1
|
Xia X, Kong C, Zhao X, Zhao K, Shi N, Jiang J, Li P. The complexities of cell death mechanisms: a new perspective in systemic sclerosis therapy. Apoptosis 2025; 30:636-651. [PMID: 39924583 DOI: 10.1007/s10495-025-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Systemic sclerosis, also termed scleroderma, is a severe and debilitating autoimmune disease characterized by fibrosis, an aberrant immune response, and vascular dysfunction. Cell death is essential to the body's continued normal development as it removes old or damaged cells. This process is governed by several mechanisms, including programmed cell death through apoptosis, necrosis, and pyroptosis, as well as metabolic processes, such as ferroptosis and cuproptosis. This review describes the signaling pathways associated with each form of cell death, examining the linkages between these pathways, and discussing how the dysregulation of cell death processes is involved in the development of autoimmune disorders such as systemic sclerosis. Existing and promising therapeutic strategies aimed at restoring the balance of cell death in systemic sclerosis and other autoimmune disorders are also emphasized.
Collapse
Affiliation(s)
- Xue Xia
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xiaoming Zhao
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Kelin Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
2
|
Liang BG, Zheng YM, Shen HY, Yang GH, Xu WX, Tan CJ, Ke AW, Qin WZ. Cordycepin mediates pyroptosis in HCC through the upregulation of TXNIP and synergizes with anti-PD-L1 immunotherapy. Hepatol Commun 2025; 9:e0633. [PMID: 40008893 PMCID: PMC11868431 DOI: 10.1097/hc9.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/14/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are effective treatments for HCC; however, their therapeutic efficacy is often limited by the development of drug resistance. Therefore, investigating new combination therapeutics involving immune checkpoint inhibitors is critical to improving patient prognosis. In this study, we investigated the therapeutic effect of cordycepin (COR) in HCC and its synergistic effect with anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy. METHODS We selected 2 HCC cell lines to investigate the effects of COR on HCC growth using in vivo and in vitro experiments. We performed RNA sequencing of the MHCC97H cell line treated with or without COR to understand the underlying mechanism and identify the key regulatory genes. Through in vivo and in vitro experiments on gene knockdown cells, we identified thioredoxin-interacting protein as a key molecule involved in the role of COR. Next, we used mouse subcutaneous and orthotopic tumor models to evaluate the therapeutic effects of COR, atezolizumab (a programmed death-ligand 1 [PD-L1] inhibitor), or their combination. Multiple immunofluorescence staining revealed that the combination of atezolizumab and COR therapy greatly increased the number of tumor-infiltrating CD8+ T cells and PD-L1 expression in HCC compared to monotherapy. RESULTS Our study revealed that COR significantly inhibited HCC growth both in vitro and in vivo. Mechanistically, we showed that COR induces endoplasmic reticulum stress, which upregulates thioredoxin-interacting protein expression and leads to HCC cell pyroptosis. In addition, the combination treatment with COR and PD-L1 inhibitors profoundly inhibited HCC. CONCLUSIONS Overall, our study successfully established a combined therapeutic strategy using COR and PD-L1 inhibitors. This strategy has significant synergistic effects on cancer cells, highlighting its importance in cancer therapy.
Collapse
Affiliation(s)
- Bu-Gang Liang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Hong-Ye Shen
- Department of Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Guo-Huan Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wen-Xin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Chang-Jun Tan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wen-Zheng Qin
- Department of Endoscopy Center, Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| |
Collapse
|
3
|
Morin L, Zimmermann F, Lelong M, Ferrant J, Hemon P, Patry S, Le Tallec E, Uwambayinema F, Yakoub Y, Dumontet E, Huaux F, Lescoat A, Lecureur V. Pulmonary and systemic effects of inhaled crystalline silica in the HOCl-induced mouse model of systemic sclerosis: An experimental model of Erasmus syndrome. Clin Immunol 2025; 271:110423. [PMID: 39732270 DOI: 10.1016/j.clim.2024.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model. Analyses of lung samples from silica-exposed HOCl mice revealed a slightly aggravation of fibrosis and an exacerbation of inflammation, notably an additionally overexpression of NLRP3 inflammasome genes and a recruitment of classical monocytes, macrophages, dendritic cells and neutrophils. Silica exposure showed systemic effects in SSc mouse model with an elevated circulating classical monocyte counts and an overexpression of inflammatory genes in the skin. Silica-exposed SSc patients also had more severe skin disease than unexposed patients. Overall, we provide new insights on immune cell populations and related pathways in early pathogenic mechanisms contributing to HOCl-induced and silica-related SSc.
Collapse
Affiliation(s)
- Laura Morin
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - François Zimmermann
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Marie Lelong
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Juliette Ferrant
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France; Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Patrice Hemon
- LBAI, UMR1227, University of Brest, INSERM, Brest, France
| | - Salomé Patry
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Erwan Le Tallec
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Francine Uwambayinema
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Yousof Yakoub
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erwan Dumontet
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France; Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - François Huaux
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Valérie Lecureur
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
4
|
Bi X, Li M, Guo Y, Hu M, Chen Y, Lian N, Chen S, Li M, Gu H, Chen X. ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. Cell Death Dis 2025; 16:44. [PMID: 39863598 PMCID: PMC11762280 DOI: 10.1038/s41419-025-07351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
UVB irradiation induces diverse modalities of regulatory cell death in keratinocytes. Recently, the pattern of coexistence of pyroptosis, apoptosis, and necroptosis has been termed PANoptosis; however, whether PANoptosis occurs in keratinocytes in UVB-induced skin injury remains unclear. We observed that the key molecules of GSDMD-mediated pyroptosis, apoptosis, and necroptosis, which are N-terminal GSDMD, cleaved caspase-3/PARP, and phosphorylated MLKL, respectively, were elevated in keratinocytes of UVB-challenged mice and human skin tissue. Through keratinocyte-specific gene knockout or using corresponding inhibitors, we found that individual inhibition of GSDMD-mediated pyroptosis, caspase-3-mediated apoptosis, or MLKL-mediated necroptosis did not reduce the overall level of keratinocyte death after UVB exposure, and that the other two pathways maintained the activation. However, when the PANoptosome sensor ZBP1 was knocked out, keratinocyte death was reduced and epidermal thickening was alleviated in UVB-challenged mice. In conclusion, our study demonstrated that UVB irradiation induces ZBP1-mediated PANoptosis in keratinocytes, which is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. The above findings provide a new insight on the complexity of regulated cell death modalities in keratinocytes exposed to UV irradiation.
Collapse
Affiliation(s)
- Xuechan Bi
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Yiming Guo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Mengyao Hu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yujie Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Ni Lian
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Sihan Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
| |
Collapse
|
5
|
Ju YN, Li H, Zhuo ZP, Yang Q, Gao W. Mitochondrial DNA from endothelial cells activated the cGAS-STING pathway and regulated pyroptosis in lung ischaemia reperfusion injury after lung transplantation. Immunobiology 2025; 230:152865. [PMID: 39826223 DOI: 10.1016/j.imbio.2024.152865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Cell dysfunction and death induced by lung ischaemia-reperfusion injury (LIRI) are the main causes of death in transplant patients. Activation of the cGAS-STING-induced immune response and death plays a critical role in multiple organ injuries. However, no study has yet investigated the role of the cGAS-STING pathway in LIRI after lung transplantation. METHODS Sprague-Dawley (SD) rats were subjected to left lung transplantation and administered inhibitors of cGAS and STING. The expression of cGAS-STING-TBK1-IRF3, histological injury, pulmonary permeability, and the levels of cytokines and pyroptotic proteins in transplanted lungs were tested. Endothelial cells were subjected to hypoxemia and reoxygenation and treated with inhibitors of cGAS and STING. Mitochondrial DNA (mtDNA), the cGAS-STING axis and cytokine levels in cells, cellular activity and death were evaluated. Moreover, after the administration of deoxyribonuclease (DNase) I, the reoxygenated endothelial cells were also examined for cellular function and inflammatory factor expression. Finally, we administered an agonist of STING and an inhibitor of cathepsin B to the normal endothelium and investigated pyroptosis and pyroptotic proteins. RESULTS After 24 h of reperfusion, the expression of cGAS-STING-TBK1-IRF3 and pyroptotic proteins was significantly increased, and inhibitors of cGAS or STING ameliorated lung injury and reduced pyroptotic protein levels. In vitro, the inhibition of cGAS and STING reduced the activation of TBK and IRF3 and reduced cellular injury and death. The activation of cGAS-STING and cellular inflammation were suppressed by DNase I. Cathepsin B and NLRP3 were upregulated by an agonist of STING, and an inhibitor of cathepsin B reduced NLRP3 levels. CONCLUSION cGAS-STING participated in LIRI by promoting endothelial cell pyroptosis via cathepsin B.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570 311, China
| | - Hu Li
- Department of Critical Care Medicine, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Zi-Peng Zhuo
- Department of Critical Care Medicine, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Qing Yang
- Department of Critical Care Medicine, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| | - Wei Gao
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570311, China.
| |
Collapse
|
6
|
Liu SH, Zhang J, Zuo YG. Macrophages in inflammatory skin diseases and skin tumors. Front Immunol 2024; 15:1430825. [PMID: 39703508 PMCID: PMC11656021 DOI: 10.3389/fimmu.2024.1430825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Macrophages, as specialized, long-lasting phagocytic cells of the innate immune system, have garnered increasing attention due to their wide distribution and various functions. The skin, being the largest immune organ in the human body, presents an intriguing landscape for macrophage research, particularly regarding their roles in inflammatory skin diseases and skin tumors. In this review, we compile the latest research on macrophages in conditions such as atopic dermatitis, psoriasis, systemic sclerosis, systemic lupus erythematosus, rosacea, bullous pemphigoid, melanoma and cutaneous T-cell lymphoma. We aim to contribute to illustrating the pathogenesis and potential new therapies for inflammatory skin diseases and skin tumors from the perspective of macrophages.
Collapse
Affiliation(s)
| | | | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Zhou Y, Dong W, Wang L, Ren S, Wei W, Wu G. Cystatin C Attenuates Perihematomal Secondary Brain Injury by Inhibiting the Cathepsin B/NLRP3 Signaling Pathway in a Rat Model of Intracerebral Hemorrhage. Mol Neurobiol 2024; 61:9646-9662. [PMID: 38676809 DOI: 10.1007/s12035-024-04195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Secondary brain injury (SBI) is a noticeable contributor to the high mortality and morbidity rates associated with intracerebral hemorrhage (ICH), and effective treatment options remain limited. Cystatin C (CysC) emerges as a novel candidate for SBI intervention. The therapeutic effects and underlying mechanisms of CysC in mitigating SBI following ICH were explored in the current research. An in vivo ICH rat model was established by injecting autologous blood into the right caudate nucleus. Western blotting (WB) was utilized to assess the levels of CysC, cathepsin B (CTSB), and the NLRP3 inflammasome. Subsequently, the ICH rat model was treated with exogenous CysC supplementation or CysC knockdown plasmids. Various parameters, including Evans blue (EB) extravasation, brain water content, and neurological function in rats, were examined. RT-qPCR and WB were employed to determine the expression levels of CTSB and the NLRP3 inflammasome. The co-expression of CTSB, CysC, and NLRP3 inflammasome with GFAP, NeuN, and Iba1 was assessed through double-labeled immunofluorescence. The interaction between CysC and CTSB was investigated using double-labeled immunofluorescence and co-immunoprecipitation. The findings revealed an elevation of CysC expression level, particularly at 24 h after ICH. Exogenous CysC supplementation alleviated severe brain edema, neurological deficit scores, and EB extravasation induced by ICH. Conversely, CysC knockdown produced opposite effects. The expression levels of CTSB and the NLRP3 inflammasome were significantly risen following ICH, and exogenous CysC supplement attenuated their expression levels. Double-labeled immunofluorescence illustrated that CysC, CTSB, and the NLRP3 inflammasome were predominantly expressed in microglial cells, and the interaction between CysC and CTSB was evidenced. CysC exhibited potential in ameliorating SBI following ICH via effectively suppressing the activation of the NLRP3 inflammasome mediated by CTSB specifically in microglial cells. These findings underscore the prospective therapeutic efficacy of CysC in the treatment of ICH-induced complications.
Collapse
Affiliation(s)
- Yongfang Zhou
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wentao Dong
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Likun Wang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Siying Ren
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Weiqing Wei
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
8
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
9
|
Huang S, Li Q, Song Y. Codonopsis pilosula polysaccharide suppresses the progression of non-small cell lung cancer by triggering NLRP3/GSDMD-dependent pyroptosis. Discov Oncol 2024; 15:510. [PMID: 39348037 PMCID: PMC11442958 DOI: 10.1007/s12672-024-01361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) represents a prevalent and challenging malignancy, often posing difficulties in treatment due to late-stage diagnosis and limited therapeutic options. OBJECTIVE This study aims to elucidate the impact of Codonopsis pilosula polysaccharide (CPP) on NSCLC, exploring its potential anticancer molecular mechanisms. MATERIALS AND METHODS Purchase A549 cells and treat them with varying concentrations of CPP, dividing them into groups. Use CCK-8 assays for cell proliferation and TUNEL assays for apoptosis detection. Perform Western blot (WB) to detect NF-κB p65, pNF-κB p65, and pyroptosis-related proteins. Measure ROS, inflammatory factors, and LDH levels using kits. Observe pyroptosis morphology under a microscope. Inoculate A549 cells subcutaneously into nude mice to create a xenograft model and treat them with daily CPP injections. Collect tumor tissues, measure tumor volume and mass. Perform TUNEL immunohistochemistry for apoptosis and H&E staining for tumor histology. Detect pyroptosis-related proteins with Western blot and immunohistochemistry, and assess inflammatory factors using ELISA and immunohistochemistry. RESULTS The research reveals a concentration-dependent inhibitory effect of CPP on A549 cell viability, with optimal efficacy observed at 40 μmol/L CPP. CPP demonstrates the capacity to induce apoptosis, mediate NF-κB activation, and accumulate reactive oxygen species (ROS). Notably, CPP promotes pyroptosis in A549 cells and in vivo, upregulating pyroptosis-related proteins. In vivo administration of CPP significantly inhibits tumor growth, accompanied by notable morphological and histological alterations. Additionally, both in vitro and in vivo studies confirm elevated levels of IL-1β and IL-18 in tumor tissues following CPP treatment. DISCUSSION AND CONCLUSION In conclusion, CPP, as a multifaceted agent, suppresses the progression of NSCLC by inducing NLRP3/GSDMD-dependent pyroptosis. This research provides valuable insights into the therapeutic potential of CPP and stimulates further exploration for its integration into future NSCLC treatments.
Collapse
Affiliation(s)
- Shaoyan Huang
- Department of Medical Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, 10087, Science and Technology Avenue, Laishan District, Yantai, 264003, Shandong, China
| | - Quanxing Li
- Department of Cardiothoracic Surgery, Dongying People's Hospital, Dongying, 257000, Shandong, China
| | - Yaobo Song
- Department of Medical Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, 10087, Science and Technology Avenue, Laishan District, Yantai, 264003, Shandong, China.
| |
Collapse
|
10
|
Tang B, Shi Y, Zeng Z, He X, Yu J, Chai K, Liu J, Liu L, Zhan Y, Qiu X, Tang R, Xiao Y, Xiao R. Silica's silent threat: Contributing to skin fibrosis in systemic sclerosis by targeting the HDAC4/Smad2/3 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124194. [PMID: 38782158 DOI: 10.1016/j.envpol.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, silica products are widely used in daily life, especially in skin applications, which inevitably increases the risk of silica exposure in general population. However, inadequate awareness of silica's potential hazards and lack of self-protection are of concern. Systemic sclerosis (SSc) is characterized by progressive tissue fibrosis under environmental and genetic interactions. Silica exposure is considered an important causative factor for SSc, but its pathogenesis remains unclear. Within this study, we showed that lower doses of silica significantly promoted the proliferation, migration, and activation of human skin fibroblasts (HSFs) within 24 h. Silica injected subcutaneously into mice induced and exacerbated skin fibrosis. Notably, silica increased histone deacetylase-4 (HDAC4) expression by inducing its DNA hypomethylation in normal HSFs. The elevated HDAC4 expression was also confirmed in SSc HSFs. Furthermore, HDAC4 was positively correlated with Smad2/3 phosphorylation and COL1, α-SMA, and CTGF expression. The HDAC4 inhibitor LMK235 mitigated silica-induced upregulation of these factors and alleviated skin fibrosis in SSc mice. Taken together, silica induces and exacerbates skin fibrosis in SSc patients by targeting the HDAC4/Smad2/3 pathway. Our findings provide new insights for evaluating the health hazards of silica exposure and identify HDAC4 as a potential interventional target for silica-induced SSc skin fibrosis.
Collapse
Affiliation(s)
- Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ke Chai
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Licong Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
11
|
Yao Y, Wang Z, Li J, Peng A, Cao Y, Liang N, Zhang K. Pyroptosis and its role in autoimmune skin disease. Exp Dermatol 2024; 33:e15135. [PMID: 39021278 DOI: 10.1111/exd.15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Autoimmune skin disease is a kind of heterogeneous disease with complicated pathogenesis. Many factors such as genetic, infectious, environmental and even psychological factors may interact together to trigger a synergistic effect for the development of abnormal innate and adaptive immune responses. Although the exact mechanisms remain unclear, recent evidence suggests that pyroptosis plays a pivotal role in the development of autoimmune skin disease. The feature of pyroptosis is the first formation of pores in cellular membranes, then cell rupture and the release of intracellular substances and pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β) and IL-18. This hyperactive inflammatory programmed cell death damages the homeostasis of the immune system and advances autoimmunity. This review briefly summarises the molecular regulatory mechanisms of pyrin domain-containing protein 3 (NLRP3) inflammasome and gasdermin family, as well as the molecular mechanisms of pyroptosis, highlights the latest progress of pyroptosis in autoimmune skin disease, including systemic lupus erythematosus, psoriasis, atopic dermatitis and systemic scleroderma and attempts to identify its potential advantages as a therapeutic target or prognostic biomarker for these diseases.
Collapse
Affiliation(s)
- Yuanjun Yao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| | - Zehong Wang
- Department of Laboratory Medicine, Medical Center Hospital of Qionglai City, Chengdu, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| | - Aihong Peng
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| | - Nannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Center Hospital, Taiyuan, China
| |
Collapse
|
12
|
Ren W, Sun Y, Zhao L, Shi X. NLRP3 inflammasome and its role in autoimmune diseases: A promising therapeutic target. Biomed Pharmacother 2024; 175:116679. [PMID: 38701567 DOI: 10.1016/j.biopha.2024.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines IL-1β and IL-18. Numerous studies have highlighted its crucial role in the pathogenesis and development of inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid diseases, and other autoimmune diseases. Therefore, investigating the underlying mechanisms of NLRP3 in disease and targeted drug therapies holds clinical significance. This review summarizes the structure, assembly, and activation mechanisms of the NLRP3 inflammasome, focusing on its role and involvement in various autoimmune diseases. This review also identifies studies where the involvement of the NLRP3 inflammasome in the disease mechanism within the same disease appears contradictory, as well as differences in NLRP3-related gene polymorphisms among different ethnic groups. Additionally, the latest therapeutic advances in targeting the NLRP3 inflammasome for autoimmune diseases are outlined, and novel clinical perspectives are discussed. Conclusively, this review provides a consolidated source of information on the NLRP3 inflammasome and may guide future research efforts that have the potential to positively impact patient outcomes.
Collapse
Affiliation(s)
- Wenxuan Ren
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
13
|
Zhang QB, Huo L, Li M, Zhang R, Zhou T, Wang F, Zhou Y. Role of hypoxia-mediated pyroptosis in the development of extending knee joint contracture in rats. Eur J Med Res 2024; 29:298. [PMID: 38802976 PMCID: PMC11129407 DOI: 10.1186/s40001-024-01890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Joint contracture is one of the common diseases clinically, and joint capsule fibrosis is considered to be one of the most important pathological changes of joint contracture. However, the underlying mechanism of joint capsule fibrosis is still controversial. The present study aims to establish an animal model of knee extending joint contracture in rats, and to investigate the role of hypoxia-mediated pyroptosis in the progression of joint contracture using this animal model. 36 male SD rats were selected, 6 of which were not immobilized and were used as control group, while 30 rats were divided into I-1 group (immobilized for 1 week following 7 weeks of free movement), I-2 group (immobilized for 2 weeks following 6 weeks of free movement), I-4 group (immobilized for 4 weeks following 4 weeks of free movement), I-6 group (immobilized for 6 weeks following 2 weeks of free movement) and I-8 group (immobilized for 8 weeks) according to different immobilizing time. The progression of joint contracture was assessed by the measurement of knee joint range of motion, collagen deposition in joint capsule was examined with Masson staining, protein expression levels of HIF-1α, NLRP3, Caspase-1, GSDMD-N, TGF-β1, α-SMA and p-Smad3 in joint capsule were assessed using western blotting, and the morphological changes of fibroblasts were observed by transmission electron microscopy. The degree of total and arthrogenic contracture progressed from the first week and lasted until the first eight weeks after immobilization. The degree of total and arthrogenic contracture progressed rapidly in the first four weeks after immobilization and then progressed slowly. Masson staining indicated that collagen deposition in joint capsule gradually increased in the first 8 weeks following immobilization. Western blotting analysis showed that the protein levels of HIF-1α continued to increase during the first 8 weeks of immobilization, and the protein levels of pyroptosis-related proteins NLRP3, Caspase-1, GSDMD-N continued to increase in the first 4 weeks after immobilization and then decreased. The protein levels of fibrosis-related proteins TGF-β1, p-Smad3 and α-SMA continued to increase in the first 8 weeks after immobilization. Transmission electron microscopy showed that 4 weeks of immobilization induced cell membrane rupture and cell contents overflow, which further indicated the activation of pyroptosis. Knee extending joint contracture animal model can be established by external immobilization orthosis in rats, and the activation of hypoxia-mediated pyroptosis may play a stimulating role in the process of joint capsule fibrosis and joint contracture.
Collapse
Affiliation(s)
- Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Lei Huo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Mian Li
- Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Rui Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Feng Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China.
| |
Collapse
|
14
|
O'Reilly S. Emerging therapeutic targets in systemic sclerosis. J Mol Med (Berl) 2024; 102:465-478. [PMID: 38386070 DOI: 10.1007/s00109-024-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Systemic sclerosis is an autoimmune connective tissue disease which is characterised by vascular perturbations, inflammation, and fibrosis. Although huge progress recently into the underlying molecular pathways that are perturbed in the disease, currently no therapy exists that targets the fibrosis element of the disease and consequently there is a huge unmet medical need. Emerging studies reveal new dimensions of complexity, and multiple aberrant pathways have been uncovered that have shed light on disturbed signalling in the disease, primarily in inflammatory pathways that can be targeted with repurposed drugs. Pre-clinical animal models using these inhibitors have yielded proof of concept for targeting these signalling systems and progressing to clinical trials. This review will examine the recent evidence of new perturbed pathways in SSc and how these can be targeted with new or repurposed drugs to target a currently intractable disease.
Collapse
Affiliation(s)
- Steven O'Reilly
- Department of Biosciences, Durham University, South Road, Durham, UK.
| |
Collapse
|
15
|
Wu X, Yang J, Wu J, Yang X. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome in systemic lupus erythematosus. Biomed Pharmacother 2024; 172:116261. [PMID: 38340397 DOI: 10.1016/j.biopha.2024.116261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a pathogenesis that remains incompletely understood, resulting in limited treatment options. MCC950, a highly specific NLRP3 inflammasome inhibitor, effectively suppresses the activation of NLRP3, thus reducing the production of caspase-1, the pro-inflammatory cytokines IL-1β and IL-18. This review highlights the pivotal role of NLRP3 inflammasome activation pathways in the pathogenesis of SLE and discusses the potential therapeutic application of MCC950 in SLE. Notably, it comprehensively elucidates the mechanism of MCC950 targeting the NLRP3 pathway in SLE treatment, outlining its potential role in regulating autophagy and necroptosis. The insights gained contribute to a deeper understanding of the value of MCC950 in SLE therapy, serving as a robust foundation for further research and potential clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Junhao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155North Nanjing Street, Heping District, Shenyang 110001, China
| | - Juanjie Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Xuyan Yang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
16
|
Huo S, Li B, Du J, Zhang X, Zhang J, Wang Q, Song M, Li Y. Dibutyl phthalate induces liver fibrosis via p38MAPK/NF-κB/NLRP3-mediated pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165500. [PMID: 37442457 DOI: 10.1016/j.scitotenv.2023.165500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most employed plasticizers pervading the environment. DBP is a newly identified global organic pollutant that can activate NLRP3 inflammasomes and induce inflammatory liver injury. However, its hepatotoxicity remains poorly understood. The objective of this investigation was to investigate the probable pathways underlying DBP-induced liver injury. First, C57BL/6N mice were orally administered DBP at 10 and 50 mg/kg B.W. doses for 28 days. The observed results indicated a significant increase in liver collagen deposition and upregulated protein expression of fibrosis markers in mice. In addition, the p38MAPK/NF-κB signaling pathway and pyroptosis-related protein expression were upregulated. To establish a correlation between these changes, we conducted a conditioned medium co-culture of human hepatocellular carcinoma (HepG2) and human hepatic stellate (LX-2) cells. We performed inhibitor interventions to validate the mechanism of DBP-induced liver fibrosis in vitro. After treatment with p38MAPK (SB203580), NF-κB (PDTC), and NLRP3 (MCC950) inhibitors, the activation of LX-2 cells, the p38MAPK/NF-κB signaling pathway and pyroptosis due to DBP were alleviated. Therefore, DBP exposure leads to NLRP3-mediated pyroptosis of hepatocytes via the p38MAPK/NF-κB signaling pathway, activating LX-2 cells and causing liver fibrosis. Our findings offer a conceptual framework to understand the pathological underpinnings of DBP-induced liver injury while proposing novel ideas to prevent and treat DBP hepatotoxicity. Thus, targeting p38MAPK, NF-κB, and NLRP3 may prevent DBP-induced liver fibrosis.
Collapse
Affiliation(s)
- Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm 2023; 2023:8821610. [PMID: 37332618 PMCID: PMC10270764 DOI: 10.1155/2023/8821610] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hong Yang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| |
Collapse
|