1
|
Pradhan P, Rai VK, Halder J, Kar D, Prusty SK, Rout SK, Manoharadas S, Palanisamy S, Dash P, Das C, Kar B, Ghosh G, Rath G. Development and Characterization of Chitosan Nanoparticles Containing Quercetin-β-Cyclodextrin Inclusion Complex for Improved Solubility, Brain Targeting, and Neuroprotective Potential Against Epilepsy. AAPS PharmSciTech 2025; 26:124. [PMID: 40329128 DOI: 10.1208/s12249-025-03119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
The present study focuses on developing and optimising chitosan nanoparticles containing quercetin-β-cyclodextrin inclusion complex (QNPs) using the nanoprecipitation method to enhance quercetin's solubility, stability, and bioavailability. A comprehensive optimization study revealed that Batch B6, which utilized ethanol as the solvent, poloxamer 188 as the stabilizer, and chitosan at a concentration of 0.2% (w/v), exhibits optimal characteristics required for providing a stable colloidal system. The prepared nanoparticles were characterized for their physicochemical properties using FTIR, DSC, X-ray Diffraction, and SEM, which confirmed the successful inclusion of quercetin within the β-cyclodextrin complex and the reduction in crystallinity. In-vitro drug release studies demonstrated a controlled release profile for QNPs compared to free quercetin and the inclusion complex. Pharmacokinetic evaluation in mice via oral administration revealed a significant enhancement in systemic circulation and brain uptake, with QNPs showing a peak plasma concentration of 6.5 µg/mL at 2 h and a brain concentration of 3.5 µg/g at 4 h, indicating improved bioavailability and prolonged retention. In the Pentylenetetrazole and Kainic acid-induced epilepsy mice model, QNP significantly reduced seizure duration, frequency of seizures, and severity scores favoured the QNP formulation over free quercetin. QNPs also exhibited a significant neuroprotective effect by enhancing antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione reductase in brain tissue. Furthermore, Na⁺/K⁺-ATPase activity was significantly preserved in QNP-treated groups, indicating membrane stability and reduced neuronal excitability. These findings suggest that QNPs offer a promising strategy for enhancing quercetin's therapeutic efficacy in neurological disorders such as epilepsy.
Collapse
Affiliation(s)
- Priyabrata Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | - Durgamadhab Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | - Shakti Ketan Prusty
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | | | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451, Riyadh, Saudi Arabia
| | - Subramanian Palanisamy
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Priyanka Dash
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751030, Odisha, India.
| |
Collapse
|
2
|
Rai VK, Pradhan D, Halder J, Rajwar TK, Mahanty R, Saha I, Dash P, Dash C, Rout SK, Al-Tamimi J, Ebaid H, Manoharadas S, Kar B, Ghosh G, Rath G. Physicochemical Stimuli-Mediated Precipitation Approach for the Modulation of Rifampicin's Dissolution and Oral Bioavailability. AAPS PharmSciTech 2024; 25:189. [PMID: 39160328 DOI: 10.1208/s12249-024-02915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
The intricate process of protein binding orchestrates crucial drug interactions within the bloodstream, facilitating the formation of soluble complexes. This research endeavours to improve the dissolution and oral bioavailability of Rifampicin (RMP) by strategically manipulating drug-protein binding dynamics and the hydrophobic characteristics of human serum albumin (HSA). Various precipitation techniques leveraging methanol, ammonium sulfate, and heat treatment were meticulously employed to tailor the properties of colloidal albumin (HSA NPs). The resultant complexes underwent comprehensive characterization encompassing evaluations of hydrophobicity, size distribution, surface charge, and structural analyses through FTIR, TG-DSC, XRD, and morphological examinations. The findings revealed a significant binding affinity of 78.07 ± 6.6% with native albumin, aligning with prior research. Notably, the complex RMP-HSA NPs-M13, synthesized via the methanolic precipitation method, exhibited the most substantial complexation, achieving a remarkable 3.5-fold increase, followed by the ammonium sulfate (twofold) and heat treatment (1.07-fold) methods in comparison to native albumin binding. The gastric simulated media exhibited accelerated drug release kinetics, with maximal dissolution achieved within two hours, contrasting with the prolonged release observed under intestinal pH conditions. These findings translated into significant improvements in drug permeation, as evidenced by pharmacokinetic profiles demonstrating elevated Cmax, AUC, t1/2, and MRT values for RMP-HSA NPs-M13 compared to free RMP. In summary, this innovative approach underscores the potential of precipitation methods in engineering stable colloidal carrier systems tailored to enhance the oral bioavailability of poorly soluble drugs, offering a pragmatic and scalable alternative to conventional surfactants, polymers, or high-energy methods for complex formation and production.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ritu Mahanty
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Priyanka Dash
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Dash
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | | | - Jameel Al-Tamimi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Hossan Ebaid
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451, Riyadh, Saudi Arabia
| | - Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
3
|
Biswasroy P, Pradhan D, Pradhan DK, Ghosh G, Rath G. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2024; 25:57. [PMID: 38472545 DOI: 10.1208/s12249-024-02774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.
Collapse
Affiliation(s)
- Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College, and Hospital, Baripada, Odisha, India
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Rai VK, Kumar A, Pradhan D, Halder J, Rajwar TK, Sarangi MK, Dash P, Das C, Manoharadas S, Kar B, Ghosh G, Rath G. Spray-Dried Mucoadhesive Re-dispersible Gargle of Chlorhexidine for Improved Response Against Throat Infection: Formulation Development, In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2024; 25:31. [PMID: 38326518 DOI: 10.1208/s12249-024-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024] Open
Abstract
Drug delivery to the buccal mucosa is one of the most convenient ways to treat common mouth problems. Here, we propose a spray-dried re-dispersible mucoadhesive controlled release gargle formulation to improve the efficacy of chlorhexidine. The present investigation portrays an approach to get stable and free-flowing spray-dried porous aggregates of chlorhexidine-loaded sodium alginate nanoparticles. The ionic gelation technique aided with the chlorhexidine's positive surface charge-based crosslinking, followed by spray drying of the nanoparticle's dispersion in the presence of lactose- and leucine-yielded nano-aggregates with good flow properties and with a size range of about 120-350 nm. Provided with the high entrapment efficiency (87%), the particles showed sustained drug release behaviors over a duration of 10 h, where 87% of the released drug got permeated within 12 h. The antimicrobial activity of the prepared formulation was tested on S. aureus, provided with a higher zone of growth inhibition than the marketed formulation. Aided with an appropriate mucoadhesive strength, this product exhibited extended retention of nanoparticles in the throat region, as shown by in vivo imaging results. In conclusion, the technology, provided with high drug retention and extended effect, could be a potential candidate for treating several types of throat infections.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Amresh Kumar
- Department of Pharmaceutics, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Deepak Pradhan
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh, India
| | - Priyanka Dash
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451, Riyadh, Saudi Arabia
| | - Biswakanth Kar
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
5
|
Biswasroy P, Pradhan D, Sahu DK, Rai V, Halder J, Rajwar TK, Bhola RK, Kar B, Ghosh G, Rath G. Phytochemical investigation, structural elucidation, in silico study and anti-psoriatic activity of potent bioactive from Betula utilis. J Biomol Struct Dyn 2023; 41:8093-8108. [PMID: 36214696 DOI: 10.1080/07391102.2022.2130981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
Psoriasis is a chronic autoimmune pathological condition characterized by hyperactivation of proinflammatory cytokines (IL-6, TNF-α, IL-17, IL-23, etc.). Severe drug-associated toxicities like hepatotoxicity and nephrotoxicity (Methotrexate), teratogenicity (Tazarotene), hypercholesterolemia (Cyclosporine) and hypercalcemia (tacalcitol), are the forefront challenges that demand an alternative approach for the treatment of psoriasis. In the present study, a natural lead molecule 'Betulin' (BE, lup-20(29)-ene-3b,28-diol) was isolated from Betula utilis and subsequently, structure-based molecular docking was employed to identify the molecular target for psoriasis. The computational analysis reflects better affinity of BE towards pro-inflammatory cytokine as compared to standard drugs. Apart from this BE shows a greater affinity towards the overexpressed Glut-1 receptor in comparison to standard drug Metformin (Met). Based on the in silico screening the isolated lead compound was further processed for the evaluation of anti-psoriatic activity via imiquimod (IMQ 5%) induced psoriasis-like skin inflammation model. In vivo screening models were characterized by different parameters (psoriasis area and severity index (PASI) scores, macroscopically and behavioral evaluation, splenomegaly, cytokine levels and histological changes) and compared among the experimental groups. The experimental finding reflects comparable results of PASI score, i.e., 57.14% and 61.9% recovery of test BE-solution (180 mg/kg) and standard Betamethasone di-propionate ointment (BD-oint.0.5 mg/g), respectively. Focusing on other parameters, BE shows relative results such as an enhanced macroscopically with behavioral conditions, reducing the expression of proinflammatory cytokine as well as restoring histological changes with that of BD. These findings suggest that BE-isolated phytoconstituents from Betula utilis could be a potential agent and a step closer to psoriasis treatment. HIGHLIGHTPsoriasis is a multifaceted, immunologically mediated disease consequences production of high levels of proinflammatory mediators and overexpression of Glut-1 transporters that trigger keratinocyte proliferation and inflammatory cascades.A Himalayan silver birch, Betula utilis (Bhojpatra) contains many steroidal terpenes which are responsible for various pharmacological activities that could be exploited in drug development in psoriasis.The computational analysis of BE reflects a better affinity toward the proinflammatory cytokines with their target receptors and indicates a satisfactory range with a slight deviation from Jorgensen and Lipinski's rule and possesses a significant drug choice for psoriasis.Preclinical findings of BE-solution (BE-sol) give a positive response towards IMQ-induced psoriasis-like skin inflammation model.[Figure: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prativa Biswasroy
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Dipak Kumar Sahu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Vineet Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Rajesh Kumar Bhola
- Department of Pathology, Institute of Medical Science and Sum Hospital, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Ali A, Ali A, Warsi MH, Ahmad W, Amir M, Abdi SAH. Formulation of lemongrass oil ( Cymbopogon citratus)-loaded solid lipid nanoparticles: an in vitro assessment study. 3 Biotech 2023; 13:318. [PMID: 37641691 PMCID: PMC10460338 DOI: 10.1007/s13205-023-03726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Cymbopogon citratus (DC) stapf. (Gramineae) is a herb known worldwide as lemongrass. The oil obtained, i.e., lemongrass oil has emerged as one among the most relevant natural oils in the pharmaceutical industry owing to its extensive pharmacological and therapeutic benefits including antioxidant, antimicrobial, antiviral and anticancer properties. However, its usage in novel formulations is constrained because of its instability and volatility. To address these concerns, the present study aims to formulate lemongrass-loaded SLN (LGSLN) using hot water titration technique. In the Smix, Tween 80 was selected as a surfactant component, while ethanol was taken as a co-surfactant. Different ratios of Smix (1:1, 1:2, 1:3, 2:1 and 3:1) were utilized to formulate LG-loaded SLN. The results indicated the fact that the LGSLN formulation (abbreviated as LGSLN1), containing lipid phase 10% w/w (i.e., LG 3.33% and SA 6.67%), Tween 80 (20% w/w), ethanol (20% w/w) and distilled water (50% w/w), revealed suitable nanometric size (142.3 ± 5.96 nm) with a high zeta potential value (- 29.12 ± 1.7 mV) and a high entrapment efficiency (77.02 ± 8.12%). A rapid drug release (71.65 ± 5.33%) was observed for LGSLN1 in a time span of 24 h. Additionally, the highest values for steady-state flux (Jss; 0.6133 ± 0.0361 mg/cm2/h), permeability coefficient (Kp; 0.4573 ± 0.0141 (cm/h) × 102) and enhancement ratio (Er; 13.50) was also conferred by LGSLN1. Based on in vitro study results, the developed SLN appeared as a potential carrier for enhanced topical administration of lemongrass oil. The observed results also indicated the fact that the phyto-cosmeceutical prospective of the nanolipidic carrier for topical administration of lemongrass oil utilizing pharmaceutically acceptable components can be explored further for widespread clinical applicability. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03726-5.
Collapse
Affiliation(s)
- Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, 34222 Dammam, Saudi Arabia
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, 34222 Dammam, Saudi Arabia
| | | |
Collapse
|
7
|
Sayanam RRA, Nachiappan K, Khan JM, Ahmad A, Vijayakumar N. Antibacterial, antifungal, and antioxidant competence of Cardiospermum halicacabum based nanoemulsion and characterized their physicochemical properties. 3 Biotech 2023; 13:284. [PMID: 37520341 PMCID: PMC10374496 DOI: 10.1007/s13205-023-03703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
This research was designed to evaluate the pharmaceutical potentials of various proportions of nanoemulsions, Cardiospermum halicacabum Nanoemulsion A and Cardiospermum halicacabum Nanoemulsion B (CHE-NE-A & CHE-NE-B) prepared from the hydroalcoholic extract of Cardiospermum halicacabum through in vitro approach, and their physicochemical properties were characterized using standard scientific analytical techniques. The physicochemical and morphological properties of CHE-NE-A and CHE-NE-B were characterized by FTIR, SEM, TEM, zeta potential, and scattering light intensity analyses. The results revealed that the size, shape, and exterior conditions of nano-droplets of the CHE-NE-A nanoemulsion were suitable as a drug carrier. The reports obtained from in vitro drug releasing potential analysis support this as well. CHE-NE-A nanoemulsion constantly removes the drug from the dialysis bag than CHE-NE-B. Moreover, the CHE-NE-A showed considerable dose-dependent antioxidant activity on DPPH, ABTS, and FRAP free radicals. CHE-NE-A and CHE-NE-B were tested for their antibacterial activity with various bacterial strains. The results demonstrated that the CHE-NE-A nanoemulsion showed remarkable antibacterial activity (zone of inhibition) against test bacterial pathogens than CHE-NE-B. The antibacterial activity of CHE-NE-A at a concentration of 200 µg mL-1was in the following order, P. aeruginosa > S. aureus > S. typhimurium > S. pneumoniae > E. coli. Furthermore, CHE-NE-A has the lowest MIC values against these test bacterial pathogens than CHE-NE-B. Moreover, the CHE-NE-A also demonstrated good antifungal activity against the test fungal pathogens such as Cryptococcus neoformans, Aspergillus niger, Candida pneumonia, and Penicillium expansum than CHE-NE-B. These results strongly suggest that the CHE-NE-A nanoemulsion possesses considerable pharmaceutical potential. Interestingly, the physicochemical properties also rope that the CHE-NE-A nanoemulsion may be considered a drug carrier and useful for drug formulation.
Collapse
Affiliation(s)
- Rajeswari Ranga Anantha Sayanam
- Department of Biochemistry, School of Allied Health Sciences, VMKVMCH Campus, Vinayaka Mission’s Research Foundation (DU), Salem, Tamil Nadu 636308 India
| | | | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Anis Ahmad
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, FL USA
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002 India
| |
Collapse
|
8
|
Jyothi VGS, Veerabomma H, Kumar R, Khatri DK, Singh SB, Madan J. Meloxicam emulgel potently suppressed cartilage degradation in knee osteoarthritis: Optimization, formulation, industrial scalability and pharmacodynamic analysis. Colloids Surf B Biointerfaces 2023; 228:113399. [PMID: 37348266 DOI: 10.1016/j.colsurfb.2023.113399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Meloxicam (MLX) is prescribed for the management of pain and inflammation allied with osteoarthritis (OA). However, MLX causes intestinal damage in long term administration. Hence, meloxicam loaded emulgel (MLX-emulgel) was optimized, formulated and examined under stringent parameters in monosodium-iodoacetate (MIA) induced knee OA in Wistar rats. METHODS AND RESULTS Nanoemulsion of MLX was fabricated by ultrasonication and microfluidization method with a droplet size of 66.81 ± 5.31-nm and zeta potential of -24.6 ± 0.72-mV. Further, MLX nanoemulsion was optimized with centrifugation, heating-cooling cycles and transmittance parameters in addition to scale-up feasibility with microfluidizer. Post optimization, MLX-nanoemulsion was tailored as emulgel with Carbopol Ultrez 10 NF and assessed for pH, rheology, textural properties, assay and stability features. The in-vitro release study revealed the Korsmeyer-Peppas release kinetics and ex-vivo skin permeation was improved by 6.71-folds. The skin distribution of MLX-emulgel evinced the transfollicular mode of permeation. In-vivo study indicated the protective action of MLX-emulegl expressed in terms of inflammatory cyctokines level, X-ray analysis of knee joints of rats, histopathology and OARSI (Osteoarthritis Research Society International) scoring. MLX-emulgel treated group displayed lower (P < 0.001) level of COX-2 intensity as compared to positive control group. However, it was comparable (P > 0.05) to the normal control group, MLX oral dispersion, i.v. solution and etoricoxib gel groups. MLX-emulgel showcased an alternative to the long term usage of analgesics for relieving the symptoms of knee OA. CONCLUSION MLX-emulgel may be a potential candidate for translating in to a clinically viable dosage form in the management of knee OA.
Collapse
Affiliation(s)
- Vaskuri Gs Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Harithasree Veerabomma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Enhanced Wound Healing Potential of Spirulina platensis Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model. Mar Drugs 2023; 21:md21030149. [PMID: 36976198 PMCID: PMC10051127 DOI: 10.3390/md21030149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Excisional wounds are considered one of the most common physical injuries. This study aims to test the effect of a nanophytosomal formulation loaded with a dried hydroalcoholic extract of S. platensis on promoting excisional wound healing. The Spirulina platensis nanophytosomal formulation (SPNP) containing 100 mg PC and 50 mg CH exhibited optimum physicochemical characteristics regarding particle size (598.40 ± 9.68 nm), zeta potential (−19.8 ± 0.49 mV), entrapment efficiency (62.76 ± 1.75%), and Q6h (74.00 ± 1.90%). It was selected to prepare an HPMC gel (SPNP-gel). Through metabolomic profiling of the algal extract, thirteen compounds were identified. Molecular docking of the identified compounds on the active site of the HMGB-1 protein revealed that 12,13-DiHome had the highest docking score of −7.130 kcal/mol. SPNP-gel showed higher wound closure potential and enhanced histopathological alterations as compared to standard (MEBO® ointment) and S. platensis gel in wounded Sprague-Dawley rats. Collectively, NPS promoted the wound healing process by enhancing the autophagy process (LC3B/Beclin-1) and the NRF-2/HO-1antioxidant pathway and halting the inflammatory (TNF-, NF-κB, TlR-4 and VEGF), apoptotic processes (AIF, Caspase-3), and the downregulation of HGMB-1 protein expression. The present study’s findings suggest that the topical application of SPNP-gel possesses a potential therapeutic effect in excisional wound healing, chiefly by downregulating HGMB-1 protein expression.
Collapse
|
10
|
Improving hygroscopic stability of palmatine by replacing Clˉ and preparing single crystal of palmatine-salicylic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Rheological and Structural Study of Solid Lipid Microstructures Stabilized within a Lamellar Gel Network. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09642-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Anicescu MC, Dinu-Pîrvu CE, Talianu MT, Ghica MV, Anuța V, Prisada RM, Nicoară AC, Popa L. Insights from a Box-Behnken Optimization Study of Microemulsions with Salicylic Acid for Acne Therapy. Pharmaceutics 2022; 14:174. [PMID: 35057071 PMCID: PMC8778434 DOI: 10.3390/pharmaceutics14010174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022] Open
Abstract
The present study brings to attention a method to develop salicylic acid-based oil in water (O/W) microemulsions using a tensioactive system based on Tween 80, lecithin, and propylene glycol (PG), enriched with a vegetable oat oil phase and hyaluronic acid. The systems were physically characterized and the Quality by design approach was applied to optimize the attributes of microemulsions using Box-Behnken modeling, combined with response surface methodology. For this purpose, a 33 fractional factorial design was selected. The effect of independent variables namely X1: Tween 80/PG (%), X2: Lecithin (%), X3: Oil phase (%) was analyzed considering their impact upon the internal structure and evaluated parameters chosen as dependent factors: viscosity, mean droplet size, and work of adhesion. A high viscosity, a low droplet size, an adequate wettability-with a reduced mechanical work-and clarity were considered as desirable for the optimal systems. It was found that the optimal microemulsion which complied with the established conditions was based on: Tween 80/PG 40%, lecithin 0.3%, oat oil 2%, salicylic acid 0.5%, hyaluronic acid 1%, and water 56.2%. The response surface methodology was considered an appropriate tool to explain the impact of formulation factors on the physical properties of microemulsions, offering a complex pattern in the assessment of stability and quality attributes for the optimized formulation.
Collapse
Affiliation(s)
- Maria-Cristina Anicescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Răzvan-Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Anca Cecilia Nicoară
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| |
Collapse
|
13
|
Boran F. The influence of freeze-thawing conditions on swelling and long-term stability properties of poly(vinyl alcohol) hydrogels for controlled drug release. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03902-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Development and Evaluation of In Situ Gel of Silver Sulfadiazine for Improved Therapeutic Efficacy Against Infectious Burn Wound. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Li Y, Sun Y, Wei S, Zhang L, Zong S. Development and evaluation of tofacitinib transdermal system for the treatment of rheumatoid arthritis in rats. Drug Dev Ind Pharm 2021; 47:878-886. [PMID: 33886401 DOI: 10.1080/03639045.2021.1916521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Tofacitinib tablet is approved for the treatment of rheumatoid arthritis (RA). However, tofacitinib (Tfc) faces extensive first-pass metabolism following oral administration. AIM To develop transdermal systems of Tfc and evaluate their efficacies against RA using Freund's Complete Adjuvant immunized arthritis rat model. METHODS These systems were prepared by solvent casting method and evaluated for texture, needle strength, skin penetrability, in vitro drug release, skin permeation, stability, and in vivo anti-arthritic activity. RESULTS AND DISCUSSION Transdermal patch (TS) showed smooth texture, good mechanical strength, slow-release, and slow permeation through the skin. Microneedle array (MNS) showed good needle strength, with required skin penetrability. MNS and TS showed 95% and 24% drug release, and 82% and 12% drug permeation, respectively in 4 h. The developed systems were found to be stable for 90 days at very stressful conditions, that is, 40 ± 2 °C and 75 ± 5% RH. MNS and TS both reduced arthritic scores (at p < 0.01 and p < 0.001 level, respectively) and the level of inflammatory cytokines (at p < 0.05 and p < 0.01 level, respectively) significantly as compared to that of the drug solution (DS). MNS and TS were found to be effective in restoring histological alterations (annum, synovial hyperplasia, synovial constriction, and cartilage and articular erosions) toward normal. CONCLUSION TS and MNS were found to be stable and effective for the treatment of arthritis and hence considered a good alternative for the treatment of RA with better clinical pertinence.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| | - Yonghua Sun
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| | - Shitong Wei
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| | - Luyang Zhang
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| | - Shihua Zong
- Department of Rheumatology and Immunology, Yantaishan Hospital, Yantai, China
| |
Collapse
|
16
|
Design, Preparation, and Characterization of Effective Dermal and Transdermal Lipid Nanoparticles: A Review. COSMETICS 2021. [DOI: 10.3390/cosmetics8020039] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Limited permeability through the stratum corneum (SC) is a major obstacle for numerous skin care products. One promising approach is to use lipid nanoparticles as they not only facilitate penetration across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on solid lipid nanoparticles (SLNs), nanostructured lipid nanocarriers (NLCs), and nanoemulsions (NEs) developed for topical and transdermal delivery of active compounds. A special emphasis in this review is placed on composition, preparation, modifications, structure and characterization, mechanism of penetration, and recent application of these nanoparticles. The presented data demonstrate the potential of these nanoparticles for dermal and transdermal delivery.
Collapse
|
17
|
Squalene integrated NLC based gel of tamoxifen citrate for efficient treatment of psoriasis: A preclinical investigation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Kang RK, Mishr N, Rai VK. Guar Gum Micro-particles for Targeted Co-delivery of Doxorubicin and Metformin HCL for Improved Specificity and Efficacy Against Colon Cancer: In Vitro and In Vivo Studies. AAPS PharmSciTech 2020; 21:48. [PMID: 31900731 DOI: 10.1208/s12249-019-1589-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
Doxorubicin and Metformin HCL is a known chemotherapeutic combination that wipes out tumors and prevents their recurrence. However, limited site specificity confines its application. Here we report Doxorubicin and Metformin HCL-loaded guar gum micro-particles prepared by emulsification cum-solidification method. Developed micro-particles were characterized as spherical shape particles with smooth surface and micro size diameter. Encapsulation of drugs in combination was confirmed by their characteristic functional groups (FT-IR), change in phase transition temperature (DSC) and X-ray diffraction pattern (XRD). Particles were observed to be stable at 25 and 5°C. The in vitro Doxorubicin and Metformin HCL release study in simulated gastric (SGF), intestinal (SIF) and colonic fluid (SCF) confirms restricted release in SGF (9.3 and 9.6%, respectively, in 2 h) and SIF (10.8 and 14.7%, respectively, in the next 3 h) and highest release in SCF (about 68 and 73.3%, respectively) in colon. Developed micro-particles showed 78% recovery in tumor volume and considerable improvement in histological changes. X-ray images confirmed good target ability of micro-particles to colon. In conclusion, the specially designed, stable micro-particles are able to target drug combination to colon and improve efficacy by ensuring maximum drug release in colon as compared with Doxorubicin and Metformin HCL combination.
Collapse
|
19
|
Cortés H, Del Prado-Audelo ML, Urbán-Morlán Z, Alcalá-Alcalá S, González-Torres M, Reyes-Hernández OD, González-Del Carmen M, Leyva-Gómez G. Pharmacological treatments for cutaneous manifestations of inherited ichthyoses. Arch Dermatol Res 2019; 312:237-248. [DOI: 10.1007/s00403-019-01994-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
|