1
|
Fotopoulou A, Angelopoulou MT, Pratsinis H, Mavrogonatou E, Kletsas D. A subset of human dermal fibroblasts overexpressing Cockayne syndrome group B protein resist UVB radiation-mediated premature senescence. Aging Cell 2025; 24:e14422. [PMID: 39698891 PMCID: PMC11896172 DOI: 10.1111/acel.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Ultraviolet B (UVB) radiation is a major contributor to skin photoaging. Although mainly absorbed by the epidermis, UVB photons managing to penetrate the upper dermis affect human dermal fibroblasts (HDFs), leading, among others, to the accumulation of senescent cells. In vitro studies have shown that repeated exposures to subcytotoxic UVB radiation doses provoke HDFs' premature senescence shortly after the end of the treatment period. Here, we found that repetitive exposures to non-cytotoxic UVB radiation doses after several days lead to mixed cultures, containing both senescent cells and fibroblasts resisting senescence. "Resistant" fibroblasts were more resilient to a novel intense UVB radiation stimulus. RNA-seq analysis revealed that ERCC6, encoding Cockayne syndrome group B (CSB) protein, is up-regulated in resistant HDFs compared to young and senescent cells. CSB was found to be a key molecule conferring protection toward UVB-induced cytotoxicity and senescence, as siRNA-mediated CSB loss-of-expression rendered HDFs significantly more susceptible to a high UVB radiation dose, while cells from a CSB-deficient patient were found to be more sensitive to UVB-mediated toxicity, as well as senescence. UVB-resistant HDFs remained normal (able to undergo replicative senescence) and non-tumorigenic. Even though they formed a distinct population in-between young and senescent cells, resistant HDFs retained numerous tissue-impairing characteristics of the senescence-associated secretory phenotype, including increased matrix metalloprotease activity and promotion of epidermoid tumor xenografts in immunodeficient mice. Collectively, here we describe a novel subpopulation of HDFs showing increased resistance to UVB-mediated premature senescence while retaining undesirable traits that may negatively affect skin homeostasis.
Collapse
Affiliation(s)
- Asimina Fotopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
- Department of ChemistryUniversity of PatrasPatrasGreece
| | - Maria T. Angelopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| |
Collapse
|
2
|
Liu Y, Xiong L, Wang L, Zhou J, Wang F, Luo F, Shen X. Targeting the gut-skin axis by food-derived active peptides ameliorates skin photoaging: a comprehensive review. Food Funct 2025; 16:366-388. [PMID: 39716899 DOI: 10.1039/d4fo04202f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Food-derived active peptides (FDAPs) are a class of peptides that exert antioxidant, anti-inflammatory, anti-aging and other effects. In recent years, active peptides from natural foods have been reported to improve skin photoaging, but their mechanisms have not been summarized to date. In this review, we focused on the preparation of FDAPs, their mechanisms of photoaging, and their function against photoaging through the gastrointestinal barrier. Furthermore, the latest progress on FDAPs in the prevention and treatment of skin photoaging via the gut-skin axis is summarized and discussed. FDAPs can be directly absorbed into the gastrointestinal tract and enter skin tissues to exert anti-photoaging effects; they can also regulate the gut microbiota, leading to changes in metabolites to ameliorate light-induced skin aging. Future work needs to focus on the delivery system and clinical validation of anti-photoaging peptides to provide solutions or suggestions for improving photoaging.
Collapse
Affiliation(s)
- Yang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Jianxin Zhou
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Yu JB, Padanilam BJ, Kim J. Activation of Yes-Associated Protein Is Indispensable for Transformation of Kidney Fibroblasts into Myofibroblasts during Repeated Administration of Cisplatin. Cells 2024; 13:1475. [PMID: 39273045 PMCID: PMC11393901 DOI: 10.3390/cells13171475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of CKD induced by repeated administration of low-dose cisplatin (RAC) has been established, its underlying mechanisms remain poorly understood. Here, we compared single administration of high-dose cisplatin (SAC) to repeated administration of low-dose cisplatin (RAC) in myofibroblast transformation and cellular morphology in a normal rat kidney fibroblast NRK-49F cell line. RAC instead of SAC transformed the fibroblasts into myofibroblasts as determined by α-smooth muscle actin, enlarged cell size as represented by F-actin staining, and increased cell flattening as expressed by the semidiameter ratio of attached cells to floated cells. Those phenomena, as well as cellular senescence, were significantly detected from the time right before the second administration of cisplatin. Interestingly, inhibition of the interaction between Yes-associated protein (YAP) and the transcriptional enhanced associated domain (TEAD) using Verteporfin remarkedly reduced cell size, cellular senescence, and myofibroblast transformation during RAC. These findings collectively suggest that YAP activation is indispensable for cellular hypertrophy, senescence, and myofibroblast transformation during RAC in kidney fibroblasts.
Collapse
Affiliation(s)
- Jia-Bin Yu
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Babu J. Padanilam
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jinu Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea;
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
4
|
Zheng ZH, Wang JJ, Lin JG, Ye WL, Zou JM, Liang LY, Yang PL, Qiu WL, Li YY, Yang SJ, Zhao M, Zhou Q, Li CZ, Li M, Li ZM, Zhang DM, Liu PQ, Liu ZP. Cytosolic DNA initiates a vicious circle of aging-related endothelial inflammation and mitochondrial dysfunction via STING: the inhibitory effect of Cilostazol. Acta Pharmacol Sin 2024; 45:1879-1897. [PMID: 38689095 PMCID: PMC11336235 DOI: 10.1038/s41401-024-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Endothelial senescence, aging-related inflammation, and mitochondrial dysfunction are prominent features of vascular aging and contribute to the development of aging-associated vascular disease. Accumulating evidence indicates that DNA damage occurs in aging vascular cells, especially in endothelial cells (ECs). However, the mechanism of EC senescence has not been completely elucidated, and so far, there is no specific drug in the clinic to treat EC senescence and vascular aging. Here we show that various aging stimuli induce nuclear DNA and mitochondrial damage in ECs, thus facilitating the release of cytoplasmic free DNA (cfDNA), which activates the DNA-sensing adapter protein STING. STING activation led to a senescence-associated secretory phenotype (SASP), thereby releasing pro-aging cytokines and cfDNA to further exacerbate mitochondrial damage and EC senescence, thus forming a vicious circle, all of which can be suppressed by STING knockdown or inhibition. Using next-generation RNA sequencing, we demonstrate that STING activation stimulates, whereas STING inhibition disrupts pathways associated with cell senescence and SASP. In vivo studies unravel that endothelial-specific Sting deficiency alleviates aging-related endothelial inflammation and mitochondrial dysfunction and prevents the development of atherosclerosis in mice. By screening FDA-approved vasoprotective drugs, we identified Cilostazol as a new STING inhibitor that attenuates aging-related endothelial inflammation both in vitro and in vivo. We demonstrated that Cilostazol significantly inhibited STING translocation from the ER to the Golgi apparatus during STING activation by targeting S162 and S243 residues of STING. These results disclose the deleterious effects of a cfDNA-STING-SASP-cfDNA vicious circle on EC senescence and atherogenesis and suggest that the STING pathway is a promising therapeutic target for vascular aging-related diseases. A proposed model illustrates the central role of STING in mediating a vicious circle of cfDNA-STING-SASP-cfDNA to aggravate age-related endothelial inflammation and mitochondrial damage.
Collapse
Affiliation(s)
- Zhi-Hua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiao-Jiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiu-Guo Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei-le Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jia-Mi Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Li-Yin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping-Lian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wan-Lu Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, 510006, China
| | - Yuan-Yuan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Man Zhao
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Qing Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, 510006, China
| | - Cheng-Zhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510006, China
| | - Min Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuo-Ming Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dong-Mei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Pei-Qing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhi-Ping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Tanha A, Rabiee M, Rostami A, Ahmadi S. A green-based approach for noninvasive skin rejuvenation: Potential application of hyaluronic acid. ENVIRONMENTAL RESEARCH 2023; 234:116467. [PMID: 37343757 DOI: 10.1016/j.envres.2023.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Gradually, loss of skin elasticity and elastic properties occurs after 30 years of age and will be associated with several changes, including creating wrinkles, skin laxity (sagging skin), and skin blemishes. In general, people all over the world are looking for ways to keep their facial skin young over time. There are several strategies to skin rejuvenate, including invasive and non-invasive methods. However, invasive methods have less popularity than non-invasive methods due to their need for specialist physicians (medical expertise), localized neuropathic pains for patients, the prevalence and incidence of skin infections, and high-cost clinical services. In the meantime, skin hydration is one of the simplest non-invasive methods for skin rejuvenation, and HA, with anti-aging and skin collagen-stimulating properties, has been introduced as a natural skin moisturizing agent. Therefore, since this composition maintains facial skin moisture and radiance, and improves its elasticity, it has always been considered by experts and specialist physicians. On the other hand, due to its lipophilic properties, hydrophilic macromolecules containing HA cannot pass through the stratum corneum. However, they have temporary and superficial softening effects on the skin. Hence, some nanocarriers have been suggested to overcome this problem and develop the properties and positive influences of HA on skin rejuvenation. Therefore, the present study aimed to introduce some new non-invasive approaches in facial skin rejuvenation, including applying liposomes, niosomes, ethosomes, and ionic liquids, to transport HA into the inner and deeper layers of the skin, including Dermis. In this review article, we examine non-invasive methods using nanoparticles to deliver HA to the epidermis and dermis of the skin for skin rejuvenation.
Collapse
Affiliation(s)
- Amirabas Tanha
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Azin Rostami
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Sun J, Lui K, Pang Q, Xu M, Zhao H, Shao J, Yu Y, Chu X, Liang Y, Xu J, Shen Z. miR-656-3p inhibits melanomas in vitro and in vivo by inducing senescence via inhibiting LMNB2. J Cancer Res Clin Oncol 2023; 149:10781-10796. [PMID: 37314513 DOI: 10.1007/s00432-023-04953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ultra-Violet Radiation (UVR) is the most significant exogenous contributor to skin aging. UVB causes the senescence of melanocytes, which results in a permanent arrest in the proliferative process. Senescence is also regarded as a physiological tumor-suppressing mechanism of normal cells. However, the mechanism of the relationship between melanocyte senescence and melanoma was not sufficiently clarified. METHODS Melanocytes and melanoma cells were irradiated with UVB for the indicated time. The miRNA expression profile of melanocytes were obtained by miRNA sequencing and confirmed by real-time PCR. Cell count kit-8 assays, cell cycle assays were also employed to explore the effect of miR-656-3p and LMNB2 on senescence. Dual-luciferase reporter assays were applied to determine the miRNA targets. Finally, a xenograft model and a photoaging model of mice were conducted to verified the function of miR-656-3p in vivo. RESULTS Melanoma cells did not alter into a senescence stage and the expressions of miR-656-3p had no significant changes under the same intensity of UVB radiation. miR-656-3p appeared to be upregulated in melanocytes rather than melanoma cells after UVB radiation. miR-656-3p could promote the photoaging of human primary melanocytes by targeting LMNB2. Finally, overexpression of miR-656-3p significantly induced senescence and inhibited the growth of melanomas in vitro and in vivo. CONCLUSION Our work not only demonstrated the mechanism by which miR-656-3p induced the senescence of melanocytes but also proposed a treatment strategy for melanomas by using miR-656-3p to induce senescence.
Collapse
Affiliation(s)
- Jiaqi Sun
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - KaHo Lui
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Pang
- Department of Plastic Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Mingyuan Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haibo Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjin Shao
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Yijia Yu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Chu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yehua Liang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zeren Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Jia C, Gong C, Lu Y, Xu N. Low-energy green light alleviates senescence-like phenotypes in a cell model of photoaging. J Cosmet Dermatol 2023; 22:505-511. [PMID: 35729802 PMCID: PMC10084420 DOI: 10.1111/jocd.15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ultraviolet B (UVB) affects diverse pathways in skin cells, resulting in skin photoaging. Skin fibroblasts internalize and degrade elastin and collagen, playing prominent roles in photoaging. Green light is used in many fields of dermatology, but few studies have examined its role in photoaging. The present work aimed to assess low-energy green light for its effects in a previously proposed cell model of photoaging and to explore the possible anti-photoaging mechanism. METHODS The stress-induced premature senescence (SIPS) model was constructed via repeated treatment of MDFs with UVB. Senescence-like phenotypes were compared among normal, low-energy green light pretreatment and UVB groups, for example, cell morphological properties, senescence-associated β-galactosidase (SA-β-gal) amounts, extracellular matrix (ECM) biosynthesis and degradation, and autophagy. RESULTS In comparison with the UVB group, the green light pretreatment group showed significantly decreased number of senescent mast cells and markedly declined signal intensity and amounts of SA-β-gal-positive cells. Furthermore, green light pretreatment directly affected ECM by increasing type I and type III collagen production and decreasing MMP-1 amounts. Moreover, changes in autophagy levels induced by green light pretreatment provided a potential mechanism underlying its anti-aging property. CONCLUSIONS Low-energy green light pretreatment improves senescence-like phenotypes in vitro, indicating a possible application for anti-aging in clinic after future research has uncovered the potential mechanism.
Collapse
Affiliation(s)
- Chuanlong Jia
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengchen Gong
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongzhou Lu
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
XIE Y, Wang J, Li Z, Luan Y, Li M, Peng X, Xiao S, Zhang S. Damage prevention effect of milk-derived peptides on UVB irradiated human foreskin fibroblasts and regulation of photoaging related indicators. Food Res Int 2022; 161:111798. [DOI: 10.1016/j.foodres.2022.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
|
9
|
Hrytsevych NR, Vereschaka VV, Nikitina NS, Stepanova LI, Beregova TV. THE CONTENT OF METALLOPROTEINASE-2 AND METALLOPROTEINASE-9 IN THE SKIN OF RATS OF DIFFERENT AGES AFTER CLOSURE OF THE WOUND BED. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1975-1978. [PMID: 36129081 DOI: 10.36740/wlek202208206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: The aim of the study was to determine the content of metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) in the skin of rats of different ages after closure of the wound bed. PATIENTS AND METHODS Materials and methods: The studies were performed on 40 white nonlinear male rats, 20 of which were 3 months old and 20 - 12 months. In each group 10 rats were control and in 10 others facelift operations were performed and cut wounds on the anterior abdominal wall were simulated. On the day of complete healing, the animals were killed, and the skin was cut in the areas of the former wound bed. In control rats, the skin was excised in the same places. The content of MMPs was determined in the skin by enzyme-linked immunosorbent assay. RESULTS Results: In rats aged 3 months after re-epithelialization of the wound bed, the content of MMP-2 was 17,1% higher compared to control rats but the level of MMP-9 didn't change. In control rats aged 12 months, the levels of MMP-2 and MMP-9 in the skin were 22,9% and 34,4% lower compared to control rats at 3 months of age. In rats 12 months of age after re-epithelialization of the wound bed, the content of MMP-2 and MMP-9 were 92,6% and 102,5% higher compared to control rats. CONCLUSION Conclusions: We suggested that the violation of homeostasis between MMPs in rats 12 months of age disrupts wound healing and promotes the formation of pathological scars.
Collapse
Affiliation(s)
- Nazar R Hrytsevych
- HIGHER EDUCATIONAL COMMUNAL INSTITUTION OF THE LVIV REGIONAL COUNCIL "ANDREI KRUPINSKY LVIV MEDICAL ACADEMY", LVIV, UKRAINE
| | | | | | | | | |
Collapse
|
10
|
Gromkowska-Kępka KJ, Markiewicz-Żukowska R, Nowakowski P, Naliwajko SK, Moskwa J, Puścion-Jakubik A, Bielecka J, Grabia M, Mielcarek K, Soroczyńska J, Socha K. Chemical Composition and Protective Effect of Young Barley ( Hordeum vulgare L.) Dietary Supplements Extracts on UV-Treated Human Skin Fibroblasts in In Vitro Studies. Antioxidants (Basel) 2021; 10:antiox10091402. [PMID: 34573034 PMCID: PMC8467029 DOI: 10.3390/antiox10091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Young barley seems to be a promising material for use as nutricosmetic due to the presence of many biologically active compounds. The aim of this study was to evaluate the effect of Hordeum vulgare L. extracts on human skin fibroblasts exposed to ultraviolet radiation B (UVB) radiation. Analysis of the chemical composition showed a predominance of 9,12,15-octadecatrienoic acid. The quality assessment showed that young barley preparations have high total polyphenolic content (TPC) and favourable total antioxidant status (TAS). They also contain antioxidant elements such as zinc, copper, and selenium. Furthermore, the analyzed products were found to be safe in terms of toxic elements (lead, cadmium and mercury) and lack of cytotoxic effect of young barley extracts on cells. In vitro bioactivity assays showed that young barley extract increased the survival rate and accelerated the migration of fibroblasts in research models with UVB radiation. The application of both extracts caused an increase in DNA biosynthesis, and in the number of cells arrested in S phase. Moreover, an inhibitory effect of the tested extracts on the expression of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) was observed. The results indicate that young barley extracts, due to protective as well as restorative effect, could potentially be used in the production of nutricosmetics and skin care products.
Collapse
|
11
|
IGF-1 Upregulates Biglycan and Decorin by Increasing Translation and Reducing ADAMTS5 Expression. Int J Mol Sci 2021; 22:ijms22031403. [PMID: 33573338 PMCID: PMC7866853 DOI: 10.3390/ijms22031403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Proteoglycan (PG) is a glycosaminoglycan (GAG)-conjugated protein essential for maintaining tissue strength and elasticity. The most abundant skin PGs, biglycan and decorin, have been reported to decrease as skin ages. Insulin-like growth factor-1 (IGF-1) is important in various physiological functions such as cell survival, growth, and apoptosis. It is well known that the serum level of IGF-1 decreases with age. Therefore, we investigated whether and how IGF-1 affects biglycan and decorin. When primary cultured normal human dermal fibroblasts (NHDFs) were treated with IGF-1, protein levels of biglycan and decorin increased, despite no difference in mRNA expression. This increase was not inhibited by transcription blockade using actinomycin D, suggesting that it is mediated by IGF-1-induced enhanced translation. Additionally, both mRNA and protein expression of ADAMTS5, a PG-degrading enzyme, were decreased in IGF-1-treated NHDFs. Knockdown of ADAMTS5 via RNA interference increased protein expression of biglycan and decorin. Moreover, mRNA and protein expression of ADAMTS5 increased in aged human skin tissues compared to young tissue. Overall, IGF-1 increases biglycan and decorin, which is achieved by improving protein translation to increase synthesis and preventing ADAMTS5-mediated degradation. This suggests a new role of IGF-1 as a regulator for biglycan and decorin in skin aging process.
Collapse
|
12
|
Park SH, Kim JG, Jang YA, Bayazid AB, Ou Lim B. Fermented black rice and blueberry with
Lactobacillus plantarum
MG4221 improve UVB-induced skin injury. FOOD AGR IMMUNOL 2021; 32:499-515. [DOI: 10.1080/09540105.2021.1967300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Seo Hyun Park
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- R&D Center, Ahn-Gook Health Co., Ltd., Seoul, Korea
| | - Jae Gon Kim
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- Research of Institute of Inflammatory Diseases, BK21FOUR GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, Republic of Korea
| | - Young Ah Jang
- Convergence Research Center for Smart Healthcare, R&DB Foundation of Kyungsung University, Busan, Korea
| | - Al Borhan Bayazid
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- Research of Institute of Inflammatory Diseases, BK21FOUR GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
13
|
Xu P, Xin Y, Zhang Z, Zou X, Xue K, Zhang H, Zhang W, Liu K. Extracellular vesicles from adipose-derived stem cells ameliorate ultraviolet B-induced skin photoaging by attenuating reactive oxygen species production and inflammation. Stem Cell Res Ther 2020; 11:264. [PMID: 32611371 PMCID: PMC7329484 DOI: 10.1186/s13287-020-01777-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Large numbers of adipose-derived stem cells (ADSCs) are easily obtained and have been demonstrated to protect against ultraviolet B (UVB)-induced skin photoaging. Extracellular vesicles (EVs) exhibit some of the same effects as the cells from which they originate and have many advantages over stem cells. In particular, their application circumvents many safety concerns associated with cell therapy. Thus, as a cell-free agent, adipose-derived stem cell extracellular vesicles (ADSC-EVs) have anti-photoaging potential. However, the protective effects of ADSC-EVs in skin photoaging remain uncertain. METHODS To investigate the effect of ADSC-EVs on mice with UVB-induced photoaging, 150 μg and 300 μg ADSC-EVs were subcutaneously injected weekly into photoaging mice for 8 weeks. The protective effect was evaluated by gross assessment and hematoxylin and eosin, Masson's trichrome, and β-galactosidase staining. Proliferating cell nuclear antigen, CD68, and dihydroethidium staining were performed to evaluate cell proliferation, inflammation infiltration, and reactive oxygen species (ROS) production, respectively. In vitro, 100 μg/mL and 200 μg/mL ADSC-EVs were used to treat photoaging fibroblasts (FBs). β-galactosidase staining and collagen 1 and matrix metalloproteinase 3 (MMP-3) expression were analyzed to evaluate FB senescence. To explain the protective mechanism of ADSC-EVs, their role in regulating ROS production, antioxidant enzyme expression, cell cycle arrest, and inflammation was evaluated. RESULTS In vivo, we showed that ADSC-EVs decreased skin wrinkles in mice with UVB-induced photoaging, while promoting epidermal cell proliferation and attenuating macrophage infiltration and ROS production. In vitro, we showed that ADSC-EVs increased FB activity and protected FBs from UVB-induced senescence, attenuated raw 264.7 cell differentiation from M0 to M1 macrophages, reduced intracellular ROS production, promoted antioxidant enzyme expression, and rescued FBs from cell cycle arrest. CONCLUSION The anti-photoaging effect of ADSC-EVs was attributed to their ability to attenuate ROS production and the inflammatory response, which are key factors in MMP activation and collagen degradation.
Collapse
Affiliation(s)
- Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Xin
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Huizhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
14
|
Kim WO, Kim SA, Jung YA, Suh SI, Ryoo YW. Ultraviolet B Downregulated Aquaporin 1 Expression via the MEK/ERK pathway in the Dermal Fibroblasts. Ann Dermatol 2020; 32:213-222. [PMID: 33911740 PMCID: PMC7992625 DOI: 10.5021/ad.2020.32.3.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/04/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Aquaporin 1 (AQP1) is a transmembrane channel protein that allows rapid transposition of water and gases, in recent discoveries of AQP1 function involve cell proliferation, differentiation, wound healing, inflammation and infection in different cell types, suggesting that AQP1 plays key roles in diverse biologic process. Until now, less is known about the function of AQP1 on ultraviolet radiation induced photoaged skin. Objective In this study we set out to examine whether AQP1 expression may be influenced by repeated irradiation of ultraviolet B (UVB) in cultured dermal fibroblasts. Methods To elucidate the function of AQP1 in skin photoaging, human dermal fibroblasts (HS68) were irradiated by a series of 4 sub-cytotoxic doses of UVB which are known as UV-induced cell premature senescence model. Reverse transcription polymerase chain reaction and Western blotting were conducted to detect AQP1 expression from different groups. Then, cells were transfected with AQP1-targeting small interfering RNA. The activities of signaling proteins upon UVB irradiation were investigated to determine which pathways are involved in AQP1 expression. Results AQP1 expression was increased by 100 mJ/cm2 of UVB irradiation, but decreased by 200 mJ/cm2. Depletion of the AQP1 increased the apoptotic sensitivity of cells to UVB, as judged by upregulation of the p53, p21, poly (adenosine diphosphate [ADP]-ribose) polymerase and Bax together with the increased Bax/Bcl2 ratio. UVB induced downregulation of AQP1 was significantly attenuated by pretreatment with the MEK/ERK inhibitor (PD98059). Conclusion We concluded that AQP1 expression was down-regulated by repeated exposure of UVB via MEK/ERK activation pathways. The AQP1 reduction by UVB lead to changes of physiological functions in dermal fibroblasts, which might be associated with the occurrence and development of UVB induced photoaging.
Collapse
Affiliation(s)
- Won-Oh Kim
- Department of Dermatology, Institute for Medical Science, School of Medicine, Keimyung University, Daegu, Korea
| | - Sung-Ae Kim
- Department of Dermatology, Institute for Medical Science, School of Medicine, Keimyung University, Daegu, Korea
| | - Yun-A Jung
- Department of Dermatology, Institute for Medical Science, School of Medicine, Keimyung University, Daegu, Korea
| | - Sung-Il Suh
- Department of Microbiology, Institute for Medical Science, School of Medicine, Keimyung University, Daegu, Korea
| | - Young-Wook Ryoo
- Department of Dermatology, Institute for Medical Science, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
15
|
Shin JW, Kwon SH, Choi JY, Na JI, Huh CH, Choi HR, Park KC. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int J Mol Sci 2019; 20:ijms20092126. [PMID: 31036793 PMCID: PMC6540032 DOI: 10.3390/ijms20092126] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023] Open
Abstract
The dermis is primarily composed of the extracellular matrix (ECM) and fibroblasts. During the aging process, the dermis undergoes significant changes. Collagen, which is a major component of ECM, becomes fragmented and coarsely distributed, and its total amount decreases. This is mainly due to increased activity of matrix metalloproteinases, and impaired transforming growth factor-β signaling induced by reactive oxygen species generated during aging. The reduction in the amount of collagen hinders the mechanical interaction between fibroblasts and the ECM, and consequently leads to the deterioration of fibroblast function and further decrease in the amount of dermal collagen. Other ECM components, including elastic fibers, glycosaminglycans (GAGs), and proteoglycans (PGs), also change during aging, ultimately leading to a reduction in the amount of functional components. Elastic fibers decrease in intrinsically aged skin, but accumulate abnormally in photoaged skin. The changes in the levels of GAGs and PGs are highly diverse, and previous studies have reported conflicting results. A reduction in the levels of functional dermal components results in the emergence of clinical aging features, such as wrinkles and reduced elasticity. Various antiaging approaches, including topicals, energy-based procedures, and dermal fillers, can restore the molecular features of dermal aging with clinical efficacy. This review summarizes the current understanding of skin aging at the molecular level, and associated treatments, to put some of the new antiaging technology that has emerged in this rapidly expanding field into molecular context.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Soon-Hyo Kwon
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Ji-Young Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Kyung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
16
|
Li Y, Hou X, Yang C, Pang Y, Li X, Jiang G, Liu Y. Photoprotection of Cerium Oxide Nanoparticles against UVA radiation-induced Senescence of Human Skin Fibroblasts due to their Antioxidant Properties. Sci Rep 2019; 9:2595. [PMID: 30796322 PMCID: PMC6385175 DOI: 10.1038/s41598-019-39486-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/13/2018] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet (UV) irradiation, particularly ultraviolet A (UVA), stimulates reactive oxygen species (ROS) production in the epidermis and dermis, which plays a major part in the photoageing of human skin. Several studies have demonstrated that cerium oxide nanoparticles (CeO2 NP) can exhibit an antioxidant effect and free radical scavenging activity. However, the protective role of CeO2 NP in skin photoageing and the underlying mechanisms are unclear. In this study, we investigated the effects of CeO2 NP on UVA-irradiated human skin fibroblasts (HSFs) and explored the potential signalling pathway. CeO2 NP had no apparent cytotoxicity, and could reduce the production of proinflammatory cytokines, intracellular ROS, senescence-associated β-galactosidase activity, and downregulate phosphorylation of c-Jun N-terminal kinases (JNKs) after exposure to UVA radiation. Based on our findings, CeO2 NPs have great potential against UVA radiation-induced photoageing in HSFs via regulating the JNK signal-transduction pathway to inhibit oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaoyang Hou
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chunsheng Yang
- Department of Dermatology, the Affiliated Huai'an Hospital of Xuzhou Medical University, the Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Yanyu Pang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xinxin Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Yanqun Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
17
|
Wen W, Chen J, Ding L, Luo X, Zheng X, Dai Q, Gu Q, Liu C, Liang M, Guo X, Liu P, Li M. Astragaloside exerts anti-photoaging effects in UVB-induced premature senescence of rat dermal fibroblasts through enhanced autophagy. Arch Biochem Biophys 2018; 657:31-40. [DOI: 10.1016/j.abb.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/31/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
|
18
|
Kawashima S, Funakoshi T, Sato Y, Saito N, Ohsawa H, Kurita K, Nagata K, Yoshida M, Ishigami A. Protective effect of pre- and post-vitamin C treatments on UVB-irradiation-induced skin damage. Sci Rep 2018; 8:16199. [PMID: 30385817 PMCID: PMC6212420 DOI: 10.1038/s41598-018-34530-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Several studies have reported the effects of vitamin C (L-ascorbic acid, AA) on ultraviolet B (UVB)-induced cell damage using cultured keratinocytes. However, the epidermis consists of multiple cell layers, and the effect of AA on UVB-induced damage to the human epidermis remains unclear. Therefore, we investigated the effect of AA on UVB-induced skin damage using reconstituted human epidermis. The reconstituted human epidermal surface was treated with 100 and 500 mM AA and cultured for 3 h before (pre-AA treatment) or after (post-AA treatment) 120 mJ/cm2 UVB irradiation. Pre- and post-AA treatments of the epidermal surface suppressed UVB-induced cell death, apoptosis, DNA damage, reactive oxygen species (ROS) production, and the inflammatory response by downregulating tumour necrosis factor-α (TNF-α) expression and release. Moreover, the pre-AA treatment was more effective at preventing UVB-induced skin damage than the post-AA treatment. In summary, pre- and post-AA treatments of the epidermis prevent UVB-induced damage.
Collapse
Affiliation(s)
- Saki Kawashima
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.,Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Tomoko Funakoshi
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Yasunori Sato
- Department of Bioenvironmental Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, 920-1181, Japan
| | | | | | | | - Kisaburo Nagata
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
19
|
Abstract
As aging involves oxidant injury, we examined the role of the recently described Na/K-ATPase oxidant amplification loop (NKAL). First, C57Bl6 old mice were given a western diet to stimulate oxidant injury or pNaKtide to antagonize the NKAL. The western diet accelerated functional and morphological evidence for aging whereas pNaKtide attenuated these changes. Next, human dermal fibroblasts (HDFs) were exposed to different types of oxidant stress in vitro each of which increased expression of senescence markers, cell-injury, and apoptosis as well as stimulated the NKAL. Further stimulation of the NKAL with ouabain augmented cellular senescence whereas treatment with pNaKtide attenuated it. Although N-Acetyl Cysteine and Vitamin E also ameliorated overall oxidant stress to a similar degree as pNaKtide, the pNaKtide produced protection against senescence that was substantially greater than that seen with either antioxidant. In particular, pNaKtide appeared to specifically ameliorate nuclear oxidant stress to a greater degree. These data demonstrate that the NKAL is intimately involved in the aging process and may serve as a target for anti-aging interventions.
Collapse
|
20
|
Choi SY, Bin BH, Kim W, Lee E, Lee TR, Cho EG. Exposure of human melanocytes to UVB twice and subsequent incubation leads to cellular senescence and senescence-associated pigmentation through the prolonged p53 expression. J Dermatol Sci 2018. [PMID: 29525471 DOI: 10.1016/j.jdermsci.2018.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is a well-known factor in skin aging and pigmentation, and daily exposure to subcytotoxic doses of UVR might accelerate senescence and senescence-associated phenomena in human melanocytes. OBJECTIVE To establish an in vitro melanocyte model to mimic the conditions of repeated exposure to subcytotoxic doses of UVB irradiation and to investigate key factor(s) for melanocyte senescence and senescence-associated phenomena. METHODS Human epidermal melanocytes were exposed twice with 20 mJ/cm2 UVB over a 24-h interval and subsequently cultivated for 2 weeks. Senescent phenotypes were addressed morphologically, and by measuring the senescence-associated β-galactosidase (SA-β-Gal) activity, cell proliferation capacity with cell cycle analysis, and melanin content. RESULTS The established protocol successfully induced melanocyte senescence, and senescent melanocytes accompanied hyperpigmentation. Prolonged expression of p53 was responsible for melanocyte senescence and hyperpigmentation, and treatment with the p53-inhibitor pifithrin-α at 2-weeks post-UVB irradiation, but not at 48 h, significantly reduced melanin content along with decreases in tyrosinase levels. CONCLUSION Melanocyte senescence model will be useful for studying the long-term effects of UVB irradiation and pigmentation relevant to physiological photoaging, and screening compounds effective for senescence-associated p53-mediated pigmentation.
Collapse
Affiliation(s)
- Suh-Yeon Choi
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Bum-Ho Bin
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Wanil Kim
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Eunkyung Lee
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Tae Ryong Lee
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Eun-Gyung Cho
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea.
| |
Collapse
|
21
|
Na J, Bak DH, Im SI, Choi H, Hwang JH, Kong SY, No YA, Lee Y, Kim BJ. Anti‑apoptotic effects of glycosaminoglycans via inhibition of ERK/AP‑1 signaling in TNF‑α‑stimulated human dermal fibroblasts. Int J Mol Med 2018; 41:3090-3098. [PMID: 29436595 DOI: 10.3892/ijmm.2018.3483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/07/2018] [Indexed: 11/05/2022] Open
Abstract
It has been established that glycosaminoglycans (GAGs) serve an important role in protecting the skin against the effects of aging. A previous clinical trial by our group identified that a cream containing GAGs reduced wrinkles and increased skin elasticity, dermal density and skin tightening. However, the exact molecular mechanism underlying the anti‑aging effect of GAGs has not yet been fully elucidated. The present study assessed the influence of GAGs on cell viability, collagen synthesis and collagen synthesis‑associated signaling pathways in tumor necrosis factor‑α (TNF‑α)‑stimulated human dermal fibroblasts (HDFs); an in vitro model of aging. The results demonstrated that GAGs restored type I collagen synthesis and secretion by inhibiting extracellular signal‑regulated kinase (ERK) signaling in TNF‑α‑stimulated HDFs. However, GAGs did not activate c‑jun N‑terminal kinase or p38. It was determined that GAGs suppressed the phosphorylation of downstream transcription factors of ERK activation, activator protein‑1 (AP‑1; c‑fos and c‑jun), leading to a decrease in matrix metalloproteinase‑1 (MMP‑1) levels and the upregulation of tissue inhibitor of metalloproteinase‑1 in TNF‑α‑stimulated HDFs. In addition, GAGs attenuated the apoptosis of HDFs induced by TNF‑α. The current study revealed a novel mechanism: GAGs serve a crucial role in ameliorating TNF‑α‑induced MMP‑1 expression, which causes type I collagen degeneration via the inactivation of ERK/AP‑1 signaling in HDFs. The results of the present study indicate the potential application of GAGs as effective anti‑aging agents that induce wrinkle reduction.
Collapse
Affiliation(s)
- Jungtae Na
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Dong-Ho Bak
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Song I Im
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Hyangtae Choi
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Jung Hyun Hwang
- Taeyoung Co., Ltd., Seongnam, Gyeonggi 13467, Republic of Korea
| | - Su Yeon Kong
- Taeyoung Co., Ltd., Seongnam, Gyeonggi 13467, Republic of Korea
| | - Yeon A No
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Yonghee Lee
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
22
|
Xuan SH, Park YM, Park SH, Jeong HJ, Park SN. Suppression of Ultraviolet B-mediated Matrix Metalloproteinase Generation by Sorbus commixta Twig Extract in Human Dermal Fibroblasts. Photochem Photobiol 2018; 94:370-377. [PMID: 29164624 DOI: 10.1111/php.12868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/15/2017] [Indexed: 01/27/2023]
Abstract
Sorbus commixta is a traditional oriental medicinal plant that grows in East Asian countries such as Korea, Japan and China. The twig of S. commixta has been considered valuable for centuries to treat diseases including asthma, cough and other bronchial disorders. However, the effect of S. commixta twig extract on human skin has not been investigated well. The present study aimed at assessing the antiphotoaging effect of S. commixta twig ethanol extract (STE) on ultraviolet B (UVB)-induced matrix metalloproteinase (MMP) levels and its underlying mechanism in human dermal fibroblasts. In this study, we found that STE (12.5-50 μg mL-1 ) treatment significantly inhibited UVB-induced MMP-1, MMP-2 and MMP-3 expression, concomitant with a downregulation of intracellular ROS generation. These effects might be associated with a STE-induced inhibition of the mitogen-activated protein kinase (MAPK) pathway. Furthermore, STE also downregulated UVB-induced c-Fos expression in a concentration-dependent manner, but had no inhibitory effect on c-Jun phosphorylation. Taken together, these results indicate that STE may be an antiphotoaging agent and that its effect may occur via its inhibition of MMPs expression and MAPK pathway activation.
Collapse
Affiliation(s)
- Song Hua Xuan
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Korea
| | - Young Min Park
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Korea
| | - So Hyun Park
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Korea
| | - Hyo Jin Jeong
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Korea
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Nowon-gu, Seoul, Korea
| |
Collapse
|
23
|
The Red Algae Compound 3-Bromo-4,5-dihydroxybenzaldehyde Protects Human Keratinocytes on Oxidative Stress-Related Molecules and Pathways Activated by UVB Irradiation. Mar Drugs 2017; 15:md15090268. [PMID: 28841171 PMCID: PMC5618407 DOI: 10.3390/md15090268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022] Open
Abstract
Skin exposure to ultraviolet B (UVB) irradiation leads to the generation of reactive oxygen species (ROS). Excessive ROS cause aging of the skin via basement membrane/extracellular matrix degradation by matrix metalloproteinases (MMPs). We recently demonstrated that 3-bromo-4,5-dihydroxybenzaldehyde (BDB), a natural compound of red algae, had a photo-protective effect against UVB-induced oxidative stress in human keratinocytes. The present study focused on the effect of BDB on UVB-irradiated photo-aging in HaCaT keratinocytes and the underlying mechanism. BDB significantly impeded MMP-1 activation and expression, and abrogated the activation of mitogen-activated protein kinases and intracellular Ca2+ level in UVB-irradiated HaCaT cells. Moreover, BDB decreased the expression levels of c-Fos and phospho-c-Jun and the binding of activator protein-1 to the MMP-1 promoter induced by UVB irradiation. These results offer evidence that BDB is potentially useful for the prevention of UVB-irradiated skin damage.
Collapse
|
24
|
Jia C, Lu Y, Bi B, Chen L, Yang Q, Yang P, Guo Y, Zhu J, Zhu N, Liu T. Platelet-rich plasma ameliorates senescence-like phenotypes in a cellular photoaging model. RSC Adv 2017. [DOI: 10.1039/c6ra26725d] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Platelet-rich plasma (PRP) is a portion of blood plasma enriched with platelets widely investigated for accelerating bone and soft tissue healing.
Collapse
|
25
|
Oh Y, Lim HW, Huang YH, Kwon HS, Jin CD, Kim K, Lim CJ. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:170-6. [DOI: 10.1016/j.jphotobiol.2016.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/20/2016] [Indexed: 11/29/2022]
|
26
|
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are abundant structural components of the extracellular matrix in addition to collagen fibers. Hyaluronic acid (HA), one of GAGs, forms proteoglycan aggregates, which are large complexes of HA and HA-binding PGs. Their crosslinking to other matrix proteins such as the collagen network results in the formation of supermolecular structures and functions to increase tissue stiffness. Skin aging can be classified as intrinsic aging and photoaging based on the phenotypes and putative mechanism. While intrinsic aging is characterized by a thinned epidermis and fine wrinkles caused by advancing age, photoaging is characterized by deep wrinkles, skin laxity, telangiectasias, and appearance of lentigines and is mainly caused by chronic sun exposure. The major molecular mechanism governing skin aging processes has been attributed to the loss of mature collagen and increased matrix metalloproteinase expression. However, various strategies focusing on collagen turnover remain unsatisfactory for the reversal or prevention of skin aging. Although the expression of GAGs and PGs in the skin and their regulatory mechanisms are not fully understood, we and others have elucidated various changes in GAGs and PGs in aged skin, suggesting that these molecules are important contributors to skin aging. In this review, we focus on skin-abundant GAGs and PGs and their changes in human skin during the skin aging process.
Collapse
|
27
|
Han X, Piao MJ, Kim KC, Madduma Hewage SRK, Yoo ES, Koh YS, Kang HK, Shin JH, Park Y, Yoo SJ, Chae S, Hyun JW. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage. Biomol Ther (Seoul) 2015; 23:357-66. [PMID: 26157553 PMCID: PMC4489831 DOI: 10.4062/biomolther.2015.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 12/18/2022] Open
Abstract
Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.
Collapse
Affiliation(s)
- Xia Han
- School of Medicine, Jeju National University, Jeju 690-756
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 690-756
| | - Ki Cheon Kim
- School of Medicine, Jeju National University, Jeju 690-756
| | | | - Eun Sook Yoo
- School of Medicine, Jeju National University, Jeju 690-756
| | - Young Sang Koh
- School of Medicine, Jeju National University, Jeju 690-756
| | | | - Jennifer H Shin
- Department of Mechanical Engineering & Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701
| | - Yeunsoo Park
- National Fusion Research Institute, Plasma Technology Research Center, Gunsan 573-540
| | - Suk Jae Yoo
- National Fusion Research Institute, Plasma Technology Research Center, Gunsan 573-540
| | - Sungwook Chae
- Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756
| |
Collapse
|
28
|
Chen L, Bi B, Zeng J, Zhou Y, Yang P, Guo Y, Zhu J, Yang Q, Zhu N, Liu T. Rosiglitazone ameliorates senescence-like phenotypes in a cellular photoaging model. J Dermatol Sci 2015; 77:173-81. [DOI: 10.1016/j.jdermsci.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
|
29
|
Zhu Y, Zhang Y, Liu Y, Tao R, Xia H, Zheng R, Shi Y, Tang S, Zhang W, Liu W, Cao Y, Zhou G. The Influence of Chm-I Knockout on Ectopic Cartilage Regeneration and Homeostasis Maintenance. Tissue Eng Part A 2015; 21:782-92. [PMID: 25251892 DOI: 10.1089/ten.tea.2014.0277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yueqian Zhu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yingying Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yu Liu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Ran Tao
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Huitang Xia
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, P.R. China
| | - Rui Zheng
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yuan Shi
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Shengjian Tang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, P.R. China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Wei Liu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yilin Cao
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Tissue Engineering Center of China, Shanghai, P.R. China
| |
Collapse
|
30
|
Ham SA, Hwang JS, Kang ES, Yoo T, Lim HH, Lee WJ, Paek KS, Seo HG. Ethanol extract of Dalbergia odorifera protects skin keratinocytes against ultraviolet B-induced photoaging by suppressing production of reactive oxygen species. Biosci Biotechnol Biochem 2015; 79:760-6. [PMID: 25560618 DOI: 10.1080/09168451.2014.993916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has been widely used in northern and eastern Asia to treat diverse diseases. Here, we investigated the anti-senescent effects of ethanolic extracts of Dalbergia odorifera (EEDO) in ultraviolet (UV) B-irradiated skin cells. EEDO significantly inhibited UVB-induced senescence of human keratinocytes in a concentration-dependent manner, concomitant with inhibition of reactive oxygen species (ROS) generation. UVB-induced increases in the levels of p53 and p21, biomarkers of cellular senescence, were almost completely abolished in the presence of EEDO. Sativanone, a major constituent of EEDO, also attenuated UVB-induced senescence and ROS generation in keratinocytes, indicating that sativanone is an indexing (marker) molecule for the anti-senescence properties of EEDO. Finally, treatment of EEDO to mice exposed to UVB significantly reduced ROS levels and the number of senescent cells in the skin. Thus, EEDO confers resistance to UVB-induced cellular senescence by inhibiting ROS generation in skin cells.
Collapse
Affiliation(s)
- Sun Ah Ham
- a Department of Animal Biotechnology , Konkuk University , Seoul , Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|