1
|
Broda M, Yelle DJ, Serwańska-Leja K. Biodegradable Polymers in Veterinary Medicine-A Review. Molecules 2024; 29:883. [PMID: 38398635 PMCID: PMC10892962 DOI: 10.3390/molecules29040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Daniel J. Yelle
- Forest Biopolymers Science and Engineering, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA;
| | - Katarzyna Serwańska-Leja
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland;
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
2
|
Wolter A, Bucher CH, Kurmies S, Schreiner V, Konietschke F, Hohlbaum K, Klopfleisch R, Löhning M, Thöne-Reineke C, Buttgereit F, Huwyler J, Jirkof P, Rapp AE, Lang A. A buprenorphine depot formulation provides effective sustained post-surgical analgesia for 72 h in mouse femoral fracture models. Sci Rep 2023; 13:3824. [PMID: 36882427 PMCID: PMC9992384 DOI: 10.1038/s41598-023-30641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Adequate pain management is essential for ethical and scientific reasons in animal experiments and should completely cover the period of expected pain without the need for frequent re-application. However, current depot formulations of Buprenorphine are only available in the USA and have limited duration of action. Recently, a new microparticulate Buprenorphine formulation (BUP-Depot) for sustained release has been developed as a potential future alternative to standard formulations available in Europe. Pharmacokinetics indicate a possible effectiveness for about 72 h. Here, we investigated whether the administration of the BUP-Depot ensures continuous and sufficient analgesia in two mouse fracture models (femoral osteotomy) and could, therefore, serve as a potent alternative to the application of Tramadol via the drinking water. Both protocols were examined for analgesic effectiveness, side effects on experimental readout, and effects on fracture healing outcomes in male and female C57BL/6N mice. The BUP-Depot provided effective analgesia for 72 h, comparable to the effectiveness of Tramadol in the drinking water. Fracture healing outcome was not different between analgesic regimes. The availability of a Buprenorphine depot formulation for rodents in Europe would be a beneficial addition for extended pain relief in mice, thereby increasing animal welfare.
Collapse
Affiliation(s)
- Angelique Wolter
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Christian H Bucher
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kurmies
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Viktoria Schreiner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Frank Konietschke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Max Löhning
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Anna E Rapp
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ), Leibniz Institute, Berlin, Germany.
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Bassand C, Freitag J, Benabed L, Verin J, Siepmann F, Siepmann J. PLGA implants for controlled drug release: Impact of the diameter. Eur J Pharm Biopharm 2022; 177:50-60. [PMID: 35659920 DOI: 10.1016/j.ejpb.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study was to better understand the importance of the diameter of poly(lactic-co-glycolic acid) (PLGA)-based implants on system performance, in particular the control of drug release. Different types of ibuprofen-loaded implants were prepared by hot melt extrusion using a Leistritz Nano 16 twin-screw extruder. Drug release was measured in well agitated phosphate buffer pH7.4 bulk fluid and in agarose gels in Eppendorf tubes or transwell plates. Dynamic changes in the implants' dry & wet mass, volume, polymer molecular weight as well as inner & outer morphology were monitored using gravimetric analysis, optical macroscopy, gel permeation chromatography and scanning electron microscopy. The physical states of the drug and polymer were determined by DSC. Also pH changes in the release medium were investigated. Irrespective of the type of experimental set-up, the resulting absolute and relative drug release rates decreased with increasing implant diameter (0.7 to 2.8 mm). Bi-phasic drug release was observed in all cases from the monolithic solutions (ibuprofen was dissolved in the polymer): A zero order release phase was followed by a final, rapid drug release phase (accounting for 80-90% of the total drug dose). The decrease in the relative drug release rate with increasing system diameter can be explained by the increase in the diffusion pathway lengths to be overcome. Interestingly, also the onset of the final rapid drug release phase was delayed with increasing implant diameter. This can probably be attributed to the higher mechanical stability of thicker devices, offering more resistance to substantial entire system swelling.
Collapse
Affiliation(s)
- C Bassand
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Freitag
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - L Benabed
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
5
|
Simulate SubQ: The Methods and the Media. J Pharm Sci 2021; 112:1492-1508. [PMID: 34728176 DOI: 10.1016/j.xphs.2021.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
For decades, there has been a growing interest in injectable subcutaneous formulations to improve the absorption of drugs into the systemic circulation and to prolong their release over a longer period. However, fluctuations in the blood plasma levels together with bioavailability issues often limit their clinical success. This warrants a closer look at the performance of long-acting depots, for example, and their dependence on the complex interplay between the dosage form and the physiological microenvironment. For this, biopredictive performance testing is used for a thorough understanding of the biophysical processes affecting the absorption of compounds from the injection site in vivo and their simulation in vitro. In the present work, we discuss in vitro methodologies including methods and media developed for the subcutaneous route of administration on the background of the most relevant absorption mechanisms. Also, we highlight some important knowledge gaps and shortcomings of the existing methodologies to provide the reader with a better understanding of the scientific evidence underlying these models.
Collapse
|