1
|
Annappa H, Tamatam A, Nallamuthu I, Ranganathan K. Formulation of pH-responsive nanoparticles using zein/sodium alginate polymers for enhanced bioavailability of the vitamin D3. Int J Biol Macromol 2025; 313:144140. [PMID: 40360103 DOI: 10.1016/j.ijbiomac.2025.144140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/02/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
The effective delivery of vitamin D3 (Vit D3) is challenging due to its susceptibility to degradation and low bioavailability, necessitating advanced encapsulation strategies. This research paper, therefore, focuses on the development and holistic evaluation of a pH-responsive nanoparticle system (Vit D3-Z/SA) using zein/sodium alginate (Z/SA) as carrier molecules. The nanoparticles (NPs) were optimized using the anti-solvent technique, yielding a size of <200 nm, zeta potential of -56 mV, and encapsulation efficiency of 77 %. The structural integrity was confirmed through SEM (morphology), FTIR (molecular interactions), UV-visible spectroscopy (compound stability) and TGA (thermal stability). Stability assessments demonstrated resilience under varying ionic strengths and storage conditions. The pH-responsive behavior indicated stability of the NPs above pH 3, consequently in-vitro bioaccessibility studies showed minimal releaseand sustained release of vitamin D in gastric pH (2) and intestinal pH (7.2), respectively. Further, in-vivo bioavailability in Wistar rats revealed significantly higher absorption and prolonged retention in NPs-treated groups (64.16 ng/mL) compared to free Vit D3 (18.87 ng/mL). Similarly, alkaline phosphatase assays confirmed enhanced bone mineralization in NPs treated rats (1.3-fold increase). Overall, the study highlights Z/SA nanoparticles as an effective delivery system for improving the stability and bioavailability of Vit D3, offering a promising approach for food and nutraceutical applications.
Collapse
Affiliation(s)
- Harshitha Annappa
- Nutrition, Biochemistry and Toxicology Division, Defence Institute of Bio-Defence Technology (DIBT-DRDO), Siddhartha Nagar, Mysore 570011, India
| | - Anand Tamatam
- Nutrition, Biochemistry and Toxicology Division, Defence Institute of Bio-Defence Technology (DIBT-DRDO), Siddhartha Nagar, Mysore 570011, India.
| | - Ilaiyaraja Nallamuthu
- Nutrition, Biochemistry and Toxicology Division, Defence Institute of Bio-Defence Technology (DIBT-DRDO), Siddhartha Nagar, Mysore 570011, India
| | - Kumar Ranganathan
- Food Engineering and Packaging Division, Defence Institute of Bio-Defence Technology (DIBT-DRDO), Siddhartha Nagar, Mysore 570011, India
| |
Collapse
|
2
|
Kaspute G, Ramanavicius A, Prentice U. Natural drug delivery systems for the treatment of neurodegenerative diseases. Mol Biol Rep 2025; 52:217. [PMID: 39928236 DOI: 10.1007/s11033-025-10286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
Today, herbal drugs are prominent in the pharmaceutical industry due to their well-known therapeutic and side effects. Plant-based compounds often face limitations such as poor solubility, low bioavailability, and instability in physiological environments, restricting their therapeutic efficacy and delivery. Nanotechnology-based solutions, including nanoparticle formulations and advanced delivery systems like liposomes and transfersomes, address these issues by enhancing solubility, stability, bioavailability, and targeted delivery, thereby optimizing the therapeutic potential of phytoactive compounds. Neuroinflammation can be a cause of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, or amyotrophic lateral sclerosis. Consequently, there is a need for the optimal delivery of a pharmacological anti-inflammatory agents to the CNS. Thus, the non-invasive administration of a stable compound at a therapeutic concentration is needed to assure molecule crossing through the blood-brain barrier. Natural resources have more structural diversity and novelty than synthetic compounds, e.g. plant-derived drug products have higher molecular weights, incorporate more oxygen atoms, and are more complex. As a result, plant-derived products have unique features which can be used to effectively modulate neuroinflammation. Therefore, this review aims to identify herbal molecules capable of targeting neuroinflammation and present novel strategies for their efficient delivery.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania.
| | - Urte Prentice
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, 10257, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
3
|
Smeu A, Marcovici I, Dehelean CA, Dumitrel SI, Borza C, Lighezan R. Flavonoids and Flavonoid-Based Nanopharmaceuticals as Promising Therapeutic Strategies for Colorectal Cancer-An Updated Literature Review. Pharmaceuticals (Basel) 2025; 18:231. [PMID: 40006045 PMCID: PMC11858883 DOI: 10.3390/ph18020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Colorectal cancer (CRC) represents one of the most serious health issues and the third most commonly diagnosed cancer worldwide. However, the treatment options for CRC are associated with adverse reactions, and in some cases, resistance can develop. Flavonoids have emerged as promising alternatives for CRC prevention and therapy due to their multitude of biological properties and ability to target distinct processes involved in CRC pathogenesis. Their innate disadvantageous properties (e.g., low solubility and stability, reduced bioavailability, and lack of tumor specificity) have delayed the potential inclusion of flavonoids in CRC treatment regimens but have hastened the design of nanopharmaceuticals comprising a flavonoid agent entrapped in a nanosized delivery platform that not only counteract these inconveniences but also provide an augmented therapeutic effect and an elevated safety profile by conferring a targeted action. Starting with a brief presentation of the pathological features of CRC and an overview of flavonoid classes, the present study comprehensively reviews the anti-CRC activity of different flavonoids from a mechanistic perspective while also portraying the latest discoveries made in the area of flavonoid-containing nanocarriers that have proved efficient in CRC management. This review concludes by showcasing future perspectives for the advancement of flavonoids and flavonoid-based nanopharmaceuticals in CRC research.
Collapse
Affiliation(s)
- Andreea Smeu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Stefania-Irina Dumitrel
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Claudia Borza
- Department of Functional Sciences, Discipline of Pathophysiology, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
- Centre for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
- Centre of Cognitive Research in Pathological Neuro-Psychiatry NEUROPSY-COG, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Rodica Lighezan
- Center for Diagnosis and Study of Parasitic Diseases, Department of Infectious Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Discipline of Parasitology, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Singh D, Shukla G. The multifaceted anticancer potential of luteolin: involvement of NF-κB, AMPK/mTOR, PI3K/Akt, MAPK, and Wnt/β-catenin pathways. Inflammopharmacology 2025; 33:505-525. [PMID: 39543054 DOI: 10.1007/s10787-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Cancer is the predominant and major cause of fatality worldwide, based on the different types of cancer. There is a limitation in the current treatment. So we need better therapeutic agents that counteract the progression and development of malignant tumours. Plant-derived products are closely related and useful for human health. Luteolin is a polyphenolic flavonoid bioactive molecule that is present in various herbs, vegetables, fruits, and flowers and exhibits chemoprotective and pharmacological activity against different malignancies. To offer innovative approaches for the management of various cancers, we present a comprehensive analysis of the latest discoveries on luteolin. The aim is to inspire novel concepts for the development of advanced pharmaceuticals targeting cancer and search specifically targeted reviews and research articles published from January 1999 to January 2024 that investigated the application of luteolin in various cancer management. A thorough literature search utilizing the keywords "luteolin" "Signalling Pathway" "cancer" and nanoparticles was performed in the databases of Google Scholar, Web of Science, SCOPUS, UGC care list and PubMed. Through the compilation of existing research, we have discovered that luteolin possesses several therapeutic actions against various cancer via a signaling pathway involving the of NF-κB regulation, AMPK/mTOR, toll-like receptor, Nrf-2, PI3K/Akt MAPK and Wnt/β-catenin and their underlying mechanism of action has been well understood. This review intended to completely integrate crucial information on natural sources, biosynthesis, pharmacokinetics, signaling pathways, chemoprotective and therapeutic properties against various cancers, and nanoformulation of luteolin.
Collapse
Affiliation(s)
- Deepika Singh
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Gaurav Shukla
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
5
|
Udaipuria N, Bhattacharya S. Novel Carbohydrate Polymer-Based Systems for Precise Drug Delivery in Colon Cancer: Improving Treatment Effectiveness With Intelligent Biodegradable Materials. Biopolymers 2025; 116:e23632. [PMID: 39340194 DOI: 10.1002/bip.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Due to their biocompatibility, biodegradability, and controlled release, carbohydrates polymers are crucial to targeted drug delivery systems, notably for colon cancer treatment. This article examines how carbohydrate polymers like chitosan, pectin, guar gum, alginate, hyaluronic acid, dextran, and chondroitin sulfate are used in improved drug delivery. Modifying these polymers improves drug loading, stability, and release patterns, enhancing chemotherapeutic drugs' therapeutic index. Chitosan nanoparticles are pH-responsive, making them perfect for cancer treatment. Pectin's resistance to gastric enzymes and colonic bacteria makes it a promising colon-specific medication delivery agent. The combination of these polymers with nanotechnology, 3D printing, and AI allows the creation of stimuli-responsive systems that release drugs precisely in response to environmental signals like pH, redox potential, or colon enzymatic activity. The review highlights intelligent delivery system design advances that reduce systemic toxicity, improve treatment efficacy, and improve patient adherence. Carbohydrate polymers will revolutionize colon cancer treatment with personalized and accurate alternatives.
Collapse
Affiliation(s)
- Nikita Udaipuria
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| |
Collapse
|
6
|
Wang J, Li H, Wang Z, Ruan S. Luteolin: A Comprehensive and Visualized Analysis of Research Hotspots and Its Antitumor Mechanisms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2377-2401. [PMID: 39686791 DOI: 10.1142/s0192415x24500903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The aim of this study was to analyze the research hotspots and mechanisms of luteolin in tumor-related fields using bibliometric and bioinformatic approaches to guide future research. We conducted a comprehensive screening of all articles on luteolin and tumors in Web of Science from 2008 to 2023. The extracted words from these publications were visualized using VOSviewer, Scimago Graphica, and CiteSpace. Public databases were used to collect luteolin and tumor-related targets. GO and KEGG analyses of luteolin antitumor-related genes were performed using Metascape. Protein interaction networks were built with Cytoscape and STRING, identifying hub targets of luteolin in antitumor activity. Subsequently, the binding capacity of luteolin to these hub targets was assessed using molecular docking technology. We found that China dominated this field, the Egyptian Knowledge Bank published the most articles, and Molecules had the highest number of related publications. Recently, network pharmacology, target, traditional Chinese medicine, and nanoparticles have become research hotspots in luteolin's antitumor research. A total of 483 overlapping genes between luteolin and tumors were identified, and they were closely associated with the cancer-associated pathways, PI3K-Akt, and MAPK signaling pathways. Luteolin forms a complex network of antitumor-related genes, with TP53, TNF, STAT3, AKT1, JUN, IL6, and SRC playing key roles and showing strong binding affinity to luteolin. Computer technology is becoming increasingly integral to the discipline, and future research will focus on more precise antitumor mechanisms and effective clinical applications.
Collapse
Affiliation(s)
- Jiaxuan Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Hao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Zhenru Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| |
Collapse
|
7
|
Jing Q, Liu F, Yao W, Zhang X. pH responsive fabrication of PVA-stabilized selenium nano formulation encapsulated with luteolin to reduce diabetic ureteral injury by decreasing NLRP3 inflammasome via Nrf2/ARE signaling. Regen Ther 2024; 27:434-444. [PMID: 38699396 PMCID: PMC11063996 DOI: 10.1016/j.reth.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Diabetic ureteral injury (DUI) is a condition characterized by damage to the ureter, causing functional and morphological changes in the urinary system, which have a significant impact on a quality of life and requires appropriate medical treatment. The present study describes to novel design of luteolin (LT), a type of natural flavonoid, encapsulated selenium nanoparticles (Se NPs) to attain therapeutic potential for DUI. The physico-chemical characterizations of prepared Se NPs have benefitted zeta potential (-18 mV) and particle size (10-50 nm). In vitro assays were demonstrated the potential of LT-SeNPs by HEK 293 cells stimulated by STZ for DUI. Cytotoxicity assays on HEK 293 and NIH-3T3 showed >90% cell viability, which demonstrates the suitability of the nanoformulation for DUI treatment. The LT-SeNPs significantly inhibits the NLRP3 inflammasome through Nrf2/ARE pathway, which benefits for DUI treatment. The developed LT-SeNPs could be an effective formulation for the DUI therapy.
Collapse
Affiliation(s)
- Qiang Jing
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Fan Liu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Weitao Yao
- Shanxi Medical University, Taiyuan 030000, China
| | - Xuhui Zhang
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
8
|
Mneimneh AT, Hayar B, Al Hadeethi S, Darwiche N, Mehanna MM. Application of Box-Behnken design in the optimization and development of albendazole-loaded zein nanoparticles as a drug repurposing approach for colorectal cancer management. Int J Biol Macromol 2024; 281:136437. [PMID: 39414215 DOI: 10.1016/j.ijbiomac.2024.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Colorectal cancer (CRC) is the second cancer worldwide representing a major global health challenge. Numerous effective anticancer drugs have been developed in the last decade, yet the problem remains due to their low therapeutic index and nonspecificity. A new anticancer therapeutic paradigm is based on repurposing and nanoformulating drugs. Albendazole (ALB), a popular anthelmintic agent, was recently repurposed against CRC cells. In this study zein, an amphiphilic protein, was used to formulate nanoparticles (NPs) loaded with ALB. Box-Behnken design was selected to optimize the loaded NPs, the concentrations of polyvinyl alcohol, acetic acid, and the weight of zein were the independent variables. The dependent variables were the particle size, polydispersity index, and zeta potential. The optimized formula displayed a size of 84.3 ± 0.41 nm, PDI 0.13 ± 0.012, and a zeta potential of 42.5 ± 2.35 mV. ALB was successfully encapsulated into zein NPs and the release study revealed a desirable pH-responsive drug release behavior, that was negligible release during the first 2 h at pH 1.2 and progressive in the simulated colon environment reaching 71.1 ± 0.34 % at 6 h and 92.4 ± 1.11 % at 24 h. The anticancer effect of the loaded NPs on the human HCT116 cells showed favorable effects at 1 μM concentration with a significant decrease in the IC50 at days 2 and 3 upon loading albendazole into zein NPs. Zein nanoparticles proved to be prospective nanocarriers that could be used for the delivery of repurposed drugs in CRC treatment.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sadaf Al Hadeethi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
9
|
Muraleedharan A, Acharya S, Kumar R. Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review. ACS OMEGA 2024; 9:42613-42629. [PMID: 39464472 PMCID: PMC11500139 DOI: 10.1021/acsomega.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Nanomedicine enables advanced therapeutics, diagnostics, and predictive analysis, enhancing treatment outcomes and patient care. The choices and development of high-quality organic nanoparticles with relatively lower toxicity are important for achieving advanced medical goals. Among organic molecules, proteins have been prospected as smart candidates to revolutionize nanomedicine due to their inherent fascinating features. The advent of protein nanoarchitectures, which explore the biomolecular corona, offers new insights into their efficient tissue penetration and therapeutic potential. This review examines various animal- and plant-based protein nanoparticles, highlighting their source, activity, products, and unique biomedical applications in regenerative medicine, targeted therapies, gene and drug delivery, antimicrobial activity, bioimaging, immunological adjuvants, etc. It provides an extensive discussion on recent applications of protein nanoparticles across diverse biomedical fields as well as the evolving landscape of other nanoproducts and nanodevices for sensitive medical procedures. Furthermore, this review introduces different preparation technologies of protein nanoparticles, emphasizing how their design and construction significantly influence loading capacity, stability, and targeting effects. Additionally, we delve into the construction of different user-friendly multifunctional modular bioarchitectures by the assembly of protein nanoparticles (PNPs), marking a significant breakthrough in therapies. This review also considers the challenges of synthetic nanomaterials and the emergence of natural alternatives, which provides insights into protein nanoparticle research.
Collapse
Affiliation(s)
- Anju Muraleedharan
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Sarbari Acharya
- Department
of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India, 751024
| | - Ravindra Kumar
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| |
Collapse
|
10
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Ferraro C, Dattilo M, Patitucci F, Prete S, Scopelliti G, Parisi OI, Puoci F. Exploring Protein-Based Carriers in Drug Delivery: A Review. Pharmaceutics 2024; 16:1172. [PMID: 39339208 PMCID: PMC11435266 DOI: 10.3390/pharmaceutics16091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Drug delivery systems (DDSs) represent an emerging focus for many researchers and they are becoming progressively crucial in the development of new treatments. Great attention is given to all the challenges that a drug has to overcome during its journey across barriers and tissues and all the pharmacokinetics modulations that are needed in order to reach the targeting sites. The goal of these pathways is the delivery of drugs in a controlled way, optimizing their bioavailability and minimizing side effects. Recent innovations in DDSs include various nanotechnology-based approaches, such as nanoparticles, nanofibers and micelles, which provide effective targeted delivery and sustained release of therapeutics. In this context, protein-based drug delivery systems are gaining significant attention in the pharmaceutical field due to their potential to revolutionize targeted and efficient drug delivery. As natural biomolecules, proteins offer distinct advantages, including safety, biocompatibility and biodegradability, making them a fascinating alternative to synthetic polymers. Moreover, protein-based carriers, including those derived from gelatin, albumin, collagen, gliadin and silk proteins, demonstrate exceptional stability under physiological conditions, and they allow for controlled and sustained drug release, enhancing therapeutic efficacy. This review provides a comprehensive overview of the current trends, challenges, and future perspectives in protein-based drug delivery, focusing on the types of proteins adopted and the techniques that are being developed to enhance their functionality in terms of drug affinity and targeting capabilities, underscoring their potential to significantly impact modern therapeutics.
Collapse
Affiliation(s)
- Claudia Ferraro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Giuseppe Scopelliti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (C.F.); (M.D.); (F.P.); (S.P.); (G.S.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
12
|
Pourmadadi M, Poorkhalili P, Sorourian M, Sorourian G, Ghaderi R, Mehrabi MG, Ajalli N. The smart nanocarrier containing zein/starch co-biopolymers enhanced by graphitic carbon nitride; exploring opportunities in brain cancer treatment. Int J Biol Macromol 2024; 274:133275. [PMID: 38906350 DOI: 10.1016/j.ijbiomac.2024.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
In this investigation, we present an innovative pH-responsive nanocomposite designed to address challenges associated with using 5-Fluorouracil (5-FU) in cancer therapy. The nanocomposite containing zein (Z), starch (S), and graphitic carbon nitride (g-C3N4) macromolecules is synthesized by a water-in-oil-in-water (W/O/W) double emulsion technique, serving as a carrier for 5-FU. The S/Z hydrogel matrix's entrapment and loading efficiency are greatly improved by adding g-C3N4 nanosheets, reaching noteworthy values of 45.25 % and 86.5 %, respectively, for drug loading efficiency and entrapment efficiency. Characterization through FTIR and XRD validates the successful loading of 5-FU, elucidating the chemical bonding within the nanocomposite and crystalline characteristics. Structural analysis using FESEM, along with DLS and zeta potential measurements, reveals an average nanocomposite size of 193.48 nm, indicating a controlled structure, and a zeta potential of -42.32 mV, signifying a negatively charged surface. Studies on the in vitro release of drugs reveal that 5-FU is delivered more effectively and sustainably in acidic environments than in physiological circumstances. This highlights the fact that the created nanocarrier is pH-sensitive. Modeling release kinetics involves finding the right mathematical conditions representing underlying physicochemical processes. Employing curve-fitting techniques, predominant release mechanisms are identified, and optimal-fitting kinetic models are determined. The Baker kinetic model performed best at pH 7.4, indicating that the leading cause of the drug release was polymer swelling. In contrast, the Higuchi model was most accurate for drug release at pH 5.4, illuminating the diffusion and dissolution mechanisms involved in diffusion. To be more precise, the mechanism of release at pH 7.4 and 5.4 was anomalous transport (dissolution-controlled), according to the Korsmeyer-Peppas mathematical model. The pH-dependent swelling and degradation behavior of S/Z/g-C3N4@5-FU nanocomposite showed higher swelling and faster degradation in acidic environments compared to neutral conditions. Crucially, outcomes from the MTT test affirm the significant cytotoxicity of the 5-FU-loaded nanocomposite against U-87 MG brain cancer cells, while simultaneously indicating non-toxicity towards L929 fibroblast cells. These cumulative findings underscore the potential of the engineered S/Z/g-C3N4@5-FU as a productive and targeted therapeutic approach for cancer cells.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC 1983963113, Iran.
| | - Pegah Poorkhalili
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Maral Sorourian
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Ghazal Sorourian
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Reza Ghaderi
- Department of Biomedical Engineering, Faculty of Engineering, University of Shomal, Amol, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran.
| |
Collapse
|
13
|
Mhaske A, Kaur J, Naqvi S, Shukla R. Decitabine enclosed biotin-zein conjugated nanoparticles: synthesis, characterization, in vitro and in vivo evaluation. Nanomedicine (Lond) 2024; 19:1743-1760. [PMID: 39041671 PMCID: PMC11418219 DOI: 10.1080/17435889.2024.2374700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: This study focuses on biotinylated nanocarriers designed to encapsulate amphiphilic molecules with self-biodegradable properties for enhanced drug delivery.Methods: Biotin-zein conjugated nanoparticles were synthesized and tested in C6 cell lines to evaluate their viability and cellular uptake. Optimization was achieved using a a central composite design. The nanoparticles underwent thermogravimetric analysis, and their pharmacokinetics and biodistribution were also studied.Results: The optimized nanoparticles displayed 96.31% drug encapsulation efficiency, a particle size of 95.29 nm and a zeta potential of -17.7 mV. These nanoparticles showed increased cytotoxicity and improved cellular uptake compared with free drugs. Thermogravimetric analysis revealed that the drug-loaded nanocarriers provided better protection against drug degradation. Pharmacokinetic and biodistribution studies indicated that the formulation had an extended brain residence time, highlighting its effectiveness.Conclusion: The biotin-zein conjugated nanoparticles developed in this study offer a promising nano-vehicle for in vivo biodistribution and pharmacokinetic applications. Their high drug encapsulation efficiency, stability and extended brain residence time suggest they are effective for targeted drug delivery and therapeutic uses.
Collapse
Affiliation(s)
- Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
- Department of Pharmacology & Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| |
Collapse
|
14
|
Gao X, Liu Z, Chen J, Zhu D, Liu H, Li J, Zhao X, Mi H. Encapsulation of luteolin by self-assembled Rha/SSPS/SPI nano complexes: Characterization, stability, and gastrointestinal digestion in vitro. Food Res Int 2024; 188:114532. [PMID: 38823889 DOI: 10.1016/j.foodres.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 μg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.
Collapse
Affiliation(s)
- Xiaoya Gao
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Zuxin Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Jingxin Chen
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China.
| | - Danshi Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Xiaohui Zhao
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongbo Mi
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China.
| |
Collapse
|
15
|
Preetam S, Duhita Mondal D, Mukerjee N, Naser SS, Tabish TA, Thorat N. Revolutionizing Cancer Treatment: The Promising Horizon of Zein Nanosystems. ACS Biomater Sci Eng 2024; 10:1946-1965. [PMID: 38427627 PMCID: PMC11005017 DOI: 10.1021/acsbiomaterials.3c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.
Collapse
Affiliation(s)
- Subham Preetam
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Deb Duhita Mondal
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata, West Bengal 700107, India
| | - Nobendu Mukerjee
- Centre
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
- Department
of Science and Engineering, Novel Global
Community and Educational Foundation, Hebasham 2770, NSW, Australia
| | | | - Tanveer A. Tabish
- Division
of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford, OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick
Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
16
|
Shen JJ, Xue SJ, Mei ZH, Li TT, Li HF, Zhuang XF, Pan LM. Synthesis, characterization, and efficacy evaluation of a PH-responsive Fe-MOF@GO composite drug delivery system for the treating colorectal cancer. Heliyon 2024; 10:e28066. [PMID: 38524612 PMCID: PMC10957435 DOI: 10.1016/j.heliyon.2024.e28066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Luteolin is a potent anti-colorectal cancer chemical. However, its effectiveness is hindered by its poor solubility in water and fat, and it is easy to degrade by gastrointestinal enzymes. In this study, a nano-composite carrier, NH2-MIL-101(Fe)@GO (MG), based on aminated MIL-101(Fe) and graphene oxide (GO) was developed and evaluated. This carrier co-delivered luteolin and matrine, while marine was used to balance the pH for the nano-preparation. The loading capacities for luteolin and matrine were approximately 9.8% and 14.1%, respectively. Luteolin's release at pH = 5 was significantly higher than at pH = 7.4, indicating it had an acidic pH response release characteristic. Compared to MOF and GO alone, MG and NH2-MIL-101(Fe)@GO@Drugs (MGD) enhanced anti-cancer activity by inhibiting tumor cell migration, increasing ROS generation, and upregulating the expression of Caspase-3 and Caspase-9. In conclusion, this study contributes new ideas and methods to the treatment strategy of multi-component anti-colorectal cancer therapy. It also advances drug delivery systems and supports the development of more effective and targeted treatment approaches for colorectal cancer.
Collapse
Affiliation(s)
- Jia-Jie Shen
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Jiao Xue
- Qidong Hospital of Traditional Chinese Medicine, Nantong, 226200, China
| | - Zhang-Hao Mei
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ting-Ting Li
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Fen Li
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fei Zhuang
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin-Mei Pan
- Plant medicine Deep Processing Engineering Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
17
|
Shi M, Chen Z, Gong H, Peng Z, Sun Q, Luo K, Wu B, Wen C, Lin W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother Res 2024; 38:880-911. [PMID: 38088265 DOI: 10.1002/ptr.8066] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.
Collapse
Affiliation(s)
- Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Sichuan Provincial Key Laboratory of Individualized Drug Therapy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baoyu Wu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Omran S, Elnaggar YSR, Abdallah OY. Controlled release, chitosan-tethered luteolin phytocubosomes; Formulation optimization to in-vivo antiglaucoma and anti-inflammatory ocular evaluation. Int J Biol Macromol 2024; 254:127930. [PMID: 37944733 DOI: 10.1016/j.ijbiomac.2023.127930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
A chitosan-coated luteolin-loaded phytocubosomal system was prepared to improve the pharmacodynamic performance of luteolin in the treatment of glaucoma and ocular inflammation after topical ocular administration. Luteolin, a potent anti-oxidant herbal drug with poor aqueous solubility, was complexed with phospholipid. The prepared phytocubosomes were coated with chitosan, producing homogenously distributed nanosized particles (258 ± 9.05 nm) with a positive charge (+49 ± 6.09 mV), improved EE% (96 %), and increased concentration of encapsulated drug to 288 μg/ml. Polarized light microscopy revealed a cubic phase. Chitosan-coated phytocubosomes showed a sustained drug release profile (38 % over 24 h) and improved anti-oxidant activity (IC50 of 32 μg/ml). Ex vivo transcorneal permeation was higher by 3.60 folds compared to luteolin suspension. Irritancy tests confirmed their safety in ocular tissues after single and multiple administrations. The pharmacodynamic studies on glaucomatous rabbit eyes demonstrated 6.46-, 3.88-, and 1.89-fold reductions in IOP of chitosan-coated phytocubosomes compared to luteolin suspension, cubosomes, and phytocubosomes, respectively. Pharmacodynamic anti-inflammatory studies revealed faster recovery capabilities of chitosan-coated phytocubosomes over other formulations. Thus, chitosan-coated phytocubosomes could be a promising ocular hybrid system for delivering herbal lipophilic drugs such as luteolin.
Collapse
Affiliation(s)
- Sarah Omran
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication & Nanotechnology Consultation Center (INCC), Faculty of Pharmacy, Pharos University in Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
19
|
Zeng YF, Chen YY, Deng YY, Zheng C, Hong CZ, Li QM, Yang XF, Pan LH, Luo JP, Li XY, Zha XQ. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydr Polym 2024; 323:121389. [PMID: 37940283 DOI: 10.1016/j.carbpol.2023.121389] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
The present work aimed to develop a novel bioactive edible film prepared by adding quercetin-encapsulated carboxymethyl lotus root starch nanoparticles (QNPs),gellan gum and lotus root starch. The physicochemical characteristics, preservation effect and mechanism on grapes of the prepared film were investigated. SEM results showed that QNPs (5 %) were dispersed uniformly within lotus root starch matrix, indicating the formation of a stable composite nanoparticle film. In addition, the incorporation of QNPs (5 %) effectively improved the mechanical strength, thermal stability, barrier property and antioxidant activity of QNPs/starch film. Moreover, compared with the control, the QNPs/starch (5 %) film showed effective preservation effect on grapes during 21 days of storage at room temperature, based on the characterization by grape appearance, weight loss, firmness, and titratable acidity. Further studies found that QNPs/starch (5 %) film could exhibit enhanced antioxidant activity and potent anti-fungal ability against Botrytis cinerea, thus extending grape shelf life. In conclusion, the obtained QNPs/starch (5 %) film presented a promising application as an edible packing material for fruit preservation by antioxidant and preventing Botrytis cinerea contamination.
Collapse
Affiliation(s)
- Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Fei Yang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
20
|
Kar B, Rout SR, Halder J, Mahanty R, Mishra A, Saha I, Rajwar TK, Dash P, Das C, Pradhan D, Rai VK, Ghosh G, Rath G. The Recent Development of Luteolin-loaded Nanocarrier in Targeting Cancer. Curr Pharm Des 2024; 30:2129-2141. [PMID: 38963114 DOI: 10.2174/0113816128313713240628063301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 μg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.
Collapse
Affiliation(s)
- Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Sudhanshu Ranjan Rout
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ritu Mahanty
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ajit Mishra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Priyanka Dash
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| |
Collapse
|
21
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
22
|
Omran S, Elnaggar YSR, Abdallah OY. Carrageenan tethered ion sensitive smart nanogel containing oleophytocubosomes for improved ocular luteolin delivery. Int J Pharm 2023; 646:123482. [PMID: 37802260 DOI: 10.1016/j.ijpharm.2023.123482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Ophthalmic delivery of luteolin (LU) was studied after formulating a carrageenan-based novel ion-sensitive in situ gel (ISG) incorporating oleophytocubosomes for prolonged ocular residence time and improved ocular bioavailability of the poorly absorbed herbal drug luteolin. The prepared oleophytocubosomes and ISG were compared with LU suspension. Optimized oleophytocubosomes possessed small, homogenously distributed negatively charged particles with high entrapment efficiency. Polarized light microscope revealed a cubic phase. Optimized ISG matrix composed of 0.4% kappa carrageenan (KC), and 2% hydroxypropylmethylcellulose (HPMC) demonstrated rapid gelation, high resistance to dilution, increased viscosity after gelation, and strong mucoadhesive properties. oleophytocubosomes exerted improved drug release, while a more sustained release was observed for ISG oleophytocubosomes. The antioxidant activity of both formulations was significantly higher than that of LU suspension. Oleophytocubosome and ISG oleophytocubosome revealed significantly higher apparent permeability coefficients of 3.62 and 2.90 folds, respectively, compared to LU suspension. Irritation tests showed the safety of both formulations for single- and multiple-ocular administration. In-vivo studies demonstrated that the ISG system showed prolonged antiglaucoma effects and a faster anti-inflammatory effect, followed by oleophytocubosomes.
Collapse
Affiliation(s)
- Sarah Omran
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International-Publishing and Nanotechnology Consultation Center INCC, Pharos University in Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
23
|
Shehnaz SI, Roy A, Vijayaraghavan R, Sivanesan S. Luteolin Mitigates Diabetic Dyslipidemia in Rats by Modulating ACAT-2, PPARα, SREBP-2 Proteins, and Oxidative Stress. Appl Biochem Biotechnol 2023; 195:4893-4914. [PMID: 37103741 DOI: 10.1007/s12010-023-04544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Diabetic dyslipidemia is a crucial link between type-2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular diseases (ASCVD). Natural biologically active substances have been advocated as complementary remedies for ASCVD and T2DM. Luteolin, a flavonoid, exhibits antioxidant, hypolipidemic, and antiatherogenic effects. Hence, we aimed to determine influence of luteolin on lipid homeostasis and hepatic damage in rats with T2DM induced by high-fat-diet (HFD) and streptozotocin (STZ). After being fed HFD for 10 days, male Wistar rats received 40 mg/kg STZ intraperitoneal injection on 11th day. Seventy-two hours later, hyperglycemic rats (fasting glucose > 200 mg/dL) were randomized into groups, and oral hydroxy-propyl-cellulose, atorvastatin (5 mg/kg), or luteolin (50 mg/kg or 100 mg/kg) administered daily, while continuing HFD for 28 days. Luteolin significantly ameliorated dyslipidemia levels and concomitantly improved atherogenic index of plasma in a dose-dependent manner. Increased levels of malondialdehyde and diminished levels of superoxide dismutase, catalase, and glutathione in HFD-STZ-diabetic rats were significantly regulated by luteolin. Luteolin significantly intensified PPARα expression while decreasing expression of acyl-coenzyme A:cholesterol acyltransferase-2 (ACAT-2) and sterol regulatory element binding protein-2 (SREBP-2) proteins. Moreover, luteolin effectively alleviated hepatic impairment in HFD-STZ-diabetic rats to near-normal control levels. The findings of the present study expound mechanisms by which luteolin mitigated diabetic dyslipidemia and alleviated hepatic impairment in HFD-STZ-diabetic rats by amelioration of oxidative stress, modulation of PPARα expression, and downregulation of ACAT-2 and SREBP-2. In conclusion, our results imply that luteolin may be efficacious in management of dyslipidemia in T2DM, and future research may be essential to substantiate our findings.
Collapse
Affiliation(s)
- Syed Ilyas Shehnaz
- Department of Pharmacology, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
| | - Anitha Roy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Rajagopalan Vijayaraghavan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Senthilkumar Sivanesan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
- Department of Biosciences, Institute of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
24
|
Cunha C, Marinheiro D, Ferreira BJML, Oliveira H, Daniel-da-Silva AL. Morin Hydrate Encapsulation and Release from Mesoporous Silica Nanoparticles for Melanoma Therapy. Molecules 2023; 28:4776. [PMID: 37375331 DOI: 10.3390/molecules28124776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma incidence, a type of skin cancer, has been increasing worldwide. There is a strong need to develop new therapeutic strategies to improve melanoma treatment. Morin is a bioflavonoid with the potential for use in the treatment of cancer, including melanoma. However, therapeutic applications of morin are restrained owing to its low aqueous solubility and limited bioavailability. This work investigates morin hydrate (MH) encapsulation in mesoporous silica nanoparticles (MSNs) to enhance morin bioavailability and consequently increase the antitumor effects in melanoma cells. Spheroidal MSNs with a mean size of 56.3 ± 6.5 nm and a specific surface area of 816 m2/g were synthesized. MH was successfully loaded (MH-MSN) using the evaporation method, with a loading capacity of 28.3% and loading efficiency of 99.1%. In vitro release studies showed that morin release from MH-MSNs was enhanced at pH 5.2, indicating increased flavonoid solubility. The in vitro cytotoxicity of MH and MH-MSNs on human A375, MNT-1 and SK-MEL-28 melanoma cell lines was investigated. Exposure to MSNs did not affect the cell viability of any of the cell lines tested, suggesting that the nanoparticles are biocompatible. The effect of MH and MH-MSNs on reducing cell viability was time- and concentration-dependent in all melanoma cell lines. The A375 and SK-MEL-28 cell lines were slightly more sensitive than MNT-1 cells in both the MH and MH-MSN treatments. Our findings suggest that MH-MSNs are a promising delivery system for the treatment of melanoma.
Collapse
Affiliation(s)
- Catarina Cunha
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo Marinheiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara J M L Ferreira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Folate receptor targeted NIR cleavable liposomal delivery system augment penetration and therapeutic efficacy in breast cancer. Biochim Biophys Acta Gen Subj 2023:130396. [PMID: 37271407 DOI: 10.1016/j.bbagen.2023.130396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Liposomes are predominantly used sorts of nanocarriers for active targeted delivery through surface functionalization using targeting ligand. The folate receptors are overexpressed in various cancers including breast cancer and because of its binding aptitude specifically to folate receptors, folic acid became the attractive ligand. METHODS In this research, we have developed a folate and Poly-l-Lysine conjugate and coated this conjugate onto the liposomes. The prepared liposomes were characterized using DLS, FTIR, NMR, SEM, TEM, XRD, AFM, stability and drug release studies. Furthermore, In vitro studies were carried out on FR overexpressed breast cancer cell line. RESULTS The FA-LUT-ABC-Lip have diameter of 183 ± 3.17 nm with positive surface charge +33.65 ± 3 mV and the drug release studies confirm the NIR responsive payload cleavage. The coated formulation (in presence of NIR light) effectively reduced the IC50 values and kills breast cancer cells through FR mediated internalization and accelerated drug release. Moreover, LUT Formulation shows anticancer effect due to significant inhibition of cell migration and proliferation by regulating VEGF expression and induced apoptosis through the caspase-3 up-regulation. CONCLUSION It is evident from the in vitro studies that the formulation was found to be very effective and can be explored for triggered and targeted delivery of the substances through active targeting. GENERAL SIGNIFICANCE Combining receptor mediated drug delivery with triggered release aid in more amounts of drug reaching the target site and achieving enhanced therapeutic activity.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Archana Karole
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Shabi Parvez
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
26
|
Diedrich C, Zittlau IC, Khalil NM, Leontowich AFG, Freitas RAD, Badea I, Mainardes RM. Optimized Chitosan-Based Nanoemulsion Improves Luteolin Release. Pharmaceutics 2023; 15:1592. [PMID: 37376041 DOI: 10.3390/pharmaceutics15061592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (LUT) is a flavonoid found in several edible and medicinal plants. It is recognized for its biological activities such as antioxidant, anti-inflammatory, neuroprotective, and antitumor effects. However, the limited water solubility of LUT leads to poor absorption after oral administration. Nanoencapsulation may improve the solubility of LUT. Nanoemulsions (NE) were selected for the encapsulation of LUT due to their biodegradability, stability, and ability to control drug release. In this work, chitosan (Ch)-based NE was developed to encapsulate luteolin (NECh-LUT). A 23 factorial design was built to obtain a formulation with optimized amounts of oil, water, and surfactants. NECh-LUT showed a mean diameter of 67.5 nm, polydispersity index 0.174, zeta potential of +12.8 mV, and encapsulation efficiency of 85.49%. Transmission electron microscopy revealed spherical shape and rheological analysis verified the Newtonian behavior of NECh-LUT. SAXS technique confirmed the bimodal characteristic of NECh-LUT, while stability analysis confirmed NECh-LUT stability when stored at room temperature for up to 30 days. Finally, in vitro release studies showed LUT controlled release up to 72 h, indicating the promising potential of NECh-LUT to be used as novel therapeutic option to treat several disorders.
Collapse
Affiliation(s)
- Camila Diedrich
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | - Isabella C Zittlau
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | - Najeh M Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | | | - Rilton A de Freitas
- Biopol, Chemistry Department, Federal University of Parana, Curitiba 81531-980, Brazil
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Rubiana M Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| |
Collapse
|
27
|
Rocchetti MT, Bellanti F, Zadorozhna M, Fiocco D, Mangieri D. Multi-Faceted Role of Luteolin in Cancer Metastasis: EMT, Angiogenesis, ECM Degradation and Apoptosis. Int J Mol Sci 2023; 24:8824. [PMID: 37240168 PMCID: PMC10218870 DOI: 10.3390/ijms24108824] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Luteolin (3',4',5,7-tetrahydroxyflavone), a member of the flavonoid family derived from plants and fruits, shows a wide range of biomedical applications. In fact, due to its anti-inflammatory, antioxidant and immunomodulatory activities, Asian medicine has been using luteolin for centuries to treat several human diseases, including arthritis, rheumatism, hypertension, neurodegenerative disorders and various infections. Of note, luteolin displays many anti-cancer/anti-metastatic properties. Thus, the purpose of this review consists in highlighting the relevant mechanisms by which luteolin inhibits tumor progression in metastasis, i.e., affecting epithelial-mesenchymal transition (EMT), repressing angiogenesis and lysis of extracellular matrix (ECM), as well as inducing apoptosis.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Mariia Zadorozhna
- Medical Genetics Unit, Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100 Pavia, Italy;
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| |
Collapse
|
28
|
Zein nanoparticles for drug delivery: Preparation methods and biological applications. Int J Pharm 2023; 635:122754. [PMID: 36812950 DOI: 10.1016/j.ijpharm.2023.122754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Zein, a vegetable protein extracted from corn (Zea mays L.), forms a gastro-resistant and mucoadhesive polymer that is cheap and easy to obtain and facilitates the encapsulation of bioactives with hydrophilic, hydrophobic, and amphiphilic properties. The methods used for synthesizing these nanoparticles include antisolvent precipitation/nanoprecipitation, pH-driven, electrospraying, and solvent emulsification-evaporation methods. Each method has its advantages in the preparation of nanocarriers, nevertheless, all of them enable the production of zein nanoparticles that are stable and resistant to environmental factors, with different biological activities required in the cosmetic, food, and pharmaceutical industries. Therefore, zein nanoparticles are promising nanocarriers that can encapsulate various bioactives with anti-inflammatory, antioxidant, antimicrobial, anticancer, and antidiabetic properties. This article reviews the principal methods for obtaining zein nanoparticles containing bioactives, the advantages and characteristics of each method, as well as the main biological applications of nanotechnology-based formulations.
Collapse
|
29
|
Luo X, Wu S, Xiao M, Gu H, Zhang H, Chen J, Liu Y, Zhang C, Zhang J. Advances and Prospects of Prolamine Corn Protein Zein as Promising Multifunctional Drug Delivery System for Cancer Treatment. Int J Nanomedicine 2023; 18:2589-2621. [PMID: 37213352 PMCID: PMC10198181 DOI: 10.2147/ijn.s402891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/06/2023] [Indexed: 05/23/2023] Open
Abstract
Zein is a type of prolamine protein that is derived from corn, and it has been recognized by the US FDA as one of the safest biological materials available. Zein possesses valuable characteristics that have made it a popular choice for the preparation of drug carriers, which can be administered through various routes to improve the therapeutic effect of antitumor drugs. Additionally, zein contains free hydroxyl and amino groups that offer numerous modification sites, enabling it to be hybridized with other materials to create functionalized drug delivery systems. However, despite its potential, the clinical translation of drug-loaded zein-based carriers remains challenging due to insufficient basic research and relatively strong hydrophobicity. In this paper, we aim to systematically introduce the main interactions between loaded drugs and zein, administration routes, and the functionalization of zein-based antitumor drug delivery systems, in order to demonstrate its development potential and promote their further application. We also provide perspectives and future directions for this promising area of research.
Collapse
Affiliation(s)
- Xi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Sudan Wu
- Blood Purification Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Huan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Jianping Chen
- Lika Shing Faculty of Medicine, School of Chinese Medicine, the University of Hong KOng, Hong Kong, People’s Republic of China
| | - Yang Liu
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Correspondence: Yang Liu, Hospital of Chengdu University of Traditional Chinese Medicine, No. 37, Shierqiao Road, Jinniu District, Chengdu, Sichuan, People’s Republic of China, Email
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Jinming Zhang, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan, People’s Republic of China, Email
| |
Collapse
|
30
|
Preparation and Evaluation of Amorphous Solid Dispersions for Enhancing Luteolin's Solubility in Simulated Saliva. Polymers (Basel) 2022; 15:polym15010169. [PMID: 36616519 PMCID: PMC9824002 DOI: 10.3390/polym15010169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Luteolin (LUT), a bioactive flavonoid, possesses various pharmacological properties, including antioxidant, antimicrobial, anti-allergic, cardio-protective, and anti-cancer activity. Among them, LUT's administration for the treatment of periodontal disease is very promising. However, its low water solubility magnifies the challenge of formulating LUT into an effective dosage form. In this vein, the aim of the present study examines the preparation of amorphous solid dispersions (ASD) for the solubility improvement of LUT in saliva. At first, the physicochemical properties of the active pharmaceutical ingredient (API) were studied before the selection of the most suitable ASD matrix/carrier. For this reason, six commonly used polymeric ASD matrix/carriers (namely, povidone, PVP; copovidone, coPVP; hydroxypropyl cellulose, HPC-SL; hydroxypropyl methyl cellulose acetate succinate, HPMC-AS; Eudragit® RS, Eud-RS; and Soluplus®, SOL) were screened via the film casting method, as to whether they could suspend the drug's recrystallization. The most promising matrix/carriers were then evaluated, based on their ability to inhibit LUT's precipitation after its solubilization, via the solvent shift method. Based on both screening methods, it was determined that PVP was the most promising matrix/carrier for the preparation of LUT's ASDs. Hence, in a further step, after the successful testing of components' miscibility, LUT-PVP ASDs were prepared via the solvent evaporation method. These systems (examined via powder X-ray diffractometry, pXRD) showed full API amorphization immediately after preparation and excellent physical stability (since they were stable after 3 months of storage). The study of LUT-PVP ASD's ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectra demonstrated strong H-bonds between the molecules of the drug and the matrix/carrier, while molecular dynamics (MD) simulations were able to shed light on these drug-matrix/carrier interactions, at a molecular level. Finally, in vitro dissolution studies in simulated saliva proved that the prepared ASDs were able to significantly enhance LUT's dissolution profile. Hence, according to findings of the present work, the preparation of LUT-ASDs utilizing PVP as the polymeric matrix/carrier is regarded as a highly promising technique for the improvement of API's solubility in the oral cavity.
Collapse
|
31
|
Movaffagh J, Nourollahian T, Khalatbari S, Amiri N, Bazzaz BSF, Kalalinia F. Fabrication of Zein-Chitosan-Zein Sandwich-Like Nanofibers Containing Teicoplanin as a Local Antibacterial Drug Delivery System. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Cunha C, Daniel-da-Silva AL, Oliveira H. Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives. MICROMACHINES 2022; 13:1838. [PMID: 36363859 PMCID: PMC9693869 DOI: 10.3390/mi13111838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Melanoma is an aggressive form of skin cancer with a high prevalence in the population. An early diagnosis is crucial to cure this disease. Still, when this is not possible, combining potent pharmacological agents and effective drug delivery systems is essential to achieve optimal treatment and improve patients' quality of life. Nanotechnology application in biomedical sciences to encapsulate anticancer drugs, including flavonoids, in order to enhance therapeutic efficacy has attracted particular interest. Flavonoids have shown effectiveness against various types of cancers including in melanoma, but they show low aqueous solubility, low stability and very poor oral bioavailability. The utilization of novel drug delivery systems could increase flavonoid bioavailability, thereby potentiating its antitumor effects in melanoma. This review summarizes the potential of different flavonoids in melanoma treatment and the several nanosystems used to improve their biological activity, considering published information that reported improved biological and pharmacological properties of encapsulated flavonoids.
Collapse
Affiliation(s)
- Catarina Cunha
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
34
|
Zaher S, Soliman ME, Elsabahy M, Hathout RM. Protein nanoparticles as natural drugs carriers for cancer therapy. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00668-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Xu PY, Kankala RK, Li YW, Wang SB, Chen AZ. Synergistic chemo-/photothermal therapy based on supercritical technology-assisted chitosan-indocyanine green/luteolin nanocomposites for wound healing. Regen Biomater 2022; 9:rbac072. [PMID: 36246765 PMCID: PMC9555995 DOI: 10.1093/rb/rbac072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the success, it is highly challenging to battle against pathogenic biofilms-based chronic bacterial infections by conventional antibiotic therapy. Herein, we report a near-infrared (NIR)/acid-induced nanoplatform based on chitosan (CS)-coated indocyanine green (ICG, photosensitizer)/luteolin (LUT, a natural quorum sensing inhibitor) nanocomposites (ICG/LUT-CS) as antibacterial and antibiofilm agents for skin wound healing. Initially, the ICG/LUT nanoplatforms are prepared by the supercritical antisolvent technology and coated with the CS layer. The obtained ICG/LUT-CS with ultra-high encapsulation efficiency exhibited more favorable photothermal conversion effects and improved NIR laser/acid dual-induced drug release behavior than individual modalities, achieving exceptional bacteria-killing and biofilm elimination effects. Moreover, the ICG/LUT-CS realized the synergetic effects of chemotherapy and photothermal therapy outcomes for wound healing. Together, our findings provided an appealing strategy for the rapid preparation and future translational application of ICG/LUT-CS as an ideal agent for fighting against biofilm infections.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Yue-Wei Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
36
|
Diedrich C, Camargo Zittlau I, Schineider Machado C, Taise Fin M, Maissar Khalil N, Badea I, Mara Mainardes R. Mucoadhesive nanoemulsion enhances brain bioavailability of luteolin after intranasal administration and induces apoptosis to sh-sy5y neuroblastoma cells. Int J Pharm 2022; 626:122142. [PMID: 36064075 DOI: 10.1016/j.ijpharm.2022.122142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Neuroblastoma is the most frequently diagnosed extracranial solid tumor in children and accounts for 7% of all childhood malignancies and 15% cancer mortality in children. Luteolin (LUT) is recognized by its anticancer activity against several types of cancer. The aim of this study was to prepare chitosan-coated nanoemulsion containing luteolin (NECh-LUT), investigate its potential for brain delivery following intranasal administration, and to evaluate its cytotoxicity against neuroblastoma cells. NECh-LUT was developed by cavitation process and characterized for its size, surface charge, encapsulation efficiency, and mucoadhesion. The developed formulation presented size 68±1 nm, zeta potential +13±1 mV, and encapsulation efficiency of 85.5±0.3%. The NECh-LUT presented nearly 6-fold higher permeation through the nasal mucosa ex vivo and prolonged LUT release up to 72 h in vitro, following Baker-Lonsdale kinetic model. The pharmacokinetic evaluation of NECh-LUT revealed a 10-fold increase in drug half-life and a 4.4 times enhancement in LUT biodistribution in brain tissue after intranasal administration of single-dose. In addition, NECh-LUT inhibited the growth of neuroblastoma cells after 24, 48 and 72 h in concentrations starting from 2 µM. The NECh-LUT developed for intranasal administration proved to be a promising alternative for brain delivery of LUT, and a viable option for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Camila Diedrich
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Isabella Camargo Zittlau
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Christiane Schineider Machado
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil.
| |
Collapse
|
37
|
Jaiswal J, Srivastav AK, Patel R, Kumar U. Synthesis and physicochemical characterization of rhamnolipid fabricated fucoxanthin loaded bovine serum albumin nanoparticles supported by simulation studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5468-5477. [PMID: 35355263 DOI: 10.1002/jsfa.11901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fucoxanthin is a hydrophobic carotenoid with many beneficial biological activities. However, due to low aqueous solubility their clinical efficacy is limited thus leading to poor oral bioavailability. To address this issue, we encapsulated fucoxanthin in rhamnolipid fabricated bovine serum albumin (BSA) loaded nanoparticles (LNPs) for improving solubility dependent bioavailability of fucoxanthin. RESULTS These synthesized LNPs were characterized by dynamic light scattering (DLS), ultraviolet (UV)-visible spectrophotometry, high-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC). Our results showed that LNPs were spherical in shape with particle size around 180 nm along with positive zeta potential. The encapsulation efficiency and loading efficiency calculated for LNPs were 69.66 ± 1.5% and 14 ± 0.2%, respectively. The antioxidant assay of LNPs indicate high radical scavenging activity compared to pure fucoxanthin. Besides this, our release studies indicates that drug release occur from the matrix of nanocarrier system through diffusion based on concentration. Thus, these findings indicate successful encapsulation of fucoxanthin, with improved solubility thereby leading to increased bioavailability. This nano formulation is derived from components which are FDA approved that could be exploited for encapsulating other vital nutraceutical molecules. CONCLUSION Overall, our results showed successful synthesis of biodegradable nanocarrier for delivering fucoxanthin supported by molecular docking, molecular dynamics simulation and thermodynamics of free binding energy studies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jyoti Jaiswal
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| | | | - Rahul Patel
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
38
|
Tsai HY, Chen MY, Hsu C, Kuan KY, Chang CF, Wang CW, Hsu CP, Su NW. Luteolin Phosphate Derivatives Generated by Cultivating Bacillus subtilis var. Natto BCRC 80517 with Luteolin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8738-8745. [PMID: 35795971 DOI: 10.1021/acs.jafc.2c03524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luteolin (LUT), a plant-derived flavone, exhibits various bioactivities; however, the poor aqueous solubility hampers its applications. Here, we revealed bioconversion of LUT by Bacillus subtilis BCRC 80517, yielding three water-soluble phosphate conjugates. These derivatives were identified as luteolin 4'-O-phosphate (L4'P), luteolin 3'-O-phosphate (L3'P), and luteolin 7-O-phosphate (L7P) by LC-ESI-MS/MS and NMR. Besides, we found that Bacillus subtilis BCRC 80517 was able to convert different levels of LUT but showed a limited conversion rate. By observing bacterial morphology with transmission electron microscopy and confocal fluorescence microscopy, we found that LUT disrupted the bacterial membrane integrity, which explained the incomplete conversion. Additionally, we revealed a spontaneous intramolecular transesterification of L4'P to L3'P, the thermodynamically more stable form, under acidic conditions and proposed the possible mechanism involving a cyclic phosphate as the intermediate. This study provides insight into development of a potent structural modification strategy to enhance the solubility of LUT through biophosphorylation.
Collapse
Affiliation(s)
- Hsin-Ya Tsai
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Yu Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kai-Yuan Kuan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Che-Wei Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 106, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 106, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
39
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
40
|
Oliveira WQD, Neri-Numa IA, Arruda HS, McClements DJ, Pastore GM. Encapsulated flavonoids for diabetic foods: The emerging paradigm for an effective therapy. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Cheng Y, Liu D, Zeng M, Chen J, Mei X, Cao X, Liu J. Milk β-casein as delivery systems for luteolin: Multi-spectroscopic, computer simulations, and biological studies. J Food Biochem 2022; 46:e14133. [PMID: 35332561 DOI: 10.1111/jfbc.14133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
β-Casein, a highly amphiphilic calcium-sensitive phosphoprotein, has specific features that promote its application as a nanocarrier for hydrophobic bioactives. Luteolin is a flavonoid with rich biological activities existing in vegetables and fruits. It is important to understand the interaction of β-casein with luteolin for the development of β-casein-based delivery systems. Here, the interaction mode between luteolin and β-casein was investigated with multispectral techniques, computer simulation, and biological methods. The results demonstrated that luteolin could bind to β-casein spontaneously which is driven by hydrophobic interactions and statically quench the intrinsic fluorescence of β-casein. Molecular docking and molecular dynamics simulation showed that β-casein formed a stable complex with luteolin. It could be concluded that luteolin was encapsulated in β-casein micelles and exhibited higher antioxidant activity than luteolin alone. These results would be helpful to understand the interaction mechanism of luteolin with β-casein and indicated that β-casein micelles were very promising as delivery vehicles for luteolin. PRACTICAL APPLICATIONS: Adding bioactive compounds to food is an efficient method of functional food processing, and protein is an excellent natural carrier for these substances. β-Casein is a milk protein with a unique amphiphilic structure that makes it a natural nanocarrier for active ingredients. This study created β-casein nanocarriers and encapsulated luteolin based on the interaction mechanism between β-casein with luteolin. Luteolin encapsulated in β-casein micelles demonstrated higher antioxidant activity when compared to free luteolin. This research will provide useful data for the development of functional foods based on β-casein and luteolin in the food industry.
Collapse
Affiliation(s)
- Ye Cheng
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Dan Liu
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Meng Zeng
- Tianjin Academy of Environmental Sciences, Tianjin, P.R. China
| | - Junliang Chen
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Xueying Mei
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang, P.R. China
| | - Jianli Liu
- School of Life Science, Liaoning University, Shenyang, P.R. China
| |
Collapse
|
42
|
Bioactive Luteolin Entrapped Chitosan-PLGA Nanoparticles: Formulation Optimization to In-Vivo Preclinical Evaluation. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Karole A, Parvez S, Thakur RS, Mudavath SL. Effervescent based nano-gas carrier enhanced the bioavailability of poorly aqueous soluble drug: A comprehensive mechanistic understanding. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Interaction mechanism of phenolic acids and zein: A spectrofluorometric and molecular dynamics investigation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Pawłowska A, Stepczyńska M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:1683-1708. [PMID: 34720776 PMCID: PMC8541817 DOI: 10.1007/s10924-021-02315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 05/07/2023]
Abstract
The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manufacturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modifiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant ones. This work mentions industries where materials containing natural modifying additives could find potential applications. Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world's pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.
Collapse
Affiliation(s)
- Alona Pawłowska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| |
Collapse
|
46
|
Shakeel F, Alamer MM, Alam P, Alshetaili A, Haq N, Alanazi FK, Alshehri S, Ghoneim MM, Alsarra IA. Hepatoprotective Effects of Bioflavonoid Luteolin Using Self-Nanoemulsifying Drug Delivery System. Molecules 2021; 26:7497. [PMID: 34946581 PMCID: PMC8703857 DOI: 10.3390/molecules26247497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was -30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Moad M. Alamer
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nazrul Haq
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (I.A.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (I.A.A.)
| |
Collapse
|
47
|
Zafar A, Alruwaili NK, Imam SS, Alsaidan OA, Yasir M, Ghoneim MM, Alshehri S, Anwer MK, Almurshedi AS, Alanazi AS. Development and evaluation of luteolin loaded pegylated bilosome: optimization, in vitro characterization, and cytotoxicity study. Drug Deliv 2021; 28:2562-2573. [PMID: 34866534 PMCID: PMC8654410 DOI: 10.1080/10717544.2021.2008055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The present research was aimed to develop luteolin (LL) loaded pegylated bilosomes (PG-BLs) for oral delivery. The luteolin bilosomes (BLs) were prepared by the thin-film hydration method and further optimized by the Box-Behnken design (four-factors at three-levels). The prepared LL-BLs were evaluated for vesicle size (VS), PDI, zeta potential (ZP), and entrapment efficiency to select the optimized formulation. The optimized formulation was further assessed for surface morphology, drug release, gut permeation, antioxidant, and antimicrobial study. The cytotoxicity study was conducted on breast cancer cell lines (MDA-MB-231 and MCF7). The optimized formulation LL-PG-BLs-opt exhibited a VS of 252.24 ± 3.54 nm, PDI of 0.24, ZP of -32 mV with an encapsulation efficiency of 75.05 ± 0.65%. TEM study revealed spherical shape vesicles without aggregation. The DSC and XRD results revealed that LL was encapsulated into a PG-BLs matrix. LL-PG-BLs-opt exhibited a biphasic release pattern as well as significantly high permeation (p<.05) was achieved vis-a-vis LL-BL-opt and LL dispersion. The antioxidant activity result revealed 70.31 ± 3.22%, 83.76 ± 2.56%, and 96.87 ± 2.11% from LL-dispersion, LL-BLs-opt, and LL-PG-BLs-opt, respectively. Furthermore, LL-PG-BLs-opt exhibited high cell viability on both cell lines than LL-BL-opt and pure LL. The IC50 value was found to be 390 µM and 510 µM against MCF7 and MDA-MB-231 cancer cells, respectively. The antimicrobial activity result exhibited LL-PG-BLs-opt had better antibacterial activity than pure LL against Staphylococcus aureus and Escherichia coli. Hence, PG-BLs might provide an efficient nano oral delivery for the management of the different diseases.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia.,Health Sciences Research Unit, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| |
Collapse
|
48
|
Kazmi I, Al-Abbasi FA, Nadeem MS, Altayb HN, Alshehri S, Imam SS. Formulation, Optimization and Evaluation of Luteolin-Loaded Topical Nanoparticulate Delivery System for the Skin Cancer. Pharmaceutics 2021; 13:1749. [PMID: 34834164 PMCID: PMC8623391 DOI: 10.3390/pharmaceutics13111749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
In the present study, luteolin (LT)-loaded nanosized vesicles (LT-NVs) were prepared by a solvent evaporation-hydration method using phospholipid and edge activator. The formulation was optimized using three factors at a three-level Box-Behnken design. The formulated LT-NVs were prepared using the three independent variables phospholipid (A), edge activator (B) and sonication time (C). The effect of used variables was assessed on the vesicle size (Y1) and encapsulation efficiency (Y2). The selection of optimum composition (LT-NVopt) was based on the point prediction method of the software. The prepared LT-NVopt showed the particle size of 189.92 ± 3.25 nm with an encapsulation efficiency of 92.43 ± 4.12% with PDI and zeta potential value of 0.32 and -21 mV, respectively. The formulation LT-NVopt was further converted into Carbopol 934 gel (1% w/v) to enhance skin retention. LT-NVoptG was further characterized for viscosity, spreadability, drug content, drug release, drug permeation and antioxidant, antimicrobial and cytotoxicity assessment. The evaluation result revealed optimum pH, viscosity, spreadability and good drug content. There was enhanced LT release (60.81 ± 2.87%), as well as LT permeation (128.21 ± 3.56 µg/cm2/h), which was found in comparison to the pure LT. The antioxidant and antimicrobial study results revealed significantly (p ˂ 0.05) better antioxidant potential and antimicrobial activity against the tested organisms. Finally, the samples were evaluated for cytotoxicity assessment using skin cancer cell line and results revealed a significant difference in the viability % at the tested concentration. LT-NVoptG showed a significantly lower IC50 value than the pure LT. From the study, it can be concluded that the prepared LT-NVoptG was found to be an alternative to the synthetic drug as well as conventional delivery systems.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
49
|
Elmowafy M, Alhakamy NA, Shalaby K, Alshehri S, Ali HM, Mohammed EF, Alruwaili NK, Zafar A. Hybrid polylactic acid/Eudragit L100 nanoparticles: A promising system for enhancement of bioavailability and pharmacodynamic efficacy of luteolin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Gupta N, Yadav V, Patel R. A brief review of the essential role of nanovehicles for improving the therapeutic efficacy of pharmacological agents against tumours. Curr Drug Deliv 2021; 19:301-316. [PMID: 34391379 DOI: 10.2174/1567201818666210813144105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of death globally. There are several differences between cancer cells and normal cells. From all the therapies, chemotherapy is the most prominent therapy to treat cancer. However, the conventional drug delivery that is used to deliver poorly aqueous soluble chemotherapeutic agents has several obstacles such as whole-body distribution, rapid excretion, degradation before reaching the infected site, side effects, etc. Nanoformulation of these aqueous insoluble agents is the emerging delivery system for targeted and increasing solubility. Among all the three methods (physical, chemical and biological) chemical and biological methods are mostly used for the synthesis of nanovehicles (NVs) of different sizes, shapes and dimensions. A passive targeting delivery system in which NVs supports the pharmacological agents (drugs/genes) is a good way for resolving the obstacles with a conventional delivery system. It enhances the therapeutic efficacy of pharmacological agents (drugs/genes). These NVs have several specific characters like small size, large surface area to volume ratio, surface functionalization, etc. However, this delivery is not able to deliver site-specific delivery of drugs. An active targeting delivery system in which pharmacological agents are loaded on NVs to attack directly on cancer cells and tissues is a superior way for delivering the pharmacological agents compared to a passive targeting delivery system. Various targeting ligands have been investigated and applied for targeting the delivery of drugs such as sugar, vitamin, antibodies, protein, peptides, etc. These targeted ligand supports to guide the NVs accumulated directly on the cancer cells with a higher level of cellular internalization compared to passive targeting and conventional delivery system.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar- 382030, Gujarat, India
| | - Virendra Yadav
- Department of Microbiology, School of Life Sciences, Jaipur National University, Jaipur- 341503, Rajasthan, India
| | - Rakesh Patel
- Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana- 384012, Gujarat, India
| |
Collapse
|