1
|
Prajapati M, Harwansh RK, Rahman MA, Deshmukh R. Implementation of the Box-Behnken Design in the Development and Optimization of Methotrexate-Loaded Microsponges for Colon Cancer. Assay Drug Dev Technol 2025. [PMID: 39841494 DOI: 10.1089/adt.2024.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Methotrexate (MTX) is an effective anticancer agent with limited water solubility, resulting in lower absorption in the gastrointestinal tract when administered orally. The present aim of the study is to construct sustained-release formulation of MTX-loaded microsponges with enhanced intestinal absorption and bioavailability using a quasi-emulsion solvent diffusion method. The Box-Behnken design (BBD) was adopted for this purpose. Particle size, encapsulation efficiency (EE), Q 2 h % (% drug release in 2 h), and Q 24 h % (% drug release in 24 h) were used as dependent factors, and polyvinyl alcohol, solvent, and stirring speed were used as independent factors. The prepared microsponges were characterized to assess their particle size and encapsulation efficacy (%). Attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry were used to verify the compatibility study. Moreover, the cytotoxicity study was conducted on the HT-29 cell line. The optimized formulation exhibited a % encapsulation efficacy of 87.191% and a particle size of 2.176 µm. Furthermore, the optimized formulation demonstrated sustained drug release (85.71%) in Simulated Gastric Fluid (SGF) fluid at different pHs 1.2, 6.8, and 7.4. The stability study of the optimized formulation revealed good stability in terms of drug release, % encapsulation efficacy, and particle size. The results of the optimized formulation demonstrated that the viability of HT-29 colon cancer (CC) cells was dose-dependently decreased by MTX-loaded microsponges. BBD was successfully employed for the development and optimization of MTX microsponges filled in Eudragit S-100-coated hard gelatin capsule, depicting their potential release of MTX from microsponges capsule only at the colonic region and found to be potential carrier system for CC.
Collapse
Affiliation(s)
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
2
|
Barik P, Bhaisal PR, Singh S. Multifunctional Drug Delivery System: Nanosponges. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:319-335. [PMID: 37916495 DOI: 10.2174/0118722105246668231012113121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 11/03/2023]
Abstract
In recent years, nanotechnology has been the focus of study for the cure of different diseases, among which nanosponge delivery system is one of a kind. Nano sponges are tiny, highly porous, three-dimensional nanostructures with a size range of 250 nm-1 μm in an amorphous or crystalline structure. Nanosponges usually act as an excipient or carrier of a drug in the different delivery systems. The type of polymers and cross-linkers, along with their concentration ratio, causes variation in nanosponges's dimension and encapsulation efficiency. Nanosponges have gained prominence in recent times due to their distinct ability to encapsulate both hydrophilic and lipophilic drugs within their internal cavity, thereby improving the solubility of drugs that have low water solubility. Virus-like size helps the nanosponges to circulate within the body without getting eliminated by the immune system until they stick to the targeted part of the body, which makes it the perfect candidate for a targeted drug delivery system and controlled delivery system as well because of its slow drug release property for a more extended period. Cyclodextrin-based nanosponges are the best choice for anticancer drug delivery as their small virus-like diameter helps them in passive targeting by enhancing the enhanced permeability and retention effect, allowing the anticancer drug to stay inside the tumour cell to show more significant therapeutic action on cancer, while for active targeting to the cancerous cell, nanosponges are attached with a ligand on it for receptor binding purpose. It can be used for drug delivery in many major diseases like brain-related diseases, diabetes, cancer, fungal, hypertension, etc., in different dosage forms, like oral, topical, hydrogel, parenteral, etc. and also provide valuable information of this novel drug delivery system in the field of patent area.
Collapse
Affiliation(s)
- Piyali Barik
- Chandigarh College of Pharmacy Landran, Kharar-Banur Highway Sector 112, Greater Mohali, Punjab, 140307, India
| | - Pooja Rani Bhaisal
- Chandigarh College of Pharmacy Landran, Kharar-Banur Highway Sector 112, Greater Mohali, Punjab, 140307, India
| | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P, 281406, India
| |
Collapse
|
3
|
Harwansh RK, Bhati H, Deshmukh R, Rahman MA. Preparation, Characterization, and In Vitro Evaluation of Chlorogenic Acid Loaded Hydrogel Beads for the Management of Ulcerative Colitis. Assay Drug Dev Technol 2025; 23:29-43. [PMID: 39630502 DOI: 10.1089/adt.2024.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory colon disorder. Several modern medicines have been used for UC treatment but are associated with side effects. Hence, herbal medicine-inspired lead molecules are promising for managing UC. Chlorogenic acid (CGA), an herbal bioactive, has been reported for anti-inflammatory, anticancer, antioxidant, and immunomodulatory activity. The current study aimed to develop enteric-coated mucoadhesive beads of CGA for colon targeting. CGA-loaded beads were prepared using chitosan and carrageenan as polymers through an ionic gelation technique. Furthermore, beads were coated with Eudragit S-100. The formulations were characterized by particle size analyzer, ultraviolet (UV)-spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and in vitro drug release study. The optimized formulation (CGA-F2) showed particle size (440.6 ± 6.1 μm), zeta potential (-31.12 ± 2.16 mV), entrapment efficiency (83.56 ± 5.46), %yield (86.87 ± 4.19), and drug loading (1.14 ± 0.09). SEM indicated that the morphologies of CGA-F2 were spherical and ellipsoidal. The FTIR study confirmed the compatibility of the drug with polymers used in the formulations. CGA-F2 exhibited mucoadhesive efficiency (94.33 ± 2.1%) and swelling index (0.98 ± 0.03) at simulated colonic fluid (SCF) pH 7.4 (***p < 0.001) significantly. In an in vitro drug release study, CGA-F2 (95.07 ± 3.85%) showed a sustained drug release profile in SCF (pH 7.4) at 37 ± 0.5°C for 24 h. Optimized formulation exhibited drug release in a sustained manner for 24 h, which may be due to the effect of mucoadhesive and enteric coating polymer. Hence, CGA-loaded beads would be promising for treating the UC.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
5
|
Park J, Han H, Ahn JK. Development of Targeted Drug Delivery System for the Treatment of SARS-CoV-2 Using Aptamer-Conjugated Gold Nanoparticles. Pharmaceutics 2024; 16:1288. [PMID: 39458617 PMCID: PMC11510760 DOI: 10.3390/pharmaceutics16101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The SARS-CoV-2 pandemic has highlighted niclosamide (NIC) as a promising treatment for COVID-19. However, its clinical application is limited due to its poor water solubility, resulting in low bioavailability. Methods: To address this issue, we developed a AuNP-HA-NIC system, which combines gold nanoparticles with hyaluronic acid to enhance drug delivery. Our comprehensive characterization of the system revealed that hyaluronic acid with specific molecular weights, particularly those exposed to electron-beam irradiation between 2 and 20 kGy, produced the most stable nanoparticles for efficient drug loading and delivery. Results: Additionally, the AuNP-HA-NIC system exhibits a significant sensitivity to pH changes, which is a critical feature for targeted drug release. Under acidic conditions mimicking the stomach and small intestine, minimal drug release was observed, indicating the effective prevention of premature drug release in the gastrointestinal tract. Furthermore, the integration of a targeting aptamer established specific binding abilities towards the SARS-CoV-2 spike protein, distinguishing it from other coronaviruses. Conclusions: As research progresses, and with further in vivo testing and optimization, the AuNP-HA-NIC-aptamer system holds great promise as a game-changer in the field of antiviral therapeutics, particularly in the battle against COVID-19.
Collapse
Affiliation(s)
- Junghun Park
- Department of Biologics, Gachon University, Incheon 21936, Republic of Korea;
| | - Hyogu Han
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea;
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jun Ki Ahn
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea;
| |
Collapse
|
6
|
Amante C, Neagu M, Falcone G, Russo P, Aquino RP, Nicolais L, Del Gaudio P. Hyaluronate loaded advanced wound dressing in form of in situ forming hydrogel powders: Formulation, characterization, and therapeutic potential. Int J Biol Macromol 2024; 274:133192. [PMID: 38914397 DOI: 10.1016/j.ijbiomac.2024.133192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
In this paper, a blend composed of alginate-pectin-chitosan loaded with sodium hyaluronate in the form of an in situ forming dressing was successfully developed for wound repair applications. This complex polymeric blend has been efficiently used to encapsulate hyaluronate, forming an adhesive, flexible, and non-occlusive hydrogel able to uptake to 15 times its weight in wound fluid, and being removed without trauma from the wound site. Calorimetric and FT-IR studies confirmed chemical interactions between hyaluronate and polysaccharides blend, primarily related to the formation of a polyelectrolytic complex between hyaluronate and chitosan. In vivo wound healing assays on murine models highlighted the ability of the loaded hydrogels to significantly accelerate wound healing compared to a hyaluronic-loaded ointment. This was evident through complete wound closure in <10 days, accompanied by fully restored epidermal functionality and no indications of the site of excision or treatment. Therefore, all these results suggest that hyaluronate-loaded powders could be a very promising conformable dressing in several wound healing applications where exudate is present.
Collapse
Affiliation(s)
- Chiara Amante
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Giovanni Falcone
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| | - Rita P Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| | - Luigi Nicolais
- Materias s.r.l., University of Naples "Federico II" Campus San Giovanni a Teduccio, Naples, Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
7
|
Pedrosa LDF, Fabi JP. Dietary fiber as a wide pillar of colorectal cancer prevention and adjuvant therapy. Crit Rev Food Sci Nutr 2024; 64:6177-6197. [PMID: 36606552 DOI: 10.1080/10408398.2022.2164245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer is the third most incident and second most lethal type of cancer worldwide. Lifestyle and dietary patterns are the key factors for higher disease development risk. The dietary fiber intake from fruits and vegetables, mainly formed by food hydrocolloids, can help to lower the incidence of this type of neoplasia. Different food polysaccharides have applications in anti-tumoral therapy, such as coadjuvant to mainstream drugs, carriage-like properties, or direct influence on tumoral cells. Some classes include inulin, β-glucans, pectins, fucoidans, alginates, mucilages, and gums. Therefore, it is fundamental to discuss colorectal cancer mechanisms and the roles played by different polysaccharides in intestinal health. Genetic, environmental, and immunological modulation of mutated pathways regarding colorectal cancer has been explored before. Microbial diversity, byproduct formation (primarily short-chain fatty acids), inflammatory profile control, and tumoral mutated pathways regulation are thoroughly explored mechanisms by which dietary fiber sources influence a healthy gut ambiance.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
8
|
Harwansh RK, Chauhan S, Deshmukh R, Mazumder R. Recent Insight into Herbal Bioactives-based Novel Approaches for Chronic Intestinal Inflammatory Disorders Therapy. Curr Pharm Biotechnol 2024; 25:1835-1857. [PMID: 38310453 DOI: 10.2174/0113892010282432231222060355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 02/05/2024]
Abstract
Inflammatory bowel disease (IBD) is a life-threatening complex disease. It causes chronic intestinal inflammation in GIT. IBD significantly affects people's lifestyles and carries a high risk of colon cancer. IBD involves the rectum, ileum, and colon, with clinical manifestations of bloody stools, weight loss, diarrhea, and abdominal pain. The prevalence of inflammatory disease is increasing dramatically worldwide. Over 16 million people are affected annually in India, with an economic burden of $6.8- $8.8 billion for treatment. Modern medicine can manage IBD as immunosuppressive agents, corticosteroids, tumor necrosis factor antagonists, integrin blockers, and amino-salicylates. However, these approaches are allied with limitations such as limited efficacy, drug resistance, undesired side effects, and overall cost, which cannot be ignored. Hence, the herbal bioactives derived from various plant resources can be employed in managing IBD. Science Direct, PubMed, Google, and Scopus databases have been searched for conclusively relevant herbal plant-based anti-inflammatory agent compositions. Studies were screened through analysis of previously published review articles. Eminent herbal bioactives, namely curcumin, resveratrol, ellagic acid, silybin, catechin, kaempferol, icariin, glycyrrhizin acid, berberine, quercetin, rutin, and thymol are reported to be effective against IBD. Herbal leads are promising treatment options for IBD; they have been shown to display antiinflammatory and antioxidant properties by targeting enzymes and regulating the expressions of various inflammatory mediators. Natural products have been reported to have anti-inflammatory properties in various clinical and preclinical studies, and some are available as herbal preparations. Herbal medicine would be promising in association with the implication of a novel drug delivery system for managing IBD.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Sonia Chauhan
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
- NIET Pharmacy Institute, Greater Noida, 201310, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Rupa Mazumder
- NIET Pharmacy Institute, Greater Noida, 201310, India
| |
Collapse
|
9
|
Ketabi S, Shalmashi S, Hallajian S. Interaction of sulfasalazine with outer surface of boron-nitride nanotube as a drug carrier in aqueous solution: insights from quantum mechanics and Monte Carlo simulation. BMC Chem 2023; 17:169. [PMID: 38017542 PMCID: PMC10683185 DOI: 10.1186/s13065-023-01088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
The improvement of the solubility of sulfasalazine in physiological media was the major aim of this study. Accordingly, BNNT inspected as a notable candidate for the carriage of this drug in aqueous media. For this purpose, four possible interactions of two tautomer of sulfasalazine with (9,0) boron-nitride nanotube were considered in aqueous media. The compounds were optimized in gas phase using density functional calculations. Solvation free energies and association free energies of the optimized structures were then studied by Monte Carlo simulation and perturbation method in water environment. Outcomes of quantum mechanical calculations presented that interaction of keto form of sulfasalazine produce the most stable complexes with boron-nitride nanotube in gas phase. Simulation results revealed that electrostatic interactions play a vital role in the intermolecular interaction energies after binding of drug and nanotube in aqueous solution. Results of association free energy calculations indicated that complexes of both two sulfasalazine tautomers (keto and enol) and nanotube were stable in solution. Computed solvation free energies in water showed that the interaction with boron-nitride nanotube significantly improved the solubility of sulfasalazine, which could improve its in vivo bioavailability.
Collapse
Affiliation(s)
- Sepideh Ketabi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saba Shalmashi
- Active Pharmaceutical Ingredients Research (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Hallajian
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Han H, Ke L, Xu W, Wang H, Zhou J, Rao P. Incidental nanoparticles in black tea alleviate DSS-induced ulcerative colitis in BALB/c mice. Food Funct 2023; 14:8420-8430. [PMID: 37615587 DOI: 10.1039/d3fo00641g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
As the dominant herbal drink consumed worldwide, black tea exhibits various health promoting benefits including amelioration of inflammatory bowel diseases. Despite extensive studies on the tea's components, little is known about the bioactivities of nanoparticles (NPs) which were incidentally assembled in the tea infusion and represent the major components. This study investigated the alleviative effects of black tea infusion, the isolated black tea NPs, and a mixture of caffeine, epigallocatechin-3-gallate, gallic acid and epicatechin gallate on dextran sodium sulfate (DSS)-induced ulcerative colitis. The results showed that both the black tea infusion and the NPs significantly alleviated colitis, suppressed the mRNA levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and suppressed the DSS-induced loss of cell-cell junction proteins (e.g., E-cadherin, ZO-1, and claudin-1) and increase of p-STAT3. The mixture of four tea components, which is the analogue of bioactive payloads carried by the NPs, was much less effective than the tea infusion and NPs. It shows that the NPs elevate the efficiency of polyphenols and caffeine in black tea in restoring the intercellular connection in the intestine, inhibiting mucosal inflammation, and alleviating ulcerative colitis. This work may inspire the development of tea-based therapeutics for treating inflammatory bowel diseases and have wide influences on value-added processing, quality evaluation, functionalization, and innovation of tea and other plant-based beverages.
Collapse
Affiliation(s)
- Huan Han
- School of Chemical Engineering and Technology, Tianjin University, China
- Zhe Jiang Institute of Tianjin University, Shaoxing, China
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lijing Ke
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Wei Xu
- Zhe Jiang Institute of Tianjin University, Shaoxing, China
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Huiqin Wang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jianwu Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Pingfan Rao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
11
|
Pedrosa LDF, Nascimento KR, Soares CG, Oliveira DPD, de Vos P, Fabi JP. Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure. PLANTS (BASEL, SWITZERLAND) 2023; 12:2750. [PMID: 37514364 PMCID: PMC10384513 DOI: 10.3390/plants12142750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin's physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Karen Rebouças Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Caroline Giacomelli Soares
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil
| |
Collapse
|
12
|
Heikal EJ, Kaoud RM, Gad S, Mokhtar HI, Alattar A, Alshaman R, Zaitone SA, Moustafa YM, Hammady TM. Development of Novel pH-Sensitive Eudragit Coated Beads Containing Curcumin-Mesalamine Combination for Colon-Specific Drug Delivery. Gels 2023; 9:gels9040264. [PMID: 37102876 PMCID: PMC10137603 DOI: 10.3390/gels9040264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
This research aims to develop a drug delivery system that effectively treats colitis while administering curcumin/mesalamine by coating alginate/chitosan beads with Eudragit® S-100 to target the colon. Beads were tested to determine their physicochemical characteristics. Coating with Eudragit® S-100 prevents drug release at a pH of less than 7; this was demonstrated by in-vitro release conducted in a medium with gradually varying pH to mimic circumstances in various regions of the gastrointestinal tract. This study examined the efficacy of the coated beads in treating acetic acid-induced colitis in rats. Results showed that spherical beads were formed with an average diameter of 1.6–2.8 mm, and the obtained swelling ranged from 409.80% to 890.19%. The calculated entrapment efficiency ranged from 87.49% to 97.89%. The optimized formula F13 (which was composed of mesalamine-curcumin active ingredients, Sodium alginate as a gelling agent, chitosan as a controlled release agent, CaCl2 as a crosslinking agent, and Eudragit S-100 as a pH-sensitive coating agent) demonstrated the best entrapment efficiency (97.89% ± 1.66), swelling (890.19% ± 60.1), and bead size (2.7 ± 0.62 mm). In formulation #13, which was coated with Eudragit S 100, curcumin (6.01 ± 0.04%) and mesalamine (8.64 ± 0.7%), were released after 2 h at pH 1.2; 6.36 ± 0.11% and 10.45 ± 1.52% of curcumin and mesalamine, respectively, were then released after 4 h and at pH 6.8. Meanwhile, at pH 7.4, after 24 h, approximately 85.34 ± 2.3% (curcumin) and 91.5 ± 1.2% (mesalamine) were released. Formula #13 significantly reduced the colitis, and this suggests that the developed hydrogel beads can be used for delivering curcumin-mesalamine combinations to treat ulcerative colitis after adequate research.
Collapse
Affiliation(s)
- Eman J. Heikal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Faculty of Pharmacy, The University of Mashreq, Baghdad 11001, Iraq
| | - Rashad M. Kaoud
- Pharmacy Department, Ashur University College, Baghdad 10047, Iraq
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt
| | - Abdullah Alattar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser M. Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| | - Taha M. Hammady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
13
|
Yahoum MM, Toumi S, Tahraoui H, Lefnaoui S, Kebir M, Amrane A, Assadi AA, Zhang J, Mouni L. Formulation and Evaluation of Xanthan Gum Microspheres for the Sustained Release of Metformin Hydrochloride. MICROMACHINES 2023; 14:609. [PMID: 36985017 PMCID: PMC10055444 DOI: 10.3390/mi14030609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
This work aimed to formulate xanthan gum microspheres for the encapsulation of metformin hydrochloride, according to the process of ionotropic gelation. The obtained microparticles, based on various fractions of xanthan gum (0.5-1.25), were subjected to different physico-chemical tests and a drug release study. Microspheres with an average size varying between 110.96 μm and 208.27 μm were obtained. Encapsulation efficiency reached 93.11% at a 1.25% biopolymer concentration. The swelling study showed a swelling rate reaching 29.8% in the gastric medium (pH 1.2) and 360% in the intestinal medium (pH 6.8). The drug release studies showed complete metformin hydrochloride release from the beads, especially those prepared from xanthan gum at the concentration of 1.25%, in intestinal medium at 90.00% after 6 h. However, limited and insignificant drug release was observed within the gastric medium (32.50%). The dissolution profiles showed sustained release kinetics.
Collapse
Affiliation(s)
- Madiha Melha Yahoum
- Materials and Environmental Laboratory (LME), University of Medea, Nouveau Pole Urbain, Medea 26000, Algeria
| | - Selma Toumi
- Faculty of Sciences, University of Medea, Nouveau Pole Urbain, Medea 26000, Algeria
| | - Hichem Tahraoui
- Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Sétif 19000, Algeria
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria
| | - Sonia Lefnaoui
- Laboratory of Experimental Biology and Pharmacolgy, University of Medea, Nouveau Pole Urbain, Medea 26000, Algeria
| | - Mohammed Kebir
- Research Unit on Analysis and Tecshnological Development in Environment (URADTE-CRAPC), MB 384, Tipaza 42000, Algeria
| | - Abdeltif Amrane
- National Center for Scientific Research (CNRS), National School of Chemistry of Rennes, University of Rennes, ISCR—UMR6226, F-35000 Rennes, France
| | - Aymen Amin Assadi
- National Center for Scientific Research (CNRS), National School of Chemistry of Rennes, University of Rennes, ISCR—UMR6226, F-35000 Rennes, France
- College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Lotfi Mouni
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance, SNVST Faculty, Akli Mohand Oulhadj University, Bouira 10000, Algeria
| |
Collapse
|
14
|
Kim HM, Park JH, Choi YJ, Oh JM, Park J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Adv 2023; 13:5529-5537. [PMID: 36798609 PMCID: PMC9926166 DOI: 10.1039/d2ra07276a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Hyaluronic acid (HA) is a natural linear polysaccharide which has been widely used in cosmetics and pharmaceuticals including drug delivery systems because of its excellent biocompatibility. In this study, we investigated the one-pot synthesis of HA-coated gold nanoparticles (AuNP-HA) as a drug delivery carrier. The HAs with different molecular weights were produced by e-beam irradiation and employed as coating materials for AuNPs. Sulfasalazine (SSZ), a poorly water-soluble drug, was used to demonstrate the efficiency of drug delivery and the controlled release behaviour of the AuNP-HA. As the molecular weight of the HA decreased, the drug encapsulation efficiency of the SSZ increased up to 94%, while drug loading capacity of the SSZ was maintained at the level of about 70%. The prepared AuNP-HA-SSZ exhibited slow release of the SSZ over a short time and excellent sensitivity to different pHs and physiological conditions. The SSZ release rate was the lowest in simulated gastric conditions and the highest in simulated intestinal conditions. In this case, the AuNP-HA protects the SSZ from release under the acidic pH conditions in the stomach; on the other hand, the drug release was facilitated in the basic environment of the small intestine and colon. The SSZ was released under simulated intestinal conditions through anomalous drug transport and followed the Korsmeyer-Peppas model. Therefore, this study suggests that AuNP-HA is a promising orally-administered and intestine-targeted drug delivery system with controlled release characteristics.
Collapse
Affiliation(s)
- Hyoung-Mi Kim
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - Jae Hong Park
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - You Jin Choi
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-SeoulSeoul 04620Republic of Korea
| | - Junghun Park
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| |
Collapse
|
15
|
Mefenamic acid modified-release by encapsulation in a k-carrageenan/sericin blend. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Harwansh RK, Yadav P, Deshmukh R. Current Insight into Novel Delivery Approaches of Resveratrol for Improving Therapeutic Efficacy and Bioavailability with its Clinical Updates. Curr Pharm Des 2023; 29:2921-2939. [PMID: 38053352 DOI: 10.2174/0113816128282713231129094715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Resveratrol (RSV) is a polyphenolic phytoalexin, and belongs to the stilbene family. RSV has several therapeutic activities such as cardioprotective, anticancer, and antioxidant. Apart from its therapeutic benefits, its pharmacological uses are limited due to low solubility, poor bioavailability, and short biological halflife. A researcher continuously focuses on overcoming the limitations of RSV through nanotechnology platforms to get the optimum health benefits. In this context, nanocarriers are pioneering to overcome these drawbacks. Nanocarriers possess high drug loading capacity, thermal stability, low production cost, longer shelflife, etc. Fortunately, scientists were proficient in delivering resveratrol-based nanocarriers in the present scenario. Nanocarriers can deliver drugs to the target sites without compromising the bioavailability. Thus, this review highlights how the latest nanocarrier systems overcome the shortcomings of RSV, which will be good for improving therapeutic efficacy and bioavailability. Moreover, recent updates on resveratrol-based novel formulations and their clinical trials have been addressed to manage several health-related problems.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Paras Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
17
|
Bostancı NS, Büyüksungur S, Hasirci N, Tezcaner A. Potential of pectin for biomedical applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1866-1900. [PMID: 35699216 DOI: 10.1080/09205063.2022.2088525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Pectin is a polysaccharide extracted from various plants, such as apples, oranges, lemons, and it possesses some beneficial effects on human health, including being hypoglycemic and hypocholesterolemic. Therefore, pectin is used in various pharmaceutical and biomedical applications. Meanwhile, its low mechanical strength and fast degradation rate limit its usage as drug delivery devices and tissue engineering scaffolds. To enhance these properties, it can be modified or combined with other organic molecules or polymers and/or inorganic compounds. These materials can be prepared as nano sized drug carriers in the form of spheres, capsules, hydrogels, self assamled micelles, etc., for treatment purposes (mostly cancer). Different composites or blends of pectin can also be produced as membranes, sponges, hydrogels, or 3D printed matrices for tissue regeneration applications. This review is concentrated on the properties of pectin based materials and focus especially on the utilization of these materials as drug carriers and tissue engineering scaffolds, including 3D printed and 3D bioprinted systems covering the studies in the last decade and especially in the last 5 years.
Collapse
Affiliation(s)
- Nazlı Seray Bostancı
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Senem Büyüksungur
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
| | - Nesrin Hasirci
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
- Department of Chemistry, METU, Ankara, Turkey
- Tissue Engineering and Biomaterial Research Center, Near East University, (NEU), Lefkosa, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
- Department of Engineering Sciences, METU, Ankara, Turkey
| |
Collapse
|
18
|
Amidated pectin with amino acids: Preparation, characterization and potential application in Hydrocolloids. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Natural polysaccharides and proteins applied to the development of gastroresistant multiparticulate systems for anti-inflammatory drug delivery – A systematic review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Zheng C, Zhang Z, Ding N, Huang B, Zhang G, Fei P. Synthesis of amidated pectin with amino acid using ultra-low temperature enzymatic method and its evaluation of fat mimic characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Yang W, Zhao P, Li X, Guo L, Gao W. The potential roles of natural plant polysaccharides in inflammatory bowel disease: A review. Carbohydr Polym 2022; 277:118821. [PMID: 34893238 DOI: 10.1016/j.carbpol.2021.118821] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-term chronic disease, about 20% of IBD patients deteriorate to colorectal cancer. Currently, there is no radical cure for IBD. Natural plant polysaccharides (NPP) have low toxic and side effects, which have immune and prebiotic activities and possesses positive effect on alleviating IBD. In this review, we will focus on the alleviating effect of NPP on IBD in vitro and in vivo from three aspects: regulating intestinal flora imbalance, repairing intestinal barrier injury and improving immunity. The relationship between the chemical structure of natural plant polysaccharides and the therapeutic effect of IBD are highlighted. Finally, the synergistic role of NPP as a carrier of drugs or active molecules to reduce side effects and enhance targeting function are discussed, especially pectic polysaccharides. Broadly, this review provides a valuable reference for NPP to be developed as functional food or health products to alleviate IBD.
Collapse
Affiliation(s)
- Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
22
|
Singh A, Mandal UK, Narang RK. Development and In Vivo Evaluation of Pectin Based Enteric Coated Microparticles Loaded with Mesalamine and Saccharomyces boulardii for Management of Ulcerative Colitis. Assay Drug Dev Technol 2021; 20:22-34. [PMID: 34780287 DOI: 10.1089/adt.2021.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mesalamine is the first-line choice of drug for ulcerative colitis management. However, due to the nontargeted delivery of mesalamine, it shows side effects. The possible impact of mesalamine can be improved by coated microparticles in combination with S. boulardii for targeted delivery to the colon with the prevention of unwanted side effects. In this work, pectin-based mesalamine and S. boulardii loaded microparticles were prepared by dehydration technique and coated by an oil-in-oil solvent evaporation method and characterized by Scanning electron microscopy (SEM), X-ray diffraction, and zeta analysis. 2, 4, 6-Trinitrobenzenesulfonic acid was used for the induction of colitis. The anti-inflammatory effects of coated microparticles on Caco-2 cells were assessed by the determination of interleukin (IL)-8 concentration. In addition, the impact of coated microparticles on the concentration of colonic enzymes, including myeloperoxidase (MPO), lipid peroxides, and glutathione (GSH), were also evaluated. Moreover, hematological parameters, including white blood cell (WBC), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP), were assessed. SEM data revealed that all the prepared coated microparticles had an almost spherical shape. The X-ray powder diffraction analysis of uncoated and coated microparticles showed maximum stability without any interaction. The particle size of uncoated and coated microparticles was 9.14 and 15.61 μm, respectively. The zeta potential of uncoated and coated microparticles was observed to be -26.78 and -29.36 mV, respectively. The prepared coated microparticles decreased the levels of lipid peroxides, MPO, and GSH significantly in colitis. In the Caco-2 cell culture model, the concentration of IL-8 is decreased significantly. The hematological observations confirmed that the prepared formulation showed a promising decrease in the levels of WBC, CRP, and ESR in diseased animals. Animal experiments revealed that cellulose acetate phthalate coated microparticles of mesalamine and S. boulardii significantly improved the colitis disease conditions of Wistar rats. Hence, cellulose acetate phthalate-coated microparticles of mesalamine and S. boulardii could be recommended as adjuvant therapy to achieve a synergistic effect in the management of UC. Lay summary Mesalamine is the drug of choice for the management of ulcerative colitis (UC), which inhibits mediators responsible for inflammation. We investigated the in vivo effects of cellulose acetate phthalate-coated microparticles of mesalamine with Saccharomyces boulardii (probiotic) for their efficacy against UC. Our findings evidenced that the combination of mesalamine with S. boulardii showed a synergistic effect in the 2,4,6- trinitrobenzene sulfonic acid-induced colitis model by reducing the inflammation and maintains the macroscopic features. From the observed results, it can be concluded that S. boulardii can be used to enhance the individual drug's effect in the therapeutic management of UC.
Collapse
Affiliation(s)
- Amandeep Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India.,Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
23
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Enteric-coated Ca-alginate hydrogel beads: a promising tool for colon targeted drug delivery system. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Chen F, Liu Q, Xiong Y, Xu L. Current Strategies and Potential Prospects of Nanomedicine-Mediated Therapy in Inflammatory Bowel Disease. Int J Nanomedicine 2021; 16:4225-4237. [PMID: 34188471 PMCID: PMC8236271 DOI: 10.2147/ijn.s310952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are highly debilitating. IBDs are associated with the imbalance of inflammatory mediators within the inflamed bowel. Conventional drugs for IBD treatment include anti-inflammatory medications and immune suppressants. However, they suffer from a lack of bioavailability and high dose-induced systemic side effects. Nanoparticle (NP)-derived therapy improves therapeutic efficacy and increases targeting specificity. Recent studies have shown that nanomedicines, based on bowel disease's pathophysiology, are a fast-growing field. NPs can prolong the circulation period and reduce side effects by improving drug encapsulation and targeted delivery. Here, this review summarizes various IBD therapies with a focus on NP-derived applications, whereas their challenges and future perspectives have also been discussed.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Li Xu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| |
Collapse
|
26
|
Rongthong T, Pongjanyakul T. Quaternary polymethacrylate−magnesium aluminum silicate film formers: Stability studies for tablet coatings. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Deshmukh R. Bridging the Gap of Drug Delivery in Colon Cancer: The Role of Chitosan and Pectin Based Nanocarriers System. Curr Drug Deliv 2020; 17:911-924. [PMID: 32679018 DOI: 10.2174/1567201817666200717090623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 01/11/2023]
Abstract
Colon cancer is one of the most prevalent diseases, and traditional chemotherapy has not been proven beneficial in its treatment. It ranks second in terms of mortality due to all cancers for all ages. Lack of selectivity and poor biodistribution are the biggest challenges in developing potential therapeutic agents for the treatment of colon cancer. Nanoparticles hold enormous prospects as an effective drug delivery system. The delivery systems employing the use of polymers, such as chitosan and pectin as carrier molecules, ensure the maximum absorption of the drug, reduce unwanted side effects and also offer protection to the therapeutic agent from quick clearance or degradation, thus allowing an increased amount of the drug to reach the target tissue or cells. In this systematic review of published literature, the author aimed to assess the role of chitosan and pectin as polymer-carriers in colon targeted delivery of drugs in colon cancer therapy. This review summarizes the various studies employing the use of chitosan and pectin in colon targeted drug delivery systems.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura -281406, India
| |
Collapse
|