1
|
Huq MA, Rana MR, Samad A, Rahman MS, Rahman MM, Ashrafudoulla M, Akter S, Park JW. Green Synthesis, Characterization, and Potential Antibacterial and Anticancer Applications of Gold Nanoparticles: Current Status and Future Prospects. Biomedicines 2025; 13:1184. [PMID: 40427012 PMCID: PMC12109534 DOI: 10.3390/biomedicines13051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Drug resistance is a serious problem for human health worldwide. Day by day this drug resistance is increasing and creating an anxious situation for the treatment of both cancer and infectious diseases caused by pathogenic microorganisms. Researchers are trying to solve this terrible situation to overcome drug resistance. Biosynthesized gold nanoparticles (AuNPs) could be a promising agent for controlling drug-resistant pathogenic microorganisms and cancer cells. AuNPs can be synthesized via chemical and physical approaches, carrying many threats to the ecosystem. Green synthesis of AuNPs using biological agents such as plants and microbes is the most fascinating and attractive alternative to physicochemical synthesis as it offers many advantages, such as simplicity, non-toxicity, cost-effectiveness, and eco-friendliness. Plant extracts contain numerous biomolecules, and microorganisms produce various metabolites that act as reducing, capping, and stabilizing agents during the synthesis of AuNPs. The characterization of green-synthesized AuNPs has been conducted using multiple instruments including UV-Vis spectrophotometry (UV-Vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), DLS, and Fourier transform infrared spectroscopy (FT-IR). AuNPs have detrimental effects on bacterial and cancer cells via the disruption of cell membranes, fragmentation of DNA, production of reactive oxygen species, and impairment of metabolism. The biocompatibility and biosafety of synthesized AuNPs must be investigated using a proper in vitro and in vivo screening model system. In this review, we have emphasized the green, facile, and eco-friendly synthesis of AuNPs using plants and microorganisms and their potential antimicrobial and anticancer applications and highlighted their antibacterial and anticancer mechanisms. This study demonstrates that green-synthesized AuNPs may potentially be used to control pathogenic bacteria as well as cancer cells.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Md. Rasel Rana
- Department of Microbiology, Faculty of Science and Engineering, Rabindra Maitree University, Kushtia 7000, Bangladesh;
| | - Abdus Samad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - M. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Yayintas OT, Demir N, Canbolat F, Ayna TK, Pehlivan M. Characterization, biological activity, and anticancer effect of green-synthesized gold nanoparticles using Nasturtium officinale L. BMC Complement Med Ther 2024; 24:346. [PMID: 39354554 PMCID: PMC11445868 DOI: 10.1186/s12906-024-04635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Nanostructured materials used have unique properties and many uses in nanotechnology. The most striking of these is using herbal compounds for the green synthesis of nanoparticles. Among the nanoparticle types used for green synthesis, gold nanoparticles (AuNPs) are used for cancer therapy due to their stable structure and non-cytotoxic. Lung cancer is the most common and most dangerous cancer worldwide in terms of survival and prognosis. In this study, Nasturtium officinale (L.) extract (NO), which contains biomolecules with antioxidant and anticancer effects, was used to biosynthesize AuNPs, and after their characterization, the effect of the green-synthesized AuNPs against lung cancer was evaluated in vitro. METHODS Ultraviolet‒visible (UV‒Vis) spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), multiple analysis platform (MAP), and Fourier transform infrared (FT-IR) spectroscopy analyses were performed to characterize the AuNPs prepared from the N. officinale plant extract. Moreover, the antioxidant activity, total phenolic and flavonoid contents and DNA interactions were examined. Additionally, A549 lung cancer cells were treated with 2-48 µg/mL Nasturtium officinale gold nanoparticles (NOAuNPs) for 24 and 48 h to determine the effects on cell viability. The toxicity of the synthesized NOAuNPs to lung cancer cells was determined by the 3-(4,5-dimethylthiazol-2-il)-2,5-diphenyltetrazolium bromide (MTT) assay, and the anticancer effect of the NOAuNPs was evaluated by apoptosis and cell cycle analyses using flow cytometry. RESULTS The average size of the NPs was 56.4 nm. The intensities of the Au peaks from EDS analysis indicated that the AuNPs were synthesized successfully. Moreover, the in vitro antioxidant activities of the NO and NOAuNPs were evaluated; these materials gave values of 31.78 ± 1.71% and 31.62 ± 0.46%, respectively, in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay at 200 g/mL and values of 25.89 ± 1.90% and 33.81 ± 0.62%, respectively, in the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The NO and NOAuNPs gave values of 0.389 ± 0.027 and 0.308 ± 0.005, respectively, in the ferrous ion reducing antioxidant capacity (FRAP) assay and values of 0.078 ± 0.009 and 0.172 ± 0.027, respectively, in the copper ion reducing antioxidant capacity (CUPRAC) assay. When the DNA cleavage activities of NO and the NOAuNPs were evaluated via hydrolysis, both samples cleaved DNA starting at a concentration of 25 g/mL in the cell culture analysis, while the nanoformulation of the NO components gave greater therapeutic and anticancer effects. We determined that the Au nanoparticles were not toxic to A549 cells. Moreover, after treatment with the half-maximal inhibitory concentration (IC50), determined by the MTT assay with A549 cells, we found that at 24 and 48 h, while the necrosis rates were high in cells treated with NO, the rates of apoptosis were greater in cells treated with NOAuNPs. Notably, for anticancer treatment, activating apoptotic pathways that do not cause inflammation is preferred. We believe that these results will pave the way for the use of NOAuNPs in in vitro studies of other types of cancer. CONCLUSION In this study, AuNPs were successfully synthesized from N. officinale extract. The biosynthesized AuNPs exhibited toxicity to and apoptotic effects on A549 lung cancer cells. Based on these findings, we suggest that green-synthesized AuNPs are promising new therapeutic agents for lung cancer treatment. However, since this was an in vitro study, further research should be performed in in vivo lung cancer models to support our findings and to explain the mechanism of action at the molecular level.
Collapse
Affiliation(s)
| | - Neslihan Demir
- Department of Biology, Çanakkale Onsekiz Mart University Faculty of Science, Çanakkale, Turkey
| | - Fadime Canbolat
- Department of Pharmacy Services, Çanakkale Onsekiz Mart University, Vocational School of Health Services, Çanakkale, Turkey
| | - Tülay Kiliçaslan Ayna
- Faculty of Medicine, Medical Biology Department, İzmir Katip Çelebi University, İzmir, Turkey
| | - Melek Pehlivan
- İzmir Katip Çelebi University, Vocational School of Health Services, İzmir, Turkey
| |
Collapse
|
3
|
Afreen A, Hameed H, Tariq M, Sharif MS, Ahmed R, Waheed A, Kousar MB, Akram Z. Shining insights: Deciphering the biogenic synthesis of Ajuga bracteosa-mediated gold nanoparticles with advanced microscopy techniques. Microsc Res Tech 2024; 87:1984-1996. [PMID: 38619301 DOI: 10.1002/jemt.24571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
In this study, gold nanoparticles (AuNPs) were bioreduced from Ajuga bracteosa, a medicinal herb known for its therapeutic properties against various diseases. Different fractions of the plant extract were used, including the methanolic fraction (ABMF), the n-hexane fraction (ABHF), the chloroform fraction (ABCF), and the aqueous extract for AuNPs synthesis. The characterization of AuNPs was performed using UV-Vis spectrophotometry, FT-IR, XRD, EDX, and TEM. UV-Vis spectroscopy confirmed the formation of AuNPs, with peaks observed at 555 nm. FT-IR analysis indicated strong capping of phytochemicals on the surface of AuNPs, which was supported by higher total phenolic contents (TPC) and total flavonoid contents (TFC) in AuNPs. XRD results showed high crystallinity and a smaller size distribution of AuNPs. TEM analysis revealed the spherical shape of AuNPs, with an average size of 29 ± 10 nm. The biologically synthesized AuNPs exhibited superior antibacterial, antioxidant, and cytotoxic activities compared to the plant extract fractions. The presence of active biomolecules in A. bracteosa, such as neoclerodan flavonol glycosides, diterpenoids, phytoecdysone, and iridoid glycosides, contributed to the enhanced biological activities of AuNPs. Overall, this research highlights the potential of A. bracteosa-derived AuNPs for various biomedical applications due to their remarkable therapeutic properties and effective capping by phytochemicals. RESEARCH HIGHLIGHTS: This research underscores the growing significance of herbal medicine in contemporary healthcare by exploring the therapeutic potential of Ajuga bracteosa and gold nanoparticles (AuNPs). The study highlights the notable efficacy of A. bracteosa leaf extracts and AuNPs in treating bacterial infections, demonstrating their bactericidal effects on a range of strains. The anti-inflammatory properties of plant extracts and nanoparticles are evidenced through paw edema method suggesting their applicability in managing inflammatory conditions. These findings position A. bracteosa and AuNPs as potential candidates for alternative and effective approaches to modern medication.
Collapse
Affiliation(s)
- Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Muhammad Shakeeb Sharif
- Department of Clinical and Translational Oncology, Scuola Superiore Meridionale Via Mezzocannone, Naples, Italy
| | - Rashid Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Abdul Waheed
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Momina Bint Kousar
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Zeeshan Akram
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Pakistan
| |
Collapse
|
4
|
Far BF, Safaei M, Pourmolaei A, Adibamini S, Shirdel S, Shirdel S, Emadi R, Kaushik AK. Exploring Curcumin-Loaded Lipid-Based Nanomedicine as Efficient Targeted Therapy for Alzheimer's Diseases. ACS APPLIED BIO MATERIALS 2024; 7:3535-3555. [PMID: 38768054 DOI: 10.1021/acsabm.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a neurological condition currently with 47 million people suffering from it globally. AD might have many reasons such as genetic issues, environmental factors, and Aβ accumulation, which is the biomarker of the disease. Since the primary reason is unknown, there is no targeted treatment at the moment, but ongoing research aims to slow its progression by managing amyloid-beta peptide production rather than symptomatic improvement. Since phytochemicals have been demonstrated to possess antioxidant, anti-inflammatory, and neuroprotective properties, they may target multiple pathological factors and can reduce the risk of the disease. Curcumin, as a phytochemical found in turmeric known for its antioxidant, free radical scavenging properties, and as an antiamyloid in treating AD, has come under investigation. Although its low bioavailability limits its efficacy, a prominent drug delivery system (DDS) is desired to overcome it. Hence, the potency of lipid-based nanoparticles encapsulating curcumin (LNPs-CUR) is considered in this study as a promising DDS. In vivo studies in animal models indicate LNPs-CUR effectively slow amyloid plaque formation, leading to cognitive enhancement and reduced toxicity compared to free CUR. However, a deeper understanding of CUR's pharmacokinetics and safety profile is crucial before LNPs-CUR can be considered as a medicine. Future investigations may explore the combination of NPs with other therapeutic agents to increase their efficacy in AD cases. This review provides the current position of CUR in the AD therapy paradigm, the DDS suggestions for CUR, and the previous research from the point of analytical view focused on the advantages and challenges.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, 99628 Famagusta, Turkey
| | - Ali Pourmolaei
- Babol Noshirvani University of Technology, Shariati Avenue, Babol 4714871167, Mazandaran, Iran
| | - Shaghyegh Adibamini
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shiva Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz 5166616471, Iran
| | - Shabnam Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz 5166616471, Iran
| | - Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophysics (IBB), University of Tehran, Tehran 1417935840, Iran
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
- School of Technology, Woxsen University, Telangana 502345, India
| |
Collapse
|
5
|
Fani F, Hosseinimehr SJ, Zargari M, Mirzaei M, Karimpour Malekshah A, Talebpour Amiri F. Piperine mitigates oxidative stress, inflammation, and apoptosis in the testicular damage induced by cyclophosphamide in mice. J Biochem Mol Toxicol 2024; 38:e23696. [PMID: 38528700 DOI: 10.1002/jbt.23696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Although cyclophosphamide (CP) has been approved as an anticancer drug, its toxic effect on most organs, especially the testis, has been established. Piperine (PIP) is an alkaloid that has antioxidant, antiapoptotic, and anti-inflammatory activities. This study was investigated the protective effects of PIP on CP-induced testicular toxicity in the mice. In this experimental study, 48 adult male BALB/c mice (30-35 g) were divided into six groups (n = 8), receiving normal saline (C), 5 mg/kg of PIP (PIP5), 10 mg/kg of PIP (PIP10), 200 mg/kg of CP, 200 mg/kg of CP + PIP5, and 200 mg/kg of CP + PIP10. On the eighth day of the study, blood and testis samples were prepared for serum testosterone hormone quantification, sperm analysis, histological, and immunohistochemical assays. The results of this study showed that CP induced testicular toxicity with the decrease of sperm count, motility, and viability. Also, CP treatment caused histological structure alterations in the testis, including exfoliation, degeneration, vacuolation of spermatogenic cells, and reducing the thickness of the epithelium and the diameter of the seminiferous tubule. In addition, CP decreased glutathione (GSH) levels, increased malondialdehyde (MDA) levels, Caspase-3, and NF-κB. At the same time, PIP treatment reduced testicular histopathological abnormalities, oxidative stress, and apoptosis that were induced by CP. These results showed that PIP improved CP-induced testicular toxicity in mice, which can be related to its antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Fatemeh Fani
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mansoureh Mirzaei
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Farasati Far B, Maleki-Baladi R, Fathi-Karkan S, Babaei M, Sargazi S. Biomedical applications of cerium vanadate nanoparticles: a review. J Mater Chem B 2024; 12:609-636. [PMID: 38126443 DOI: 10.1039/d3tb01786a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cerium vanadate nanoparticles (CeVO4 NPs), which are members of the rare earth orthovanadate nanomaterial family, have generated considerable interest due to their diverse properties and prospective biomedical applications. The current study, which provides a comprehensive overview of the synthesis and characterization techniques for CeVO4 NPs, emphasizes the sonochemical method as an efficient and straightforward technique for producing CeVO4 NPs with tunable size and shape. This paper investigates the toxicity and biocompatibility of CeVO4 NPs, as well as their antioxidant and catalytic properties, which allow them to modify the redox state of biological systems and degrade organic pollutants. In addition, the most recent developments in the medicinal applications of CeVO4 NPs, such as cancer treatment, antibacterial activity, biosensing, and drug or gene delivery, are emphasized. In addition, the disadvantages of CeVO4 NPs, such as stability, aggregation, biodistribution, and biodegradation, are outlined, and several potential solutions are suggested. The research concludes with data and recommendations for developing and enhancing CeVO4 NPs in the biomedical industry.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Reza Maleki-Baladi
- Department of Animal Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
- Young Researchers and Elite Club, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
- Universal Scientific Education and Research Network (USERN), Bojnourd, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, 9417694735, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
7
|
Asgari S, Farasati Far B, Charmi G, Maghsoudi PH, Keihankhadiv S, Seyedhamzeh M, Kaushik AK. Chitosan-Grafted-Poly( N-vinylcaprolactam)-Decorated Fe 3O 4@SiO 2 Core-Shell Nanoformulation as an Efficient Drug Delivery System for Poorly Soluble Drugs. ACS APPLIED BIO MATERIALS 2023; 6:5809-5827. [PMID: 38015201 DOI: 10.1021/acsabm.3c00924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hydrocortisone, a commonly used anti-inflammatory drug, has limited aqueous solubility and several side effects. To address this challenge, as a proof-of-concept, this article demonstrates the development of a controlled-release drug delivery system (DDS) for hydrocortisone using chitosan-grafted poly(N-vinylcaprolactam) (CS-g-PNVCL)-coated core-shell Fe3O4@SiO2 nanoformulations (NFs). Reported magnetic nanoparticles (NPs) were synthesized and modified with silica, PNVCL, and CS precursors to enhance the biocompatibility of DDS and drug-loading efficiency. The release rate of hydrocortisone from Fe3O4@SiO2@CS-g-PNVCL NFs was observed to be higher at lower pH values, and the smart polymer coating demonstrated temperature responsiveness, facilitating drug release at higher temperatures. Fe3O4@SiO2@CS-g-PNVCL NFs exhibited a cell viability of around 97.2 to 87.3% (5-100 μg/mL) after 24-48 h, while the hydrocortisone-NFs had a cell viability of around 93.2 to 82.3%. Our findings suggest that CS-g-PNVCL-coated Fe3O4@SiO2 NPs effectively enhance the solubility, loading capacity, and targeted delivery of poorly soluble drugs, thereby improving their therapeutic efficacy and bioavailability.
Collapse
Affiliation(s)
- Sarah Asgari
- School of Advanced Science and Technology, Tehran Medical Science Branch, Islamic Azad University, Tehran 19585-466, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 16844, Iran
| | - Gholamreza Charmi
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | | | - Shadi Keihankhadiv
- Department of Physical Chemistry and Technology of polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) and Department of Pharmaceutical Nanotechnology School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184 Iran
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| |
Collapse
|
8
|
Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Hashemzadeh A, Mohammadzadeh V, Alavi F, Mottaghipisheh J, Sarafraz Ardakani MR, Taghavizadeh Yazdi ME. Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines. J Funct Biomater 2023; 14:332. [PMID: 37504827 PMCID: PMC10381807 DOI: 10.3390/jfb14070332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
In this study, a novel method using Ferula gummosa gums as a capping agent was used to synthesize the nanoceria for the first time. The method was economical and performed at room temperature. Furthermore, it was coated with gold (Au/nanoceria) and fully characterized using X-ray powder diffraction (XRD), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential (ζ potential). The crystallite size obtained from the results was 28.09 nm for Au/nanoceria. The energy-dispersive X-ray spectroscopy (EDX) analysis of Au/nanoceria revealed the compositional constituents of the product, which display the purity of the Au/nanoceria. The cell toxicity properties of the non-doped and Au-coated nanoceria were identified by a MTT analysis on a breast cancer cell line (MCF7). Additionally, human foreskin fibroblast cells (HFF) were used as a normal cell line. The cytotoxicity results indicated that the toxicological effect of Au/nanoceria on cancer cells was significant while having little toxic effect on normal cells. The toxicity effect of nanoceria clearly shows the dependence on dose and time, so, with increasing the dose of Au/nanoceria, the death of cancer cells also increases.
Collapse
Affiliation(s)
| | | | | | - Mohammad Mashreghi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91778, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Alireza Hashemzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778, Iran
| | - Fariba Alavi
- Department of Biology, Payame Noor University, Tehran 19395-4697, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
9
|
Farasati Far B, Safaei M, Mokhtari F, Fallahi MS, Naimi-Jamal MR. Fundamental concepts of protein therapeutics and spacing in oncology: an updated comprehensive review. Med Oncol 2023; 40:166. [PMID: 37147486 DOI: 10.1007/s12032-023-02026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Current treatment regimens in cancer cases cause significant side effects and cannot effectively eradicate the advanced disease. Hence, much effort has been expended over the past years to understand how cancer grows and responds to therapies. Meanwhile, proteins as a type of biopolymers have been under commercial development for over three decades and have been proven to improve the healthcare system as effective medicines for treating many types of progressive disease, such as cancer. Following approving the first recombinant protein therapeutics by FDA (Humulin), there have been a revolution for drawing attention toward protein-based therapeutics (PTs). Since then, the ability to tailor proteins with ideal pharmacokinetics has provided the pharmaceutical industry with an important noble path to discuss the clinical potential of proteins in oncology research. Unlike traditional chemotherapy molecules, PTs actively target cancerous cells by binding to their surface receptors and the other biomarkers particularly associated with tumorous or healthy tissue. This review analyzes the potential and limitations of protein therapeutics (PTs) in the treatment of cancer as well as highlighting the evolving strategies by addressing all possible factors, including pharmacology profile and targeted therapy approaches. This review provides a comprehensive overview of the current state of PTs in oncology, including their pharmacology profile, targeted therapy approaches, and prospects. The reviewed data show that several current and future challenges remain to make PTs a promising and effective anticancer drug, such as safety, immunogenicity, protein stability/degradation, and protein-adjuvant interactions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Via Mersin 10, TR. North Cyprus, Famagusta, Turkey
| | - Fatemeh Mokhtari
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani (ASMU), Tabriz, 53751-71379, Iran
| | | | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran.
| |
Collapse
|
10
|
Farasati Far B, Isfahani AA, Nasiriyan E, Pourmolaei A, Mahmoudvand G, Karimi Rouzbahani A, Namiq Amin M, Naimi-Jamal MR. An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. LIVERS 2023; 3:161-189. [DOI: 10.3390/livers3020012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
More than 90% of all liver malignancies are hepatocellular carcinomas (HCCs), for which chemotherapy and immunotherapy are the ideal therapeutic choices. Hepatocellular carcinoma is descended from other liver diseases, such as viral hepatitis, alcoholism, and metabolic syndrome. Normal cells and tissues may suffer damage from common forms of chemotherapy. In contrast to systemic chemotherapy, localized chemotherapy can reduce side effects by delivering a steady stream of chemotherapeutic drugs directly to the tumor site. This highlights the significance of controlled-release biodegradable hydrogels as drug delivery methods for chemotherapeutics. This review discusses using hydrogels as drug delivery systems for HCC and covers thermosensitive, pH-sensitive, photosensitive, dual-sensitive, and glutathione-responsive hydrogels. Compared to conventional systemic chemotherapy, hydrogel-based drug delivery methods are more effective in treating cancer.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Attaripour Isfahani
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Elnaz Nasiriyan
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Ali Pourmolaei
- Chemical Engineering Department, Babol Noshirvani University of Technology Shariati Ave, Babol 47148-71167, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | | |
Collapse
|