1
|
Huang X, Feng L, Lu X, Yang F, Liu S, Wei X, Huang J, Wang Y, Huang D, Huang T. Development and optimization of a self micro-emulsifying drug delivery system (SMEDDS) for co-administration of sorafenib and curcumin. Drug Deliv Transl Res 2025; 15:1609-1625. [PMID: 39207633 DOI: 10.1007/s13346-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
In this study, we developed a novel co-administration of curcumin and sorafenib using a Self micro-emulsifying Drug Delivery System (SMEDDS) called Sorafenib-Curcumin Self micro-emulsifying Drug Delivery System (SOR-CUR-SMEDDS). The formulation was optimized using star point design-response surface methodology, and in vitro cellular experiments were conducted to evaluate the delivery ratio and anti-tumor efficacy of the curcumin and sorafenib combination. The SOR-CUR-SMEDDS exhibited a small size distribution of 13.48 ± 0.61 nm, low polydispersity index (PDI) of 0.228 ± 0.05, and negative zeta potential (ZP) of - 12.4 mV. The half maximal inhibitory concentration (IC50) of the SOR-CUR-SMEDDS was 3-fold lower for curcumin and 5-fold lower for sorafenib against HepG2 cells (human hepatocellular carcinoma cells). Transmission electron microscopy (TEM) and particle size detection confirmed that the SOR-CUR-SMEDDS droplets were uniformly round and within the nano-emulsion particle size range of 10-20 nm. The SMEDDS were characterized then studied for drug release in vitro via dialysis membranes. Curcumin was released more completely in the combined delivery system, showing the largest in vitro drug release (79.20%) within 7 days in the medium, while the cumulative release rate of sorafenib in the release medium was low, reaching 58.96% on the 7 day. In vitro pharmacokinetic study, it demonstrated a significant increase in oral bioavailability of sorafenib (1239.88-fold) and curcumin (3.64-fold) when administered in the SMEDDS. These findings suggest that the SMEDDS formulation can greatly enhance drug solubility, improve drug absorption and prolong circulation in vivo, leading to increased oral bioavailability of sorafenib and curcumin.
Collapse
Affiliation(s)
- Xingzhen Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China.
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, Guangxi, 530000, PR China.
| | - Lizhen Feng
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Xuefang Lu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Fan Yang
- Hechi Food and Drug Inspection Institute, Hechi, Guangxi, 547000, PR China
| | - Shengjun Liu
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Xueqian Wei
- Hechi Food and Drug Inspection Institute, Hechi, Guangxi, 547000, PR China
| | - Jinping Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Yao Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Dongyi Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| | - Tingting Huang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China
| |
Collapse
|
2
|
Ashin ZF, Sadeghi-Mohammadi S, Vaezi Z, Najafi F, AdibAmini S, Sadeghizadeh M, Naderi-Manesh H. Synergistic effect of curcumin and tamoxifen loaded in pH-responsive gemini surfactant nanoparticles on breast cancer cells. BMC Complement Med Ther 2024; 24:337. [PMID: 39304876 DOI: 10.1186/s12906-024-04631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Drug combination therapy is preferred over monotherapy in clinical research to improve therapeutic effects. Developing a new nanodelivery system for cancer drugs can reduce side effects and provide several advantages, including matched pharmacokinetics and potential synergistic activity. This study aimed to examine and determine the efficiency of the gemini surfactants (GSs) as a pH-sensitive polymeric carrier and cell-penetrating agent in cancer cells to achieve dual drug delivery and synergistic effects of curcumin (Cur) combined with tamoxifen citrate (TMX) in the treatment of MCF-7 and MDA-MB-231 human BC cell lines. METHODS The synthesized NPs were self-assembled using a modified nanoprecipitation method. The functional groups and crystalline form of the nanoformulation were examined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic light scattering (DLS) used to assess zeta potential and particle size, and the morphological analysis determined by transmission electron microscopy (TEM). The anticancer effect was evaluated through an in vitro cytotoxicity MTT assay, flow cytometry analysis, and apoptosis analysis performed for mechanism investigation. RESULTS The tailored NPs were developed with a size of 252.3 ± 24.6 nm and zeta potential of 18.2 ± 4.4 mV capable of crossing the membrane of cancer cells. The drug loading and release efficacy assessment showed that the loading of TMX and Cur were 93.84% ± 1.95% and 90.18% ± 0.56%, respectively. In addition, the drug release was more controlled and slower than the free state. Polymeric nanocarriers improved controlled drug release 72.19 ± 2.72% of Tmx and 55.50 ± 2.86% of Cur were released from the Tmx-Cur-Gs NPs after 72 h at pH = 5.5. This confirms the positive effect of polymeric nanocarriers on the controlled drug release mechanism. moreover, the toxicity test showed that combination-drug delivery was much more greater than single-drug delivery in MCF-7 and MDA-MB-231 cell lines. Cellular imaging showed excellent internalization of TMX-Cur-GS NPs in both MCF-7 and MDA-MB-231 cells and synergistic anticancer effects, with combination indices of 0.561 and 0.353, respectively. CONCLUSION The combined drug delivery system had a greater toxic effect on cell lines than single-drug delivery. The synergistic effect of TMX and Cur with decreasing inhibitory concentrations could be a more promising system for BC-targeted therapy using GS NPs.
Collapse
Affiliation(s)
- Zeinab Fotouhi Ashin
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sanam Sadeghi-Mohammadi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | | | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
- Department of Bioactive Compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Alshangiti DM, Ghobashy MM, Alqahtani HA, El-Damhougy TK, Madani M. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review. RSC Adv 2023; 13:32223-32265. [PMID: 37928851 PMCID: PMC10620648 DOI: 10.1039/d3ra05487j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.
Collapse
Affiliation(s)
- Dalal Mohamed Alshangiti
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29, Nasr City Cairo Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box 11754, Yousef Abbas Str., Nasr City Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| |
Collapse
|
4
|
Abstract
Curcumin is a natural component extracted from the rhizomes of turmeric (Curcuma longa), a natural plat with known medicinal uses for more than 4000 years. Most turmeric therapeutic effects are attributed to curcumin, a yellow-coloured extract. Curcumin has received considerable attention due to its biological activities, such as its use in arthritis, liver and neurodegenerative diseases, obesity, and several types of cancers. Most of these curcumin therapeutic activities are related to its antioxidant and anti-inflammatory effects. However, the clinical application of curcumin is hampered by some limitations that prevent its extensive clinical application. Curcumin high hydrophobicity of curcumin and limited water solubility are among the most important limitations. This poor solubility will result in low bioavailability due to its poor absorption into plasma and the target tissues. Curcumin also has rapid metabolism, which will significantly lower its bioavailability and shorten its half-life. Moreover, curcumin is photosensitive with limited chemical stability during manufacturing and storage. These limitations have been overcome by applying nanotechnology using several types of nanoparticles (NPs). This includes using NPs such as liposomes, niosomes, gold nanoparticles, and many others to improve the curcumin solubility and bioavailability. This review focuses on the different types of NPs investigated and the outcomes generated by their use in the most recent studies in this field. To follow the latest advances in the field of site-specific drug delivery using nanomaterials, an electronic databases search was conducted using PubMed, Google scholar and Scopus using the following keywords: lipid-based nanoparticles, curcumin delivery, niosomes, and liposomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Manal Alsaadi
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| |
Collapse
|
5
|
Kim CH, Kim BD, Lee TH, Kim HK, Lyu MJ, Yoon YI, Goo YT, Kang MJ, Lee S, Choi YW. Synergistic co-administration of docetaxel and curcumin to chemoresistant cancer cells using PEGylated and RIPL peptide-conjugated nanostructured lipid carriers. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A targeted co-administration system of docetaxel (DTX) and curcumin (CUR) using a PEG-modified RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated nanostructured lipid carrier (P/R-NLC) was constructed to exert synergistic anticancer effects against chemoresistant breast cancer.
Results
DTX- or CUR-loaded NLCs and P/R-NLCs were prepared using the solvent emulsification–evaporation method. NLCs showed homogeneous spherical morphology with nano-sized dispersion (< 210 nm) with zeta potential varying from − 16.4 to − 19.9 mV. DTX or CUR was successfully encapsulated in the NLCs: encapsulation efficiency (> 95%); drug loading (8 − 18%). All NLC formulations were stable for 4 weeks under the storage conditions at 4 °C. Drug release was diffusion-controlled, revealing the best fit to the Higuchi equation. DTX- or CUR-loaded formulations showed dose-dependent cytotoxicity. The DTX/CUR combination (1:3 w/w) in P/R-NLC formulations exhibited the strongest synergism in both MCF7 and MCF7/ADR cells with combination index values of 0.286 and 0.130, respectively. Co-treatment with DTX- or CUR-P/R-NLCs increased apoptosis in both cell lines exhibited the superior synergistic inhibitory effect on MCF7/ADR three-dimensional spheroids. Finally, in OVCAR3-xenografted mouse models, co-treatment with DTX- or CUR-loaded P/R-NLCs significantly suppressed tumor growth compared to the other treatment groups.
Conclusions
Co-administration of DTX/CUR (1:3 w/w) using P/R-NLCs induced a synergistic effect against chemoresistant cancer cells.
Graphical Abstract
Collapse
|