1
|
Lutta A, Liu Q, Pedersen GK, Dong M, Grohganz H, Nielsen LH, Schmidt ST. Microfluidic fabrication of pectin-coated liposomes for drug delivery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01812-0. [PMID: 39987264 DOI: 10.1007/s13346-025-01812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Polymer coating of nanoparticulate drug delivery systems may enhance the efficacy of oral delivery. Cationic liposomes were coated with pectin biopolymers using microfluidics, with systematic variation of process parameters to optimize pectin-coated liposome fabrication. A pectin/liposome weight ratio of 0.7 and a microfluidic flow rate ratio of 2:1 pectin:liposome were found to be optimal. The resulting formulations displayed particle sizes at least threefold the size of uncoated liposomes, while the surface charge shifted to a highly negative value, indicating full pectin coating of the particles. Further microscopic characterization of the pectin-coated liposomes revealed that the pectins formed a polymeric network within which the liposomes were dispersed or attached. Stability studies revealed that pectin-coated liposomes remained stable during storage, with no displacement of the coating. We determined that microfluidics is a robust method for preparing pectin-coated liposomes, despite the structural differences between the pectins, geometry of the microchip used, and pectin/liposome concentration. Ultimately, the use of microfluidics in formulation development could be highly beneficial, as the process parameters can be easily modified and the process is easily scalable and inexpensive. Additionally, pectins can offer protective properties to the liposomes particularly during oral drug delivery.
Collapse
Affiliation(s)
- Anitta Lutta
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800, Kgs. Lyngby, Denmark
| | - Qian Liu
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Line Hagner Nielsen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, 2800, Kgs. Lyngby, Denmark
| | - Signe Tandrup Schmidt
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
2
|
Erebor JO, Agboluaje EO, Perkins AM, Krishnakumar M, Ngwuluka N. Targeted Hybrid Nanocarriers as Co-Delivery Systems for Enhanced Cancer Therapy. Adv Pharm Bull 2024; 14:558-573. [PMID: 39494247 PMCID: PMC11530881 DOI: 10.34172/apb.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 11/05/2024] Open
Abstract
Hybrid nanocarriers have realized a growing interest in drug delivery research because of the potential of being able to treat, manage or cure diseases that previously had limited therapy or cure. Cancer is currently considered the second leading cause of death globally. This makes cancer therapy a major focus in terms of the need for efficacious and safe drug formulations that can be used to reduce the rate of morbidity and mortality globally. The major challenge encountered over the years with cancer chemotherapy is the non-selectivity of anticancer drugs, leading to severe adverse effects in patients. Multidrug resistance has also resulted in treatment failure in cancer chemotherapy over the years. Hybrid nanocarriers can be targeted to the site and offer co-delivery of two or more chemotherapeutics, thus leading to synergistic or additive results. This makes hybrid nanocarriers an extremely attractive type of drug delivery system for cancer therapy. Hybrid nanocarrier systems are also attracting attention as possible non-viral gene vectors that could have a higher level of transfection, and be efficacious, with the added advantage of being safer than viral vectors in clinical settings. An extensive review of various aspects of hybrid nanocarriers was discussed in this paper. It is envisaged that in the future, metastatic cancers, multi-drug resistant cancers, and low prognosis cancers like pancreatic cancers, will have a lasting solution via hybrid nanocarrier formulations with targeted co-delivery of therapeutics.
Collapse
Affiliation(s)
| | - Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical and Biomedical Sciences University of Georgia, 250 W. Green Street Athens, Georgia 30602- 5036 USA
| | - Ava M. Perkins
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo 3000 Arlington Ave, Toledo, OH 43614-2595 USA
| | - Megha Krishnakumar
- Catalent Pharma Solutions, 7330 Carroll Road, San Diego, California 92121-2363 USA
| | - Ndidi Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmacy, University of Jos, Pharmaceutical Sciences Gate, Bauchi Rd, 930001, Jos, Plateau State, Nigeria
| |
Collapse
|
3
|
Delgado MZ, Aranda FL, Hernandez-Tenorio F, Garrido-Miranda KA, Meléndrez MF, Palacio DA. Polyelectrolytes for Environmental, Agricultural, and Medical Applications. Polymers (Basel) 2024; 16:1434. [PMID: 38794627 PMCID: PMC11124962 DOI: 10.3390/polym16101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, polyelectrolytes (PELs) have attracted significant interest owing to a surge in research dedicated to the development of new technologies and applications at the biological level. Polyelectrolytes are macromolecules of which a substantial portion of the constituent units contains ionizable or ionic groups. These macromolecules demonstrate varied behaviors across different pH ranges, ionic strengths, and concentrations, making them fascinating subjects within the scientific community. The aim of this review is to present a comprehensive survey of the progress in the application studies of polyelectrolytes and their derivatives in various fields that are vital for the advancement, conservation, and technological progress of the planet, including agriculture, environmental science, and medicine. Through this bibliographic review, we seek to highlight the significance of these materials and their extensive range of applications in modern times.
Collapse
Affiliation(s)
- Martina Zuñiga Delgado
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| | - Francisca L. Aranda
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
- Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepcion, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia;
| | - Karla A. Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Manuel F. Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascuales, Lientur 1457, Concepción 4060000, Chile
| | - Daniel A. Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| |
Collapse
|
4
|
Song F, Chen J, Zhang Z, Tian S. Preparation, characterization, and evaluation of flaxseed oil liposomes coated with chitosan and pea protein isolate hydrolysates. Food Chem 2023; 404:134547. [PMID: 36240554 DOI: 10.1016/j.foodchem.2022.134547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
The effect of layer-by-layer coating of liposomes with chitosan and pea protein isolate hydrolysates (PPIH) was evaluated. Traditional flaxseed oil liposomes (FL Lipo) were used as a model for comparison to liposomes coated with chitosan and PPIH (FL LipoCP). The potential of PPIH as a coating material was evaluated. Additionally, the influence of chitosan and PPIH on vesicle size and zeta potential of liposomes was investigated. The chitosan layer of liposomes exhibited a loose structure. After the second layer of coating with PPIH, chitosan molecules were rearranged on the liposome surface, leading to a more compact and dense shell structure of liposomes. Electrostatic interactions, hydrogen bonds, and hydrophobic interactions favored the stability of FL LipoCP. Compared to FL Lipo, FL LipoCP displayed higher oxidation stability during storage and a slower release of flaxseed oil during in vitro digestion.
Collapse
Affiliation(s)
- Fanfan Song
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, China
| | - Zhengquan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaojun Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
6
|
Jahangiri S, Rahimnejad M, Nasrollahi Boroujeni N, Ahmadi Z, Motamed Fath P, Ahmadi S, Safarkhani M, Rabiee N. Viral and non-viral gene therapy using 3D (bio)printing. J Gene Med 2022; 24:e3458. [PMID: 36279107 DOI: 10.1002/jgm.3458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 12/30/2022] Open
Abstract
The overall success in launching discovered drugs is tightly restricted to the high rate of late-stage failures, which ultimately inhibits the distribution of medicines in markets. As a result, it is imperative that methods reliably predict the effectiveness and, more critically, the toxicity of medicine early in the drug development process before clinical trials be continuously innovated. We must stay up to date with the fast appearance of new infections and diseases by rapidly developing the requisite vaccinations and medicines. Modern in vitro models of disease may be used as an alternative to traditional disease models, and advanced technology can be used for the creation of pharmaceuticals as well as cells, drugs, and gene delivery systems to expedite the drug discovery procedure. Furthermore, in vitro models that mimic the spatial and chemical characteristics of native tissues, such as a 3D bioprinting system or other technologies, have proven to be more effective for drug screening than traditional 2D models. Viral and non-viral gene delivery vectors are a hopeful tool for combinatorial gene therapy, suggesting a quick way of simultaneously deliver multiple genes. A 3D bioprinting system embraces an excellent potential for gene delivery into the different cells or tissues for different diseases, in tissue engineering and regeneration medicine, in which the precise nucleic acid is located in the 3D printed tissues and scaffolds. Non-viral nanocarriers, in combination with 3D printed scaffolds, are applied to their delivery of genes and controlled release properties. There remains, however, a big obstacle in reaching the full potential of 3D models because of a lack of in vitro manufacturing of live tissues. Bioprinting advancements have made it possible to create biomimetic constructions that may be used in various drug discovery research applications. 3D bioprinting also benefits vaccinations, medicines, and relevant delivery methods because of its flexibility and adaptability. This review discusses the potential of 3D bioprinting technologies for pharmaceutical studies.
Collapse
Affiliation(s)
- Sepideh Jahangiri
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Maedeh Rahimnejad
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Biomedical Engineering Institute, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Narges Nasrollahi Boroujeni
- Bioprocess Engineering Research Group, Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Puria Motamed Fath
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, South Korea.,School of Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Typical application of electrostatic layer-by-layer self-assembly technology in food safety assurance. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Yang X, Wang Q, Zhang A, Shao X, Liu T, Tang B, Fang G. Strategies for sustained release of heparin: A review. Carbohydr Polym 2022; 294:119793. [PMID: 35868762 DOI: 10.1016/j.carbpol.2022.119793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
Heparin, a sulfate-containing linear polysaccharide, has proven preclinical and clinical efficacy for a variety of disorders. Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), and ultra-low-molecular-weight heparin (ULMWH), is administered systematically, in the form of a solution in the clinic. However, it is eliminated quickly, due to its short half-life, especially in the case of UFH and LMWH. Frequent administration is required to ensure its therapeutic efficacy, leading to poor patient compliance. Moreover, heparin is used to coat blood-contacting medical devices to avoid thrombosis through physical interaction. However, the short-term durability of heparin on the surface of the stent limits its further application. Various advanced sustained-release strategies have been used to prolong its half-life in vivo as preparation technologies have improved. Herein, we briefly introduce the pharmacological activity and mechanisms of action of heparin. In addition, the strategies for sustained release of heparin are comprehensively summarized.
Collapse
Affiliation(s)
- Xuewen Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xinyao Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
9
|
Immobilization of osteopontin on poly(ε-caprolactone) scaffolds by polyelectrolyte multilayer deposition to improve the osteogenic differentiation of MC3T3-E1 cells. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Bhuskute H, Shende P, Prabhakar B. 3D Printed Personalized Medicine for Cancer: Applications for Betterment of Diagnosis, Prognosis and Treatment. AAPS PharmSciTech 2021; 23:8. [PMID: 34853934 DOI: 10.1208/s12249-021-02153-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer treatment is challenging due to the tumour heterogeneity that makes personalized medicine a suitable technique for providing better cancer treatment. Personalized medicine analyses patient-related factors like genetic make-up and lifestyle and designs treatments that offer the benefits of reduced side effects and efficient drug delivery. Personalized medicine aims to provide a holistic way for prevention, diagnosis and treatment. The customization desired in personalized medicine is produced accurately by 3D printing which is an established technique known for its precision. Different 3D printing techniques exhibit their capability in producing cancer-specific medications for breast, liver, thyroid and kidney tumours. Three-dimensional printing displays major influence on cancer modelling and studies using cancer models in treatment and diagnosis. Three-dimensional printed personalized tumour models like physical 3D models, bioprinted models and tumour-on-chip models demonstrate better in vitro and in vivo correlation in drug screening, cancer metastasis and prognosis studies. Three-dimensional printing helps in cancer modelling; moreover, it has also changed the facet of cancer treatment. Improved treatment via custom-made 3D printed devices, implants and dosage forms ensures the delivery of anticancer agents efficiently. This review covers recent applications of 3D printed personalized medicine in various cancer types and comments on the possible future directions like application of 4D printing and regularization of 3D printed personalized medicine in healthcare.
Collapse
|
11
|
Abstract
The microneedles show advantages over transdermal drug delivery systems on account of better skin permeation bypassing the stratum corneum. To increase the flux of permeation, penetration enhancement techniques like physical and chemical methods are combined with a trans-epidermal delivery system across the skin causing minimal pain. These techniques include iontophoresis, sonophoresis, and electroporation for physical enhancement of drug delivery via topical route by either disrupting the structure of the stratum corneum or by creating pores/micro-channels within the skin. The use of chemical penetrants such as ethanol, lipids, surfactants, and terpenes improves the release kinetics by mechanisms like fluidization of lipids, denaturation of proteins, etc. A combination of microneedles and these techniques show a significant increase in the permeability of drugs across the skin by 5-10 times compared to microneedles alone. This review article focuses on various advanced strategies like the use of drug-polymer complexes, application of ultrasound frequency or tolerable electric current, formation of nano-formulations, etc. with microneedle delivery for transportation of high payload of actives, macromolecules, antibodies, gene, proteins, and peptides. In the near future, microneedle systems will offer potential targeted drug delivery, self-sealable administration across the skin, and minimally invasive vaccine transportation in cancer, diabetes, Alzheimer's, and cardiovascular diseases.HighlightsPhysical penetration enhancement techniques: iontophoresis, electroporation, and sonophoresis.Chemical penetration enhancers: polymers, lipids, surfactants.Strategies to use microneedle system with penetration enhancement techniques.The significant difference in the penetration ability of high payload actives.
Collapse
Affiliation(s)
- Nirupma Khare
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
12
|
Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, and Biomedical and Environmental Applications. MATERIALS 2021; 14:ma14154152. [PMID: 34361346 PMCID: PMC8348132 DOI: 10.3390/ma14154152] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Polyelectrolyte multilayers are versatile materials that are used in a large number of domains, including biomedical and environmental applications. The fabrication of polyelectrolyte multilayers using the layer-by-layer technique is one of the simplest methods to obtain composite functional materials. The properties of the final material can be easily tuned by changing the deposition conditions and the used building blocks. This review presents the main characteristics of polyelectrolyte multilayers, the fabrication methods currently used, and the factors influencing the layer-by-layer assembly of polyelectrolytes. The last section of this paper presents some of the most important applications of polyelectrolyte multilayers, with a special focus on biomedical and environmental applications.
Collapse
|
13
|
Waghchaure M, Govardhane S, Shende P. Enhancement of immunopotentiation using tetanus toxoid-based nanoparticulate dissolvable microneedles. Biomed Microdevices 2021; 23:32. [PMID: 34181103 DOI: 10.1007/s10544-021-00571-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
The main objective of the present study was to prepare and evaluate dissolvable microneedle patch containing nanoparticles of tetanus toxoid without the use of any adjuvant and its immunopotentiation activity. Immunization with microneedles is a novel approach in vaccines delivery with advantages such as convenience, simple, and non-invasive therapy. The gelatin nanoparticles were prepared by a layer-by-layer coating method using polystyrene sulfonate (PSS), polyallylamine hydrochloride (PLA), and PLGA. The filtered gelatin nanoparticles were later dispersed in the aqueous PVP K10 solution and integrated into a mold to develop microneedles. The nanoparticles and their dissolvable microneedle patches were evaluated using particle size, surface charge, entrapment efficiency, SEM analysis, in-vitro, and in-vivo studies. The particle size was found in the order of PLGA-coated nanoparticles > layered gelatin nanoparticles > aminated gelatin nanoparticles > gelatin nanoparticles and aminated gelatin nanoparticles showed maximum entrapment efficiency (92.6 ± 3.25%). The microscopic SEM images showed the spherical-shaped particle formation, verifies that the nanoparticles were formed. The gelatin nanoparticles followed the prolonged release for the period of 8 h whereas the nanoparticle-loaded dissolvable microneedles showed the controlled release pattern for 24 h. Aminated nanoparticulate microneedle showed the highest antibody production against tetanus toxoid. Hence, the nanoparticulate dissolvable microneedles-based immunopotentiation can be used as an alternative for delivery of tetanus toxoid.
Collapse
Affiliation(s)
- Mansi Waghchaure
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
14
|
Ciejka J, Grzybala M, Gut A, Szuwarzynski M, Pyrc K, Nowakowska M, Szczubiałka K. Tuning the Surface Properties of Poly(Allylamine Hydrochloride)-Based Multilayer Films. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2361. [PMID: 34062785 PMCID: PMC8125107 DOI: 10.3390/ma14092361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
The layer-by-layer (LbL) method of polyelectrolyte multilayer (PEM) fabrication is extremely versatile. It allows using a pair of any oppositely charged polyelectrolytes. Nevertheless, it may be difficult to ascribe a particular physicochemical property of the resulting PEM to a structural or chemical feature of a single component. A solution to this problem is based on the application of a polycation and a polyanion obtained by proper modification of the same parent polymer. Polyelectrolyte multilayers (PEMs) were prepared using the LbL technique from hydrophilic and amphiphilic derivatives of poly(allylamine hydrochloride) (PAH). PAH derivatives were obtained by the substitution of amine groups in PAH with sulfonate, ammonium, and hydrophobic groups. The PEMs were stable in 1 M NaCl and showed three different modes of thickness growth: exponential, mixed exponential-linear, and linear. Their surfaces ranged from very hydrophilic to hydrophobic. Root mean square (RMS) roughness was very variable and depended on the PEM composition, sample environment (dry, wet), and the polymer constituting the topmost layer. Atomic force microscopy (AFM) imaging of the surfaces showed very different morphologies of PEMs, including very smooth, porous, and structured PEMs with micellar aggregates. Thus, by proper choice of PAH derivatives, surfaces with different physicochemical features (growth type, thickness, charge, wettability, roughness, surface morphology) were obtained.
Collapse
Affiliation(s)
- Justyna Ciejka
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.G.); (M.N.)
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Michal Grzybala
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Arkadiusz Gut
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.G.); (M.N.)
| | - Michal Szuwarzynski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Maria Nowakowska
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.G.); (M.N.)
| | - Krzysztof Szczubiałka
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.G.); (M.N.)
| |
Collapse
|
15
|
Abstract
Layer-by-layer deposition of cells, tissues and similar molecules provided by additive manufacturing techniques such as 3D bioprinting offers safe, biocompatible, effective and inert methods for the production of biological structures and biomimetic scaffolds. 3D bioprinting assisted through computer programmes and software develops mutli-modal nano- or micro-particulate systems such as biosensors, dosage forms or delivery systems and other biological scaffolds like pharmaceutical implants, prosthetics, etc. This review article focuses on the implementation of 3D bioprinting techniques in the gene expression, in gene editing or therapy and in delivery of genes. The applications of 3D printing are extensive and include gene therapy, modulation and expression in cancers, tissue engineering, osteogenesis, skin and vascular regeneration. Inclusion of nanotechnology with genomic bioprinting parameters such as gene conjugated or gene encapsulated 3D printed nanostructures may offer new avenues in the future for efficient and controlled treatment and help in overcoming the limitations faced in conventional methods. Moreover, expansion of the benefits from such techniques is advantageous in real-time delivery or in-situ production of nucleic acids into the host cells.
Collapse
|