1
|
Zimakoff AC, Jensen A, Malon M, Sørensen JK, Vittrup DM, Jensen SK, Bay ET, Svensson J, Stensballe LG. Measles-mumps-rubella vaccination at 6 months of age and the risk of atopic disease in the first year of life: Results from a Danish placebo-controlled randomised trial. J Infect 2025; 90:106433. [PMID: 39904460 DOI: 10.1016/j.jinf.2025.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/25/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND In observational studies, childhood vaccinations have been associated with atopic diseases. However, results are conflicting and evidence from randomised trials is lacking. METHODS Atopic disease after interventional measles-mumps-rubella (MMR) vaccine was a pre-planned secondary outcome of the MMR trial, a randomised, double-blind, placebo-controlled trial in 6540 Danish infants in the high-income setting of Denmark. At two hospitals, infants 5-7 months of age were randomly assigned 1:1 to receive an intramuscular injection with M-M-R VaxPro or placebo (solvent only). Randomisation was stratified by site, sex, and prematurity (< 37 weeks of gestation). The infants were followed up in the Danish health registries to detect eczema, asthma-like disease, and allergic rhinoconjunctivitis, the composite outcome of the three diseases being the primary endpoint of the present study. The trial was registered in the EU Clinical Trials Registry (2016-001901-18) and ClinicalTrials.gov (NTC03780179). FINDINGS Between April 2019 and October 2021, 6540 infants were randomised (3266 MMR and 3274 placebo). There was no difference in the rate of atopic disease before 12 months of age between the MMR and placebo group (76 events MMR vs. 77 placebo), resulting in a hazard ratio of 0·98 (95% confidence interval 0·72 to 1·35). Secondary analyses with follow-up until 24 months of age yielded essentially identical results. INTERPRETATION Based on trial data in 6540 Danish infants randomised to MMR or placebo at 5-7 months, no association between MMR and atopic disease in early childhood was observed.
Collapse
Affiliation(s)
- Anne Cathrine Zimakoff
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", Capital Region of Denmark, Denmark.
| | - Andreas Jensen
- The Child and Adolescent Clinic, The Juliane Marie Center and Mary Elizabeth Hospital, The Danish National University Hospital "Rigshospitalet", Capital Region of Denmark, Denmark
| | - Michelle Malon
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", Capital Region of Denmark, Denmark
| | - Jesper Kiehn Sørensen
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", Capital Region of Denmark, Denmark
| | - Dorthe Maria Vittrup
- The Child and Adolescent Clinic, The Juliane Marie Center, The Danish National University Hospital "Rigshospitalet", Capital Region of Denmark, Denmark
| | - Signe Kjeldgaard Jensen
- Copenhagen Prospective Studies on Asthma in Childhood, The Child and Adolescent Department, The University Hospital Herlev, Capital Region of Denmark, Denmark
| | - Emma Therese Bay
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jannet Svensson
- The Child and Adolescent Department, The University Hospital Herlev, Steno Diabetes Center Copenhagen, Capital Region of Denmark, Denmark
| | - Lone Graff Stensballe
- The Child and Adolescent Clinic, The Juliane Marie Center and Mary Elizabeth Hospital, The Danish National University Hospital "Rigshospitalet", Capital Region of Denmark, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
3
|
Reynard O, Gonzalez C, Dumont C, Iampietro M, Ferren M, Le Guellec S, Laurie L, Mathieu C, Carpentier G, Roseau G, Bovier FT, Zhu Y, Le Pennec D, Montharu J, Addetia A, Greninger AL, Alabi CA, Brisebard E, Moscona A, Vecellio L, Porotto M, Horvat B. Nebulized fusion inhibitory peptide protects cynomolgus macaques from measles virus infection. Nat Commun 2022; 13:6439. [PMID: 36307480 PMCID: PMC9616412 DOI: 10.1038/s41467-022-33832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D aerosolltherapy department of DTF medical (Saint Etienne, France), Faculté de médecine, Université de Tours, 37032, Tours, France
| | - Lajoie Laurie
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAe), UMR1282, Infectiologie et santé publique (ISP), Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | | | | | - Francesca T Bovier
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yun Zhu
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Laboratory of Infection and Virology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Deborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, CEPR U1100, Université de Tours, 37032, Tours, France
| | | | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Anne Moscona
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | - Matteo Porotto
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Studies of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
4
|
Role of Epithelium-Derived Cytokines in Atopic Dermatitis and Psoriasis: Evidence and Therapeutic Perspectives. Biomolecules 2021; 11:biom11121843. [PMID: 34944487 PMCID: PMC8699296 DOI: 10.3390/biom11121843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis and psoriasis are two of the most common chronic skin conditions. Current target therapies represent viable and safe solutions for the most severe cases of these two dermatoses but, presently, several limitations exist in terms of efficacy and side effects. A new class of products, epithelium-derived cytokines (TSLP, IL-25, IL-33), show an increasing potential for use in target therapy for these patients, and demonstrate a direct link between a generalized inflammatory and oxidative stress status and the human skin. A review was conducted to better understand their role in the aforementioned conditions. Of these three molecules, TSLP led has been most often considered in studies regarding target therapies, and most of the results in the literature are related to this cytokine. These three cytokines share common stimuli and are linked to each other in both acute and chronic phases of these diseases, and have been challenged as target therapies or biomarkers of disease activity. The results lead to the conclusion that epithelium-derived cytokines could represent a therapeutic opportunity for these patients, especially in itch control. Furthermore, they might work better when paired together with currently available therapies or in combination with in-development treatments. Further studies are needed in order to verify the efficacy and safety of the biologic treatments currently under development.
Collapse
|
5
|
Mentha arvensis Essential Oil Exerts Anti-Inflammatory in LPS-Stimulated Inflammatory Responses via Inhibition of ERK/NF-κB Signaling Pathway and Anti-Atopic Dermatitis-like Effects in 2,4-Dinitrochlorobezene-Induced BALB/c Mice. Antioxidants (Basel) 2021; 10:antiox10121941. [PMID: 34943044 PMCID: PMC8750489 DOI: 10.3390/antiox10121941] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
The mechanism of atopic dermatitis (AD) is modulated by the release of cytokines and chemokines through the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) signaling pathway. Topical steroids are used to treat AD, but some people need safer anti-inflammatory drugs to avoid side effects. Mentha arvensis has been used as a herbal plant with medicinal properties, but its anti-inflammatory effects have not been elucidated in an AD model. In this study, we investigated the anti-inflammatory effects of M. arvensis essential oil (MAEO) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and HaCaT cells (human epidermal keratinocyte). Additionally, we examined the ameliorating effects of the MAEO in a dinitrochlorobenzene (DNCB)-induced murine model of AD. We found, in both RAW 264.7 cells and HaCaT cells, MAEO inhibited LPS-stimulated inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 and proinflammatory cytokines, including IL-1β and IL-6, due to the suppression of COX-2 and iNOS expression. In LPS-stimulated macrophages, we also observed that MAEO inhibited the phosphorylation of ERK and P65. Furthermore, MAEO treatment attenuated AD symptoms, including the dermatitis score, ear thickness, epidermal thickness and infiltration of mast cells, in a DNCB-induced animal model of AD. Overall, our findings suggest that MAEO exerts anti-inflammatory and anti-atopic dermatitis effects via inhibition of the ERK/NF-κB signaling pathway.
Collapse
|
6
|
Gallegos-Alcalá P, Jiménez M, Cervantes-García D, Salinas E. The Keratinocyte as a Crucial Cell in the Predisposition, Onset, Progression, Therapy and Study of the Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms221910661. [PMID: 34639001 PMCID: PMC8509070 DOI: 10.3390/ijms221910661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The keratinocyte (KC) is the main functional and structural component of the epidermis, the most external layer of the skin that is highly specialized in defense against external agents, prevention of leakage of body fluids and retention of internal water within the cells. Altered epidermal barrier and aberrant KC differentiation are involved in the pathophysiology of several skin diseases, such as atopic dermatitis (AD). AD is a chronic inflammatory disease characterized by cutaneous and systemic immune dysregulation and skin microbiota dysbiosis. Nevertheless, the pathological mechanisms of this complex disease remain largely unknown. In this review, we summarize current knowledge about the participation of the KC in different aspects of the AD. We provide an overview of the genetic predisposing and environmental factors, inflammatory molecules and signaling pathways of the KC that participate in the physiopathology of the AD. We also analyze the link among the KC, the microbiota and the inflammatory response underlying acute and chronic skin AD lesions.
Collapse
Affiliation(s)
- Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Daniel Cervantes-García
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- National Council of Science and Technology, Ciudad de México 03940, Mexico
| | - Eva Salinas
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- Correspondence: ; Tel.: +52-449-9108424
| |
Collapse
|
7
|
Jakubczyk D, Górska S. Impact of Probiotic Bacteria on Respiratory Allergy Disorders. Front Microbiol 2021; 12:688137. [PMID: 34234762 PMCID: PMC8256161 DOI: 10.3389/fmicb.2021.688137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory allergy is a common disease with an increased prevalence worldwide. The effective remedy is still unknown, and a new therapeutic approach is highly desirable. The review elaborates the influence of probiotic bacteria on respiratory allergy prevention and treatment with particular emphasis on the impact of the current methods of their administration – oral and intranasal. The background of the respiratory allergy is complex thus, we focused on the usefulness of probiotics in the alleviation of different allergy factors, in particular involved in pathomechanism, local hypersensitive evidence and the importance of epithelial barrier. In this review, we have shown that (1) probiotic strains may vary in modulatory potential in respiratory allergy, (2) probiotic bacteria are beneficial in oral and intranasal administration, (3) recombinant probiotic bacteria can modulate the course of respiratory allergy.
Collapse
Affiliation(s)
- Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Measles skin rash: Infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis. PLoS Pathog 2020; 16:e1008253. [PMID: 33031460 PMCID: PMC7575069 DOI: 10.1371/journal.ppat.1008253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 10/20/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Measles is characterized by fever and a maculopapular skin rash, which is accompanied by immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin biopsies from humans and non-human primates (NHPs) with measles rash have identified MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and near sebaceous glands. Here, we address the pathogenesis of measles skin rash by combining data from experimentally infected NHPs, ex vivo infection of human skin sheets and in vitro infection of primary human keratinocytes. Analysis of NHP skin samples collected at different time points following MV inoculation demonstrated that infection in the skin precedes onset of rash by several days. MV infection was detected in lymphoid and myeloid cells in the dermis before dissemination to the epidermal leukocytes and keratinocytes. These data were in good concordance with ex vivo MV infections of human skin sheets, in which dermal cells were more targeted than the epidermal cells. To address viral dissemination to the epidermis and to determine whether the dissemination is receptor-dependent, we performed experimental infections of primary keratinocytes collected from healthy donors. These experiments demonstrated that MV infection of keratinocytes is mainly nectin-4-dependent, and differentiated keratinocytes, which express higher levels of nectin-4, are more susceptible to MV infection than proliferating keratinocytes. Based on these data, we propose a model to explain measles skin rash: migrating MV-infected lymphocytes initiate the infection of dermal skin-resident CD150+ immune cells. The infection is subsequently disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lateral spread of MV infection is observed in the superficial epidermis, most likely due to the higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells are cleared by infiltrating immune cells, causing hyperemia and edema, which give the appearance of morbilliform skin rash. Several viral infections are associated with skin rash, including parvovirus B19, human herpesvirus type 6, dengue virus and rubella virus. However, the archetype virus infection that leads to skin rash is measles. Although all of these viral exanthemata often appear similar, their pathogenesis is different. In the case of measles, the appearance of skin rash is a sign that the immune system is clearing MV-infected cells from the skin. How the virus reaches the skin and is locally disseminated remains unknown. Here, we combine observations and expertise from pathologists, dermatologists, virologists and immunologists to delineate the pathogenesis of measles skin rash. We show that MV infection of dermal myeloid and lymphoid cells precedes viral dissemination to the epidermal leukocytes and keratinocytes. We speculate that immune-mediated clearance of these infected cells results in hyperemia and edema, explaining the redness of the skin and the slightly elevated spots of the morbilliform rash.
Collapse
|
9
|
Chessa C, Bodet C, Jousselin C, Wehbe M, Lévêque N, Garcia M. Antiviral and Immunomodulatory Properties of Antimicrobial Peptides Produced by Human Keratinocytes. Front Microbiol 2020; 11:1155. [PMID: 32582097 PMCID: PMC7283518 DOI: 10.3389/fmicb.2020.01155] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Keratinocytes, the main cells of the epidermis, are the first site of replication as well as the first line of defense against many viruses such as arboviruses, enteroviruses, herpes viruses, human papillomaviruses, or vaccinia virus. During viral replication, these cells can sense virus associated molecular patterns leading to the initiation of an innate immune response composed of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. Human keratinocytes produce and secrete at least nine antimicrobial peptides: human cathelicidin LL-37, types 1–4 human β-defensins, S100 peptides such as psoriasin (S100A7), calprotectin (S100A8/9) and koebnerisin (S100A15), and RNase 7. These peptides can exert direct antiviral effects on the viral particle or its replication cycle, and indirect antiviral activity, by modulating the host immune response. The purpose of this review is to summarize current knowledge of antiviral and immunomodulatory properties of human keratinocyte antimicrobial peptides.
Collapse
Affiliation(s)
- Céline Chessa
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Clément Jousselin
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Michel Wehbe
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| |
Collapse
|
10
|
Ferren M, Horvat B, Mathieu C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019; 11:E1017. [PMID: 31684034 PMCID: PMC6893791 DOI: 10.3390/v11111017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Measles remains a major cause of morbidity and mortality worldwide among vaccine preventable diseases. Recent decline in vaccination coverage resulted in re-emergence of measles outbreaks. Measles virus (MeV) infection causes an acute systemic disease, associated in certain cases with central nervous system (CNS) infection leading to lethal neurological disease. Early following MeV infection some patients develop acute post-infectious measles encephalitis (APME), which is not associated with direct infection of the brain. MeV can also infect the CNS and cause sub-acute sclerosing panencephalitis (SSPE) in immunocompetent people or measles inclusion-body encephalitis (MIBE) in immunocompromised patients. To date, cellular and molecular mechanisms governing CNS invasion are still poorly understood. Moreover, the known MeV entry receptors are not expressed in the CNS and how MeV enters and spreads in the brain is not fully understood. Different antiviral treatments have been tested and validated in vitro, ex vivo and in vivo, mainly in small animal models. Most treatments have high efficacy at preventing infection but their effectiveness after CNS manifestations remains to be evaluated. This review describes MeV neural infection and current most advanced therapeutic approaches potentially applicable to treat MeV CNS infection.
Collapse
Affiliation(s)
- Marion Ferren
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
11
|
Hanauer JRH, Koch V, Lauer UM, Mühlebach MD. High-Affinity DARPin Allows Targeting of MeV to Glioblastoma Multiforme in Combination with Protease Targeting without Loss of Potency. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:186-200. [PMID: 31788553 PMCID: PMC6880102 DOI: 10.1016/j.omto.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Measles virus (MeV) is naturally cytolytic by extensive cell-to-cell fusion. Vaccine-derived MeV is toxic for cancer cells and is clinically tested as oncolytic virus. To combine the potential of MeV with enhanced safety, different targeting strategies have been described. We generated a receptor-targeted MeV by using receptor-blind viral attachment protein genetically fused to designed ankyrin repeat protein (DARPin) binding domains specific for the epidermal growth factor receptor (EGFR). To reduce on-target toxicity for EGFR+ healthy cells, we used an engineered viral fusion protein activatable by tumor-associated matrix metalloproteases (MMPs) for additional protease targeting. The dual-targeted virus replicated exclusively on EGFR+/MMP+ tumor cells but was safe on healthy EGFR+ target cells, primary human keratinocytes. Nevertheless, glioblastoma and other tumor cells were efficiently killed by all targeted viruses, although replication and oncolysis were slower for protease-targeted MeV. In vivo, efficacy of EGFR-targeted MeV was virtually unimpaired, whereas also dual-targeted MeV showed significant intra-tumoral spread and efficacy and could be armed with a prodrug convertase. The use of DARPin-domains resulted in potent EGFR-targeted MeV and for the first time effective dual retargeting of an oncolytic virus, further enhancing tumor selectivity. Together with powerful cell-toxic genes, the application as highly tumor-specific platform is promising.
Collapse
Affiliation(s)
- Jan R H Hanauer
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Vivian Koch
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ulrich M Lauer
- Department of Medical Oncology and Pneumology, University Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Michael D Mühlebach
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
12
|
Joob B, Wiwanitkit V. Zika virus infection as a trigger of atopic dermatitis. Ann Allergy Asthma Immunol 2019; 120:107. [PMID: 29273121 DOI: 10.1016/j.anai.2017.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Beuy Joob
- Sanitation 1 Medical Academic Center, Bangkok, Thailand.
| | | |
Collapse
|