0.186 ± 0.125) and negative ζ potential (–25.5 ± 0.98). Its Entrapment efficiency (EE%) was 93.2% and showed sustained release profile that extended for 24 h. The selected formulation showed stability when stored at 25 °C for three months in terms of size and EE%. TEM images illustrated the cubic structure of the cubosome. Cell culture results revealed the superiority of LEF cubosomes compared to LEF suspension in their cytotoxic effects with an IC50 close to that of doxorubicin. Furthermore, LEF cell uptake was significantly higher for LEF cubosomes. This may be attributed to the effect of nano-encapsulation on enhancing drug pharmacological effects and uptake indicating the potential usefulness of LEF cubosomes for breast cancer management.
Collapse
Affiliation(s)
- Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mai M Ali
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
23
|
Molecular dynamics simulation of the interactions between sesamol and myosin combined with spectroscopy and molecular docking studies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Hu L, Cao H, He B, Zheng L, Li R. Exploring the interaction of sesamol as an antilung cancer compound with albumin through spectroscopic and bioinformatic analyses and the mechanism of anticancer effect. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
26
|
Route of intracellular uptake and cytotoxicity of sesamol, sesamin, and sesamolin in human melanoma SK-MEL-2 cells. Biomed Pharmacother 2021; 146:112528. [PMID: 34906777 DOI: 10.1016/j.biopha.2021.112528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
The intracellular uptake concentration determines drug absorption, drug activity, and toxicity. Sesamol, sesamin, and sesamolin are promising bioactive components from Sesame indicum L. Their respective intracellular uptake pathway and cytotoxicity were evaluated using melanoma and non-cancerous cells. Quantitative structure-activity relationship (QSAR) models were built to identify the molecular features affecting drug uptake in cells. The respective intracellular uptake pathway for sesamol vs. sesamin and sesamolin was carrier-mediated vs. passive transport. Topological polar surface area (PSA) and 2D autocorrections increase the intracellular concentration (C/M ratio) of these compounds. Sesamol has the lowest C/M ratio compared to sesamin and sesamolin, but only sesamol inhibits the cell viability of melanoma and provides an inhibition concentration at 50% (IC50) against melanoma cells. The slightly aqueous solubility of sesamin and sesamolin, therefore, limits testing of their cytotoxicity. In conclusion, sesamol has the potential to inhibit melanoma cell growth, but requires improvement of the C/M ratio to increase its physicochemical properties. Thus, in order to investigate the cytotoxicity of sesamin and sesamolin against melanoma cells a solubility enhancer is needed.
Collapse
|
27
|
Abd-Algaleel SA, Metwally AA, Abdel-Bar HM, Kassem DH, Hathout RM. Synchronizing In Silico, In Vitro, and In Vivo Studies for the Successful Nose to Brain Delivery of an Anticancer Molecule. Mol Pharm 2021; 18:3763-3776. [PMID: 34460250 DOI: 10.1021/acs.molpharmaceut.1c00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sesamol is a sesame seed constituent with reported activity against many types of cancer. In this work, two types of nanocarriers, solid lipid nanoparticles (SLNs) and polymeric nanoparticles (PNs), were exploited to improve sesamol efficiency against the glioma cancer cell line. The ability of the proposed systems for efficient brain targeting intranasally was also inspected. By the aid of two docking programs, the virtual loading pattern inside these nanocarriers was matched to the real experimental results. Interactions involved in sesamol-carrier binding were also assessed, followed by a discussion of how different scoring functions account for these interactions. The study is an extension of the computer-assisted drug formulation design series, which represents a promising initiative for an upcoming industrial innovation. The results proved the power of combined in silico tools in predicting members with the highest sesamol payload suitable for delivering a sufficient dose to the brain. Among nine carriers, glyceryl monostearate (GMS) and polycaprolactone (PCL) scored the highest sesamol payload practically and computationally. The EE % was 66.09 ± 0.92 and 61.73 ± 0.47 corresponding to a ΔG (binding energy) of -8.85 ± 0.16 and -5.04 ± 0.11, respectively. Dynamic light scattering evidenced the formation of 215.1 ± 7.2 nm and 414.25 ± 1.6 nm nanoparticles, respectively. Both formulations demonstrated an efficient cytotoxic effect and brain-targeting ability compared to the sesamol solution. This was evidenced by low IC50 (38.50 ± 10.37 μM and 27.81 ± 2.76 μM) and high drug targeting efficiency (7.64 ± 1.89-fold and 13.72 ± 4.1-fold) and direct transport percentages (86.12 ± 3.89 and 92.198 ± 2.09) for GMS-SLNs and PCL-PNs, respectively. The results also showed how different formulations, having different compositions and characteristics, could affect the cytotoxic and targeting ability.
Collapse
Affiliation(s)
| | - Abdelkader A Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Safat, 13110 Kuwait, Kuwait
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menofia 32897, Egypt
| | - Dina H Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
28
|
Enhanced anti-bacterial effect of kojic acid using gelatinized core liposomes: A potential approach to combat antibiotic resistance. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Wang N, Yu H, Song Q, Mao P, Li K, Bao G. Sesamol-loaded stearic acid-chitosan nanomicelles mitigate the oxidative stress-stimulated apoptosis and induction of pro-inflammatory cytokines in motor neuronal of the spinal cord through NF-ĸB signaling pathway. Int J Biol Macromol 2021; 186:23-32. [PMID: 34214577 DOI: 10.1016/j.ijbiomac.2021.06.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
As natural potential antioxidants suffer from low cellular uptake, the development of drug-loaded nanoplatforms may provide useful information about the treatment of spinal cord injury (SCI). In the present study, sesamol (SM)-loaded stearic acid (SA) -chitosan (CS) nanomicelles were fabricated and well-characterized. Afterwards, the neuroprotective effects of SM@SA-CS nanomicelles against lipopolysaccharide (LPS)-induced oxidative stress in NSC-34 cells was assessed by different cellular and molecular pathways. It was deduced that the size of synthesized SM@SA-CS was in the range of 10-20 nm and the hydrodynamic radii of SA-CA and SM@SA-CA nanomicelles were 53.12 ± 6.21 nm and 59.12 ± 7.31 nm, respectively. Furthermore, SM@SA-CS nanomicelles displayed a sustained drug release at physiological pH, potential dissolution rate and stability even up to 15 days. Cellular assay showed that SM@SA-CS nanomicelles co-incubation with LPS for 24 h in comparison with free drug remarkably regulated cell survival, membrane leakage, generation of ROS, activity of non-enzymatic and enzymatic antioxidant systems, and apoptotic and inflammatory signaling pathway through NF-ĸB signaling pathway. These data indicated that SM@SA-CS nanomicelles can be developed as a promising platform for the mitigation of oxidative stress-mediated apoptosis in neural cells.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hai Yu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Mao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kuo Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Gang Bao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
30
|
Uniting Electroceutical and Cosmeceutical Interventions in Combating Coronavirus Using Ԑ-Poly-l-Lysine. Sci Pharm 2020. [DOI: 10.3390/scipharm89010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Combating the COVID-19 pandemic warrants the exploitation of all the available tools and implies a major focus on both the biological and the physical properties of the causing virus (SARS-CoV2). We hereby introduce a new prophylaxis hypothesis by decreasing the viral load in the body entrances such as the nose and the mouth using pharmaceutical and cosmeceutical preparations that incorporate viral electrostatic repulsive nanofibers fabricated from an abundant marine-derived or a fermentation product polymer; Ԑ-poly-l-lysine was prepared using the electrospinning technique.
Collapse
|
31
|
Li Q, Li F, Qi X, Wei F, Chen H, Wang T. RETRACTED: Pluronic® F127 stabilized reduced graphene oxide hydrogel for the treatment of psoriasis: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 195:111246. [PMID: 32659651 DOI: 10.1016/j.colsurfb.2020.111246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors. Significant similarities were noticed post-publication between this article and an article submitted to the journal on the same day, by an apparently unrelated research group: Hui Li, Yanlu Jia and Chunling Liu, Colloids and Surfaces B: Biointerfaces 195 (2020) 111259 https://doi.org/10.1016/j.colsurfb.2020.111259. Moreover, the authors did not respond to the journal request to comment on these similarities and to provide the raw data, and the Editors decided to retract the article. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and genuine. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. Although this article was published earlier than the article from Colloids and Surfaces B: Biointerfaces 195 (2020) 111259, the Editors decided to retract this article given the concerns on the reliability of the data.
Collapse
Affiliation(s)
- Qiang Li
- Department of Dermatology, Air Force Medicine Center, Air Force Military Medical University, Beijing, 100147, China
| | - Fangmei Li
- Department of Dermatology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, 530201, China
| | - Xixi Qi
- Department of Dermatology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, 530201, China
| | - Fuqiao Wei
- Department of Dermatology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, 530201, China
| | - Hongxiao Chen
- Department of Dermatopathology Sipecialist(s), Linyi People's Hospital, Linyi, Shandong, 276003, China
| | - Ting Wang
- Department of Dermatology, PLA 970 Hospital, Weihai, Shandong, 264200, China.
| |
Collapse
|
32
|
Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Tian Q, Guo J, Zhang Q, Fang L, Liu C, Xu H. Development and Evaluation of Cucurbitacin B Microemulsion: the Effect of Oil Phase and Aqueous Phase on Drug Percutaneous Absorption Based on ATR-FTIR Spectroscopy and Molecular Modeling. AAPS PharmSciTech 2020; 21:258. [PMID: 32895882 DOI: 10.1208/s12249-020-01797-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to develop a cucurbitacin B microemulsion (CuB-ME) and investigate the mechanism of the enhanced drug skin absorption at the molecular level. Firstly, the pseudo-ternary phase diagrams were developed to evaluate the effect of composition on microemulsion properties systematically. The formulation composition types and ratios of oil phase, surfactant, co-surfactant, and aqueous phase were optimized by an in vitro skin permeation experiment, and the optimized formula was confirmed with the pharmacodynamics study. Furthermore, the molecular mechanism of enhanced skin permeation was investigated using ATR-FTIR and molecular modeling. As a result, the optimized CuB-ME formulation was composed of Azone:Tween 80:ethanol:water = 2.5:16.9:5.6:75.0 (w/w/w/w). The oil phase improved skin permeation by disordering the stratum corneum intercellular liquid, while the aqueous phase impacted the particle size of the microemulsion and permeability coefficient of the drug. Besides, the hydration state of skin lipid also enhanced drug permeation by the interaction of water and the polar head of ceramide. The in vitro skin permeation amount was 45.47 ± 10.39 μg/cm2, and no significant skin irritation was observed. The pharmacodynamics study demonstrated that CuB-ME had a significant therapeutic effect on the animal tumor model. In conclusion, the CuB-ME was developed successfully and the effect of the oil phase and aqueous phase on drug skin permeation was clarified at the molecular level.
Collapse
|
34
|
Kitaoka M, Oka A, Goto M. Monoolein Assisted Oil-Based Transdermal Delivery of Powder Vaccine. Pharmaceutics 2020; 12:E814. [PMID: 32867263 PMCID: PMC7558954 DOI: 10.3390/pharmaceutics12090814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
An increasing number of protein vaccines have been researched for cancer, inflammation, and allergy therapies. Most of the protein therapeutics are administered through injection because orally-administered proteins are metabolized by the digestive system. Although transdermal administration has received increasing attention, the natural barrier formed by the skin is an obstacle. Monoolein is a common skin penetration enhancer that facilitates topical and transdermal drug delivery. Conventionally, it has been used in an aqueous vehicle, often with polyhydric alcohols. In the current study, monoolein was dissolved in an oil vehicle, isopropyl myristate, to facilitate the skin permeation of powder proteins. The skin permeabilities of the proteins were examined in-vivo and ex-vivo. Monoolein concentration-dependently enhanced the skin permeation of proteins. The protein permeability correlated with the zeta potential of the macromolecules. Dehydration of the stratum corneum (SC), lipid extraction from the SC, and disordering of ceramides caused by monoolein were demonstrated through Fourier transform infrared spectroscopic analysis and small-angle X-ray scattering analysis. An antigen model protein, ovalbumin from egg white, was delivered to immune cells in living mice, and induced antigen-specific IgG antibodies. The patch system showed the potential for transdermal vaccine delivery.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (M.K.); (A.O.)
| | - Atsushi Oka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (M.K.); (A.O.)
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (M.K.); (A.O.)
- Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
35
|
Anugrah MA, Suryani S, Ilyas S, Mutmainna I, Fahri AN, Jusmawang, Tahir D. Composite gelatin/Rhizophora SPP particleboards/PVA for soft tissue phantom applications. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
van Staden D, du Plessis J, Viljoen J. Development of a Self-Emulsifying Drug Delivery System for Optimized Topical Delivery of Clofazimine. Pharmaceutics 2020; 12:E523. [PMID: 32521671 PMCID: PMC7356627 DOI: 10.3390/pharmaceutics12060523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
A quality-by-design and characterization approach was followed to ensure development of self-emulsifying drug delivery systems (SEDDSs) destined for topical delivery of the highly lipophilic clofazimine. Solubility and water-titration experiments identified spontaneous emulsification capacity of different excipient combinations and clofazimine. After identifying self-emulsification regions, check-point formulations were selected within the self-emulsification region by considering characteristics required to achieve optimized topical drug delivery. Check-point formulations, able to withstand phase separation after 24 h at an ambient temperature, were subjected to characterization studies. Experiments involved droplet size evaluation; size distribution; zeta-potential; self-emulsification time and efficacy; viscosity and pH measurement; cloud point assessment; and thermodynamic stability studies. SEDDSs with favorable properties, i.e., topical drug delivery, were subjected to dermal diffusion studies. Successful in vitro topical clofazimine delivery was observed. Olive oil facilitated the highest topical delivery of clofazimine probably due to increased oleic acid levels that enhanced stratum corneum lipid disruption, followed by improved dermal clofazimine delivery. Finally, isothermal microcalometric experiments studied the compatibility of excipients. Potential interactions were depicted between argan oil and clofazimine as well as between Span®60 and argan-, macadamia- and olive oil, respectively. However, despite some mundane incompatibilities, successful development of topical SEDDSs achieved enhanced topical clofazimine delivery.
Collapse
Affiliation(s)
| | | | - Joe Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom, North-West Province 2520, South Africa; (D.v.S.); (J.d.P.)
| |
Collapse
|
38
|
Development of Topical/Transdermal Self-Emulsifying Drug Delivery Systems, Not as Simple as Expected. Sci Pharm 2020. [DOI: 10.3390/scipharm88020017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) originated as an oral lipid-based drug delivery system with the sole purpose of improving delivery of highly lipophilic drugs. However, the revolutionary drug delivery possibilities presented by these uniquely simplified systems in terms of muco-adhesiveness and zeta-potential changing capacity lead the way forward to ground-breaking research. Contrarily, SEDDSs destined for topical/transdermal drug delivery have received limited attention. Therefore, this review is focused at utilising principles, established during development of oral SEDDSs, and tailoring them to fit evaluation strategies for an optimised topical/transdermal drug delivery vehicle. This includes a detailed discussion of how the authentic pseudo-ternary phase diagram is employed to predict phase behaviour to find the self-emulsification region most suitable for formulating topical/transdermal SEDDSs. Additionally, special attention is given to the manner of characterising oral SEDDSs compared to topical/transdermal SEDDSs, since absorption within the gastrointestinal tract and the multi-layered nature of the skin are two completely diverse drug delivery territories. Despite the advantages of the topical/transdermal drug administration route, certain challenges such as the relatively undiscovered field of skin metabolomics as well as the obstacles of choosing excipients wisely to establish skin penetration enhancement might prevail. Therefore, development of topical/transdermal SEDDSs might be more complicated than expected.
Collapse
|
39
|
Kim D, Park C, Meghani NM, Tran TTD, Tran PHL, Park JB, Lee BJ. Utilization of a fattigation platform gelatin-oleic acid sodium salt conjugate as a novel solubilizing adjuvant for poorly water-soluble drugs via self-assembly and nanonization. Int J Pharm 2019; 575:118892. [PMID: 31786354 DOI: 10.1016/j.ijpharm.2019.118892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 12/18/2022]
Abstract
Solubilizing adjuvants are commonly used to dissolve insoluble drugs by simply adding in a formulation. In this study, gelatin and oleic acid sodium salt (OAS), a generally recognized as safe-listed material were chosen and conjugated to develop a natural solubilizing adjuvant using the fattigation platform technology to enhance solubility and dissolution rate of poorly water-soluble drugs according to self-assembly and nanonization principle when simply mixed with poorly water-soluble drugs. We synthesized the gelatin and OAS conjugates (GOC) at three different ratios (1:1, 1:3, 1:5; GOC 1, GOC 2, and GOC 3, respectively) via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide reaction using a spray dryer. This amphiphilic micronized GOC was self-assembled into nanoparticles. The synthesis of new amphiphilic conjugates was identified through Fourier transform-infrared (FT-IR) spectroscopy. The powder properties of the GOCs, such as angle of repose, bulk density, and tapped density were varied with the oleic acid bonding ratio. Then, GOCs were utilized to investigate the enhanced solubility and release rate of various poorly water-soluble drugs such as cilostazol (CSZ), coenzyme Q10, ticagrelor, telmisartan, aprepitant and itraconazole as model drugs. Based on the solubility studies by concentration and type of GOCs, 3% GOC 2 was selected. When this GOC was mixed with these model drugs by the physical mixing, wetting and hot melting methoods, the solubility was highly enhanced compared to the pure control drug, ranging from 20 to 150,000 times. In case of CSZ, all formulations were significantly improved release rate compared to the of CSZ alone and the reference tablet, cilostan® (Korea United Pharm) in simulated intestinal fluid containing 0.2% sodium lauryl sulfate. Differential scanning calorimetry and powder X-ray diffraction were conducted to confirm the crystal polymorphic structure of CSZ, and as a result they changed to diminutive peak intensity compared to CSZ alone. Field-emission scanning electron microscopy indicated that GOC was round with a reduced size of about 100 nm. The reduction of drug particles via nanonization and self-assembly of amphiphilic GOC in an aqueous media could be a key factor to improve poor water solubility by providing a favorable dispersion of drug molecules in an amphiphilic network.
Collapse
Affiliation(s)
- Dayoung Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Chulhun Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | | | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Phuong H L Tran
- Deakin University, Geelong Australia, School of Medicine, Australia
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
40
|
Abdelhamid HN, El-Bery HM, Metwally AA, Elshazly M, Hathout RM. Synthesis of CdS-modified chitosan quantum dots for the drug delivery of Sesamol. Carbohydr Polym 2019; 214:90-99. [DOI: 10.1016/j.carbpol.2019.03.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
|
41
|
Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Sci Rep 2019; 9:6365. [PMID: 31019215 PMCID: PMC6482193 DOI: 10.1038/s41598-019-42909-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Flavonoids (FLAs) possess anti-cancer, anti-viral, anti-bacterial, and anti-oxidant properties. In this study, gelatin nanoparticles (GNPs) with controllable surface potential and diameter was prepared through a modified two-step desolvation. Two well-known flavonoids, namely, low-molecular weight Genistein (GEN) and high-molecular weight Icariin (ICA), were adsorbed onto the surface of GNPs (FLA@GNPs). The characteristics of GNPs and the main parameters affecting flavonoid adsorption were studied to evaluate the adsorption capacity and structural stability of FLA@GNPs. Furthermore, co-adsorption of GEN and ICA was detected. The adsorption mechanism of GNPs with FLA was further discussed. Results showed that the low-molecular weight GEN could be effectively adsorbed by GNPs, and their entrapment efficiencies were over 90% under optimized conditions. The total drug loading of the co-adsorbed FLA@GNPs was significantly higher than that of the single drug loaded (GEN or ICA). GEN@GNPs could maintain its structural stability under acidic conditions (pH = 2) at room temperature (25 °C). This protective function enables both ICA and GEN to be bioactive at room temperature for at least 180 days. The characteristics of GNPs adsorption indicate that the hydrogen bonding theory of the combination of gelatin molecules with polyphenols cannot sufficiently explain the binding of GNPs with polyphenols. FLA@GNPs is a promising general-purpose gelatin-based co-loading preload structure with simplified operation and storage condition.
Collapse
|
42
|
Lagoa R, Silva J, Rodrigues JR, Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv 2019; 38:107382. [PMID: 30978386 DOI: 10.1016/j.biotechadv.2019.04.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022]
Abstract
Natural compounds have significant anticancer pharmacological activities, but often suffer from low bioavailability and selectivity that limit therapeutic use. The present work critically analyzes the latest advances on drug delivery systems designed to enhance pharmacokinetics, targeting, cellular uptake and efficacy of anticancer phytoconstituents. Various phytochemicals, including flavonoids, resveratrol, celastrol, curcumin, berberine and camptothecins, carried by liposomes, nanoparticles, nanoemulsions and films showed promising results. Strategies to avoid drug metabolism, overcome physiological barriers and achieve higher concentration at cancer sites through skin, buccal, nasal, vaginal, pulmonary and colon targeted delivery are presented. Current limitations, challenges and future research directions are also discussed.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal.
| | - João Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Joaquim Rui Rodrigues
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
43
|
Stevanović M. Biomedical Applications of Nanostructured Polymeric Materials. NANOSTRUCTURED POLYMER COMPOSITES FOR BIOMEDICAL APPLICATIONS 2019:1-19. [DOI: 10.1016/b978-0-12-816771-7.00001-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|