1
|
D'Italia G, Schroen B, Cosemans JM. Commonalities of platelet dysfunction in heart failure with preserved ejection fraction and underlying comorbidities. ESC Heart Fail 2025; 12:1013-1028. [PMID: 39375979 PMCID: PMC11911585 DOI: 10.1002/ehf2.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a lack of a specific targeted treatment and a complex, partially unexplored pathophysiology. Common comorbidities associated with HFpEF are hypertension, atrial fibrillation, obesity and diabetes. These comorbidities, combined with advanced age, play a crucial role in the initiation and development of the disease through the promotion of systemic inflammation and consequent changes in cardiac phenotype. In this context, we suggest platelets as important players due to their emerging role in vascular inflammation. This review provides an overview of the role of platelets in HFpEF and its associated comorbidities, including hypertension, atrial fibrillation, obesity and diabetes mellitus, as well as the impact of age and sex on platelet function. These major HFpEF-associated comorbidities present alterations in platelet behaviour and in features linked to platelet size, content and reactivity. The resulting dysfunctional platelets can contribute to further increase inflammation, oxidative stress and endothelial dysfunction, suggesting an active role of these cells in the initiation and progression of HFpEF. Recent evidence shows that reduced platelet count and elevated mean platelet volume are associated with worsening heart failure in HFpEF patients. However, the specific mechanisms by which platelets contribute to HFpEF development and progression are still largely unexplored, with only a few studies investigating platelet function in HFpEF. We discuss the limited yet significant body of research investigating platelet function in HFpEF, emphasizing the need for more comprehensive studies. Additionally, we explore the potential mechanisms through which platelets may influence HFpEF, such as their interactions with the vascular endothelium and the secretion of bioactive molecules like cytokines, chemokines and RNA molecules. These interactions and secretions may play a role in modulating vascular inflammation and contributing to the pathophysiological landscape of HFpEF. The review underscores the necessity for future research to elucidate the precise contributions of platelets to HFpEF, aiming to potentially identify novel therapeutic targets and improve patient outcomes. The evidence presented herein supports the hypothesis that platelets are not merely passive bystanders but active participants in the pathophysiology of HFpEF and its comorbidities.
Collapse
Affiliation(s)
- Giorgia D'Italia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Blanche Schroen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Judith M.E.M. Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
2
|
Chang C, Wang Y, Wang R, Bao X. Considering Context-Specific microRNAs in Ischemic Stroke with Three "W": Where, When, and What. Mol Neurobiol 2024; 61:7335-7353. [PMID: 38381296 DOI: 10.1007/s12035-024-04051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
MicroRNAs are short non-coding RNA molecules that function as critical regulators of various biological processes through negative regulation of gene expression post-transcriptionally. Recent studies have indicated that microRNAs are potential biomarkers for ischemic stroke. In this review, we first illustrate the pathogenesis of ischemic stroke and demonstrate the biogenesis and transportation of microRNAs from cells. We then discuss several promising microRNA biomarkers in ischemic stroke in a context-specific manner from three dimensions: biofluids selection for microRNA extraction (Where), the timing of sample collection after ischemic stroke onset (When), and the clinical application of the differential-expressed microRNAs during stroke pathophysiology (What). We show that microRNAs have the utilities in ischemic stroke diagnosis, risk stratification, subtype classification, prognosis prediction, and treatment response monitoring. However, there are also obstacles in microRNA biomarker research, and this review will discuss the possible ways to improve microRNA biomarkers. Overall, microRNAs have the potential to assist clinical treatment, and developing microRNA panels for clinical application is worthwhile.
Collapse
Affiliation(s)
- Chuheng Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- M.D. Program, Peking Union Medical College, Beijing, 100730, China
| | - Youyang Wang
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Tutuianu A, Anene CA, Shelton M, Speirs V, Whitelaw DC, Thorpe J, Roberts W, Boyne JR. Platelet-derived microvesicles isolated from type-2 diabetes mellitus patients harbour an altered miRNA signature and drive MDA-MB-231 triple-negative breast cancer cell invasion. PLoS One 2024; 19:e0304870. [PMID: 38900754 PMCID: PMC11189239 DOI: 10.1371/journal.pone.0304870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.
Collapse
Affiliation(s)
- Anca Tutuianu
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Chinedu A. Anene
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Mikayla Shelton
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Valerie Speirs
- Institute of Medical Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Donald C. Whitelaw
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Joanne Thorpe
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Wayne Roberts
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - James R. Boyne
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
4
|
Huang L, Januszewski AS, Takahashi Y, O'Neal DN, Ma JX, Jenkins AJ. Increased intracellular miR-142 in adults with Type 1 diabetes. J Diabetes Complications 2023; 37:108597. [PMID: 37659140 PMCID: PMC10592019 DOI: 10.1016/j.jdiacomp.2023.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
microRNAs (miRs), including miR-142, modulate gene expression and processes implicated in vascular damage and may serve as therapeutic targets and agents, including in Type 1 diabetes (T1D). The project aimed to assess whether miR-142 levels differ between people with and without T1D, and to analyse miR-142 associations with cardiovascular (CVD) risk factors. Intracellular miRs were isolated from whole blood cell pellets using TRIzol-based methodology. In a cross-sectional study in 102 adults cellular miR-142 levels were significantly higher (on unadjusted and adjusted analyses) in 69 adults with T1D relative to 33 non-diabetic subjects: mean ± SD, 3.53 ± 3.66 vs. 1.25 ± 0.78, p < 0.0002, but were not related to HbA1c levels. Further miR-142 research, including longitudinal and intervention studies and basic science are of interest. miR-142 may be valuable in clinical practice for predicting health and as a treatment target.
Collapse
Affiliation(s)
- Li Huang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Andrzej S Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia; Deptartment of Medicine, University of Melbourne, Melbourne, VIC, Australia; Sydney Pharmacy School, University of Sydney, Sydney, NSW, Australia
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Deptartment of Biochemistry, Wake Forest University, School of Medicine, Winton-Salem, NC, USA.
| | - David N O'Neal
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia; Deptartment of Medicine, University of Melbourne, Melbourne, VIC, Australia; Deptartment of Biochemistry, Wake Forest University, School of Medicine, Winton-Salem, NC, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Deptartment of Biochemistry, Wake Forest University, School of Medicine, Winton-Salem, NC, USA; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Alicia J Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia; Deptartment of Medicine, University of Melbourne, Melbourne, VIC, Australia; Deptartment of Endocrinology and Diabetes, St. Vincent's Hospital, Melbourne, VIC, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Kong L, Mao Z, He S, Li K, Zhou L, Zhang X, Huang P. PM 2.5 induces alterations in gene expression profile of platelet-derived extracellular vesicles and mediates cardiovascular injury in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115341. [PMID: 37573648 DOI: 10.1016/j.ecoenv.2023.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Platelet-derived extracellular vesicles (P-EVs), as the most abundant vesicles in blood, have been proven to play cardinal roles in cardiovascular injury. RNAs (especially miRNAs) carried by P-EVs can be transferred to the receptor, which plays a critical role in regulating vascular endothelial function. PM2.5 is one of the most well-known risk factors that cause cardiovascular disease. Therefore, the objective of the current study was to explore whether exposure to PM2.5 would alter the gene expression profile of P-EVs, and to further elucidate the role of RNAs (especially miRNAs) carried by P-EVs in cardiovascular injury induced by PM2.5 exposure. P-EVs were isolated from the platelet-rich plasma which was exposed and unexposed to PM2.5, and the differentially expressed target genes were evaluated using whole-transcriptome gene sequencing. Rats were treated with P-EVs under different exposure conditions (a protein concentration of 50 µg/mL) and an equal volume of normal saline. The pathological damage of the thoracic aorta and cardiac tissue was evaluated and the coagulation function of the rats was detected. The differentially expressed genes were shown to be mainly concentrated in inflammation, angiogenesis, and apoptosis-related pathways. Moreover, P-EVs extracted from PM2.5-exposed plasma had the potential to trigger an inflammatory response, impair vascular endothelial function, disrupt the normal coagulation process, and promote a prothrombotic state. Our study indicated that PM2.5 induces cardiovascular injury in rats by interfering with the gene expression of P-EVs. It will provide new targets for studying the mechanism involved in PM2.5-induced cardiovascular injury.
Collapse
Affiliation(s)
- Ling Kong
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Institute for Brain Disorders, National Clinical Research Center for Geriatric Disorders, Beijing 100053, China
| | - Zhen Mao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shiyu He
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kexin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihong Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaodan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Peili Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Li X, Dai A, Tran R, Wang J. Text mining-based identification of promising miRNA biomarkers for diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1195145. [PMID: 37560309 PMCID: PMC10407569 DOI: 10.3389/fendo.2023.1195145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction MicroRNAs (miRNAs) are small, non-coding RNAs that play a critical role in diabetes development. While individual studies investigating the mechanisms of miRNA in diabetes provide valuable insights, their narrow focus limits their ability to provide a comprehensive understanding of miRNAs' role in diabetes pathogenesis and complications. Methods To reduce potential bias from individual studies, we employed a text mining-based approach to identify the role of miRNAs in diabetes and their potential as biomarker candidates. Abstracts of publications were tokenized, and biomedical terms were extracted for topic modeling. Four machine learning algorithms, including Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machines (SVM), were employed for diabetes classification. Feature importance was assessed to construct miRNA-diabetes networks. Results Our analysis identified 13 distinct topics of miRNA studies in the context of diabetes, and miRNAs exhibited a topic-specific pattern. SVM achieved a promising prediction for diabetes with an accuracy score greater than 60%. Notably, miR-146 emerged as one of the critical biomarkers for diabetes prediction, targeting multiple genes and signal pathways implicated in diabetic inflammation and neuropathy. Conclusion This comprehensive approach yields generalizable insights into the network miRNAs-diabetes network and supports miRNAs' potential as a biomarker for diabetes.
Collapse
Affiliation(s)
- Xin Li
- Central Hospital Affiliated to Shandong First Medical University, Ophthalmology Department, Jinan, Shandong, China
| | - Andrea Dai
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Richard Tran
- University of Chicago, Master’s Program in Computer Science, Chicago, IL, United States
| | - Jie Wang
- Syracuse University, Applied Data Science Program, Syracuse, NY, United States
- MDSight, LLC, Brookeville, MD, United States
| |
Collapse
|
7
|
Hu F, Liu L, Liu Z, Cao M, Li G, Zhang X. Meta-analysis of the characteristic expression of circulating microRNA in type 2 diabetes mellitus with acute ischemic cerebrovascular disease. Front Endocrinol (Lausanne) 2023; 14:1129860. [PMID: 36864836 PMCID: PMC9971585 DOI: 10.3389/fendo.2023.1129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE To comprehensively evaluate the characteristics of the circulating microRNA expression profile in type 2 diabetic patients with acute ischemic cerebrovascular disease by systematic evaluation and meta-analysis. METHODS The literatures up to March 2022 related to circulating microRNA and acute ischemic cerebrovascular disease in type 2 diabetes mellitus were searched and screened from multiple databases. The NOS quality assessment scale was used to evaluate methodological quality. Heterogeneity tests and statistical analyses of all data were performed by Stata 16.0. The differences in microRNA levels between groups were illustrated by the standardized mean difference (SMD) and 95% confidence interval (95% CI). RESULTS A total of 49 studies on 12 circulating miRNAs were included in this study, including 486 cases of type 2 diabetes complicated with acute ischemic cerebrovascular disease and 855 controls. Compared with the control group (T2DM group), miR-200a, miR-144, and miR-503 were upregulated and positively correlated with acute ischemic cerebrovascular disease in type 2 diabetes mellitus patients. Their comprehensive SMD and 95% CI were 2.71 (1.64~3.77), 5.77 (4.28~7.26) and 0.73 (0.27~1.19), respectively. MiR-126 was downregulated and negatively correlated with acute ischemic cerebrovascular disease in type 2 diabetes mellitus patients, its comprehensive SMD and 95% CI were -3.64 (-5.56~-1.72). CONCLUSION In type 2 diabetes mellitus patients with acute ischemic cerebrovascular disease, the expression of serum miR-200a, miR-503, plasma and platelet miR-144 was upregulated and the expression of serum miR-126 was downregulated. It may have diagnostic value in the early identification of type 2 diabetes mellitus with acute ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Feifei Hu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Lei Liu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Zhijian Liu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Guanghong Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Guanghong Li,
| | - Xinhuan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Guanghong Li,
| |
Collapse
|
8
|
Leng Q, Ding J, Dai M, Liu L, Fang Q, Wang DW, Wu L, Wang Y. Insights Into Platelet-Derived MicroRNAs in Cardiovascular and Oncologic Diseases: Potential Predictor and Therapeutic Target. Front Cardiovasc Med 2022; 9:879351. [PMID: 35757325 PMCID: PMC9218259 DOI: 10.3389/fcvm.2022.879351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Non-communicable diseases (NCDs), represented by cardiovascular diseases and cancer, have been the leading cause of death globally. Improvements in mortality from cardiovascular (CV) diseases (decrease of 14%/100,000, United States) or cancers (increase 7.5%/100,000, United States) seem unsatisfactory during the past two decades, and so the search for innovative and accurate biomarkers of early diagnosis and prevention, and novel treatment strategies is a valuable clinical and economic endeavor. Both tumors and cardiovascular system are rich in angiological systems that maintain material exchange, signal transduction and distant regulation. This pattern determines that they are strongly influenced by circulating substances, such as glycolipid metabolism, inflammatory homeostasis and cyclic non-coding RNA and so forth. Platelets, a group of small anucleated cells, inherit many mature proteins, mRNAs, and non-coding RNAs from their parent megakaryocytes during gradual formation and manifest important roles in inflammation, angiogenesis, atherosclerosis, stroke, myocardial infarction, diabetes, cancer, and many other diseases apart from its classical function in hemostasis. MicroRNAs (miRNAs) are a class of non-coding RNAs containing ∼22 nucleotides that participate in many key cellular processes by pairing with mRNAs at partially complementary binding sites for post-transcriptional regulation of gene expression. Platelets contain fully functional miRNA processors in their microvesicles and are able to transport their miRNAs to neighboring cells and regulate their gene expression. Therefore, the importance of platelet-derived miRNAs for the human health is of increasing interest. Here, we will elaborate systematically the roles of platelet-derived miRNAs in cardiovascular disease and cancer in the hope of providing clinicians with new ideas for early diagnosis and therapeutic strategies.
Collapse
|
9
|
Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets 2022; 33:1052-1064. [DOI: 10.1080/09537104.2022.2042233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Doctoral School of Medical University of Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| |
Collapse
|
10
|
Voelz C, Ebrahimy N, Zhao W, Habib P, Zendedel A, Pufe T, Beyer C, Slowik A. Transient Focal Cerebral Ischemia Leads to miRNA Alterations in Different Brain Regions, Blood Serum, Liver, and Spleen. Int J Mol Sci 2021; 23:ijms23010161. [PMID: 35008586 PMCID: PMC8745086 DOI: 10.3390/ijms23010161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is characterized by an occlusion of a cerebral blood vessel resulting in neuronal cell death due to nutritional and oxygen deficiency. Additionally, post-ischemic cell death is augmented after reperfusion. These events are paralleled by dysregulated miRNA expression profiles in the peri-infarct area. Understanding the underlying molecular mechanism in the peri-infarct region is crucial for developing promising therapeutics. Utilizing a tMCAo (transient Middle Cerebral Artery occlusion) model in rats, we studied the expression levels of the miRNAs (miR) 223-3p, 155-5p, 3473, and 448-5p in the cortex, amygdala, thalamus, and hippocampus of both the ipsi- and contralateral hemispheres. Additionally, the levels in the blood serum, spleen, and liver and the expression of their target genes, namely, Nlrp3, Socs1, Socs3, and Vegfa, were assessed. We observed an increase in all miRNAs on the ipsilateral side of the cerebral cortex in a time-dependent manner and increased miRNAs levels (miR-223-3p, miR-3473, and miR-448-5p) in the contralateral hemisphere after 72 h. Besides the cerebral cortex, the amygdala presented increased expression levels, whereas the thalamus and hippocampus showed no alterations. Different levels of the investigated miRNAs were detected in blood serum, liver, and spleen. The gene targets were altered not only in the peri-infarct area of the cortex but selectively increased in the investigated non-affected brain regions along with the spleen and liver during the reperfusion time up to 72 h. Our results suggest a supra-regional influence of miRNAs following ischemic stroke, which should be studied to further identify whether miRNAs are transported or locally upregulated.
Collapse
Affiliation(s)
- Clara Voelz
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Nahal Ebrahimy
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Weiyi Zhao
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (C.V.); (N.E.); (W.Z.); (A.Z.); (C.B.)
| | - Alexander Slowik
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany;
- Correspondence: ; Tel.: +49-(0)241-80-89112
| |
Collapse
|
11
|
Florijn BW, Bijkerk R, Kruyt ND, van Zonneveld AJ, Wermer MJH. Sex-Specific MicroRNAs in Neurovascular Units in Ischemic Stroke. Int J Mol Sci 2021; 22:11888. [PMID: 34769320 PMCID: PMC8585074 DOI: 10.3390/ijms222111888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence pinpoints sex differences in stroke incidence, etiology and outcome. Therefore, more understanding of the sex-specific mechanisms that lead to ischemic stroke and aggravation of secondary damage after stroke is needed. Our current mechanistic understanding of cerebral ischemia states that endothelial quiescence in neurovascular units (NVUs) is a major physiological parameter affecting the cellular response to neuron, astrocyte and vascular smooth muscle cell (VSMC) injury. Although a hallmark of the response to injury in these cells is transcriptional activation, noncoding RNAs such as microRNAs exhibit cell-type and context dependent regulation of gene expression at the post-transcriptional level. This review assesses whether sex-specific microRNA expression (either derived from X-chromosome loci following incomplete X-chromosome inactivation or regulated by estrogen in their biogenesis) in these cells controls NVU quiescence, and as such, could differentiate stroke pathophysiology in women compared to men. Their adverse expression was found to decrease tight junction affinity in endothelial cells and activate VSMC proliferation, while their regulation of paracrine astrocyte signaling was shown to neutralize sex-specific apoptotic pathways in neurons. As such, these microRNAs have cell type-specific functions in astrocytes and vascular cells which act on one another, thereby affecting the cell viability of neurons. Furthermore, these microRNAs display actual and potential clinical implications as diagnostic and prognostic biomarkers in ischemic stroke and in predicting therapeutic response to antiplatelet therapy. In conclusion, this review improves the current mechanistic understanding of the molecular mechanisms leading to ischemic stroke in women and highlights the clinical promise of sex-specific microRNAs as novel diagnostic biomarkers for (silent) ischemic stroke.
Collapse
Affiliation(s)
- Barend W. Florijn
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
| | - Roel Bijkerk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nyika D. Kruyt
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.B.); (A.J.v.Z.)
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marieke J. H. Wermer
- Department of Neurology, Leiden University Medical Center, 2333 ZR Leiden, The Netherlands; (N.D.K.); (M.J.H.W.)
| |
Collapse
|
12
|
Ferrer-Raventós P, Beyer K. Alternative platelet activation pathways and their role in neurodegenerative diseases. Neurobiol Dis 2021; 159:105512. [PMID: 34537329 DOI: 10.1016/j.nbd.2021.105512] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE OF THE REVIEW The study of platelets in the context of neurodegenerative diseases is intensifying, and increasing evidence suggests that platelets may play an important role in the pathogenesis of neurodegenerative disorders. Therefore, we aim to provide a comprehensive overview of the role of platelets and their diverse activation pathways in the development of these diseases. RECENT FINDINGS Platelets participate in synaptic plasticity, learning, memory, and platelets activated by exercise promote neuronal differentiation in several brain regions. Platelets also contribute to the immune response by modulating their surface protein profile and releasing pro- and anti-inflammatory mediators. In Alzheimer's disease, increased levels of platelet amyloid precursor protein raise the production of amyloid-beta peptides promoting platelet activation, triggering at the same time amyloid-beta fibrillation. In Parkinson's disease, increased platelet α-synuclein is associated with elevated ROS production and mitochondrial dysfunction. SUMMARY In this review, we revise different platelet activation pathways, those classically involved in hemostasis and wound healing, and alternative activation pathways recently described in the context of neurodegenerative diseases, especially in Alzheimer's disease.
Collapse
Affiliation(s)
- Paula Ferrer-Raventós
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Barcelona, Spain.
| |
Collapse
|
13
|
Wang J, Cao Y, Lu X, Wang T, Li S, Kong X, Bo C, Li J, Wang X, Ma H, Li L, Zhang H, Ning S, Wang L. MicroRNAs and nervous system diseases: network insights and computational challenges. Brief Bioinform 2021; 21:863-875. [PMID: 30953059 DOI: 10.1093/bib/bbz032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
The nervous system is one of the most complex biological systems, and nervous system disease (NSD) is a major cause of disability and mortality. Extensive evidence indicates that numerous dysregulated microRNAs (miRNAs) are involved in a broad spectrum of NSDs. A comprehensive review of miRNA-mediated regulatory will facilitate our understanding of miRNA dysregulation mechanisms in NSDs. In this work, we summarized currently available databases on miRNAs and NSDs, star NSD miRNAs, NSD spectrum width, miRNA spectrum width and the distribution of miRNAs in NSD sub-categories by reviewing approximately 1000 studies. In addition, we characterized miRNA-miRNA and NSD-NSD interactions from a network perspective based on miRNA-NSD benchmarking data sets. Furthermore, we summarized the regulatory principles of miRNAs in NSDs, including miRNA synergistic regulation in NSDs, miRNA modules and NSD modules. We also discussed computational challenges for identifying novel miRNAs in NSDs. Elucidating the roles of miRNAs in NSDs from a network perspective would not only improve our understanding of the precise mechanism underlying these complex diseases, but also provide novel insight into the development, diagnosis and treatment of NSDs.
Collapse
Affiliation(s)
- Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaolong Wang
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Heping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Taghizadeh M, Kargarfard M, Braune S, Jung F, Naderi M. Long-term aerobic exercise training in type two diabetic patients alters the expression of miRNA-223 and its corresponding target, the P2RY12 receptor, attenuating platelet function. Clin Hemorheol Microcirc 2021; 80:107-116. [PMID: 34420942 DOI: 10.3233/ch-211209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Type two diabetes mellitus (T2DM) patients are prone to develop atherothrombotic events due to platelet hyper-reactivity stemming from platelet miRNA-223 down-regulation and over-expression of its corresponding target, P2RY12. OBJECTIVE The study sought to determine the effects of long-term aerobic training on the expression levels of miRNA-223 and P2RY12 mRNA, and platelet function in T2DM patients. METHODS Twenty-four patients with T2DM (age, 60.0±2.8 yrs.) were selected and randomly divided into two groups: aerobic exercise training (AET, n = 12) and control (CON, n = 12). The AET protocol was performed with moderate intensity for 12 weeks, while patients in the CON group followed their usual routine. Weight, body mass index (BMI), peak oxygen consumption (VO2peak), lipid profile, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin resistance index (HOMA-IR), platelet miRNA-223 and P2RY12 expression were measured before and after the period. RESULTS There was a significant improvement in body weight, BMI, VO2peak, FBG, HbA1c, and HOMA-IR, after 12 weeks of AET (P < 0.01). Platelet aggregation decreased significantly after 12 weeks in the AET group compared with the CON (P < 0.001) group. Platelets' miRNA-223 and P2RY12 were significantly up- and down-regulated after AET in comparison with the CON group (P < 0.05), respectively. Moreover, the relative expression of miRNA-223 and P2RY12 significantly correlated with FBG changes following the intervention. CONCLUSIONS It can be concluded that long-term moderate-intensity aerobic training might be effective for reducing the occurrence of atherothrombotic events leading to premature death in T2DM patients through the modulation of miRNA-223, P2RY12 receptor expression, and platelet function.
Collapse
Affiliation(s)
- Mahmoudreza Taghizadeh
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Steffen Braune
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Tonyan ZN, Nasykhova YA, Danilova MM, Glotov AS. Genetics of macrovascular complications in type 2 diabetes. World J Diabetes 2021; 12:1200-1219. [PMID: 34512887 PMCID: PMC8394234 DOI: 10.4239/wjd.v12.i8.1200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030. Long-term vascular complications, such as coronary artery disease, myocardial infarction, stroke, are the leading causes of morbidity and mortality among diabetic patients. The recent advances in genome-wide technologies have given a powerful impetus to the study of risk markers for multifactorial diseases. To date, the role of genetic and epigenetic factors in modulating susceptibility to T2DM and its vascular complications is being successfully studied that provides the accumulation of genomic knowledge. In the future, this will provide an opportunity to reveal the pathogenetic pathways in the development of the disease and allow to predict the macrovascular complications in T2DM patients. This review is focused on the evidence of the role of genetic variants and epigenetic changes in the development of macrovascular pathology in diabetic patients.
Collapse
Affiliation(s)
- Ziravard N Tonyan
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg 199034, Russia
| | - Yulia A Nasykhova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg 199034, Russia
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, Saint-Petersburg 199034, Russia
| | - Maria M Danilova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg 199034, Russia
| | - Andrey S Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg 199034, Russia
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, Saint-Petersburg 199034, Russia
| |
Collapse
|
16
|
Tonyan ZN, Nasykhova YA, Mikhailova AA, Glotov AS. MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Sharma AR, Shashikiran U, Uk AR, Shetty R, Satyamoorthy K, Rai PS. Aberrant DNA methylation and miRNAs in coronary artery diseases and stroke: a systematic review. Brief Funct Genomics 2021; 19:259-285. [PMID: 31950130 DOI: 10.1093/bfgp/elz043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Coronary artery disease (CAD) and ischemic stroke are the two most predominant forms of cardiovascular diseases (CVDs) caused by genetic, epigenetic and environmental risk factors. Although studies on the impact of 'epigenetics' in CVDs is not new, its effects are increasingly being realized as a key regulatory determinant that may drive predisposition, pathophysiology and therapeutic outcome. The most widely studied epigenetic risk factors are regulated by DNA methylation and miRNA expression. To keep pace with growing developments and discoveries, a comprehensive review was performed using Pubmed, Science Direct and Scopus databases to highlight the role of DNA methylation and miRNAs in CAD and stroke subjects. Network analysis was performed using ClueGO software and miRTargetLink database. We identified 32 studies of DNA methylation on CAD and stroke, of which, 6 studies showed differences in global DNA methylation, 10 studies reported the genome-wide difference in DNA methylation and 16 studies demonstrated altered DNA methylation at 14 candidate loci. The network analysis showed positive regulation of nitric oxide biosynthetic process, homocysteine metabolic process and negative regulation of lipid storage. About, 155 miRNAs were associated with CAD, stroke and related phenotypes in 83 studies. Interestingly, mir-223 hypomethylation and altered expression were associated with cerebral infarction and stroke. The target prediction for 18 common miRNAs between CAD and stroke showed strong interaction with SP3 and SP1 genes. This systematic review addresses the present knowledge on DNA methylation and miRNAs in CAD and stroke, whose abnormal regulation has been implicated in etiology or progression of the diseases.
Collapse
|
18
|
Alhazzani A, Venkatachalapathy P, Padhilahouse S, Sellappan M, Munisamy M, Sekaran M, Kumar A. Biomarkers for Antiplatelet Therapies in Acute Ischemic Stroke: A Clinical Review. Front Neurol 2021; 12:667234. [PMID: 34177775 PMCID: PMC8222621 DOI: 10.3389/fneur.2021.667234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is one of the world's leading causes of disability and death. Antiplatelet agents are administered to acute ischemic stroke patients as secondary prevention. Clopidogrel involves biotransformation by cytochrome P450 (CYP) enzymes into an active metabolite, and single nucleotide polymorphisms (SNPs) can influence the efficacy of this biotransformation. Despite the therapeutic advantages of aspirin, there is significant inter-individual heterogeneity in response to this antiplatelet drug. In this clinical review, the recent advances in the biomarkers of antiplatelet agents in acute ischemic stroke are discussed. The studies reviewed herein highlight the clinical relevance of antiplatelet resistance, pharmacotherapy of antiplatelet agents predicting drug response, strategies for identifying aspirin resistance, pharmacogenetic variants of antiplatelet agents, miRNAs, and extracellular vesicles (EVs) as biomarkers toward the personalized approach in the management of acute ischemic stroke. The precise pathways contributing to antiplatelet resistance are not very well known but are presumably multi-factorial. It is essential to understand the clinical relevance of clopidogrel and aspirin-related single nucleotide polymorphism (SNPs) as potential predictive and prognostic biomarkers. Prasugrel is a next-generation antiplatelet agent that prevents ADP-platelet activation by binding irreversibly to P2Y12 receptor. There are sporadic reports of prasugrel resistance and polymorphisms in the Platelet endothelial aggregation receptor-1 (PEAR1) that may contribute to a change in the pharmacodynamics response. Ticagrelor, a direct-acting P2Y12-receptor antagonist, is easily absorbed and partly metabolized to major AR-C124910XX metabolite (ARC). Ticagrelor's primary active metabolite, ARC124910XX (ARC), is formed via the most abundant hepatic cytochrome P450 (CYP) enzyme, CYP3A4, and CYP3A5. The integration of specific biomarkers, genotype as well as phenotype-related data in antiplatelet therapy stratification in patients with acute ischemic stroke will be of great clinical significance and could be used as a guiding tool for more effective, personalized therapy.
Collapse
Affiliation(s)
- Adel Alhazzani
- Neurology Unit, Medicine Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Sruthi Padhilahouse
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, India
| | - Mohan Sellappan
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, India
| | - Murali Munisamy
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, India
| | - Mangaiyarkarasi Sekaran
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Amit Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol 2021; 12:652579. [PMID: 33935804 PMCID: PMC8081881 DOI: 10.3389/fphys.2021.652579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Krzysztof J Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| |
Collapse
|
20
|
Özdemir ZC, Düzenli Kar Y, Bör Ö. Whole Blood miR-210, miR-122, miR-223 Expression Levels and Their Relationship With Iron Status Parameters and Hypercoagulability Indices in Children With Iron Deficiency Anemia. J Pediatr Hematol Oncol 2021; 43:e328-e335. [PMID: 33710119 DOI: 10.1097/mph.0000000000002127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs have the potential to regulate systemic and cellular iron homeostasis at multiple points. In iron deficiency anemia (IDA), hypoxia, platelet reactivity, and potentially microRNAs play a role in the development of hypercoagulability. A total of 57 children diagnosed with IDA between October 2016 and October 2017 and 48 healthy children were included in this cross-sectional study. Blood count parameters, serum iron, transferrin saturation, ferritin level, maximum clot firmness (MCF), and clot formation time index, which are indicators of hypercoagulability in rotational thromboelastometry test, of the IDA and control groups obtained in our previous study were recorded. miR-210, miR-122, and miR-223 levels were analyzed. There was no difference in the miR-210, miR-122, and miR-223 levels between the IDA and control groups. Patients with hemoglobin (Hb) <8 g/dL had higher miR-210 levels than patients with Hb>8 g/dL (P<0.05). There was a negative correlation between miR-210 and Hb and ferritin levels, a positive correlation between miR-122 and ferritin levels, and a negative correlation between miR-223 and MCF index. In IDA, there is a close relationship between the severity of anemia and miR-210, and miR-210 expression is slightly increased in those with severe anemia. miR-210 and miR-122 collectively play a role in maintaining the iron balance. The correlation between miR-223, a platelet function regulator, and the MCF index, suggested that miR-223 has a role in the development of hypercoagulability in IDA.
Collapse
Affiliation(s)
- Zeynep C Özdemir
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | | | | |
Collapse
|
21
|
Recent Highlights of Research on miRNAs as Early Potential Biomarkers for Cardiovascular Complications of Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22063153. [PMID: 33808800 PMCID: PMC8003798 DOI: 10.3390/ijms22063153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its complications pose a serious threat to the life and health of patients around the world. The most dangerous complications of this disease are vascular complications. Microvascular complications of T2DM include retinopathy, nephropathy, and neuropathy. In turn, macrovascular complications include coronary artery disease, peripheral artery disease, and cerebrovascular disease. The currently used diagnostic methods do not ensure detection of the disease at an early stage, and they also do not predict the risk of developing specific complications. MicroRNAs (miRNAs) are small, endogenous, noncoding molecules that are involved in key processes, such as cell proliferation, differentiation, and apoptosis. Recent research has assigned them an important role as potential biomarkers for detecting complications related to diabetes. We suggest that utilizing miRNAs can be a routine approach for early diagnosis and prognosis of diseases and may enable the development of better therapeutic approaches. In this paper, we conduct a review of the latest reports demonstrating the usefulness of miRNAs as biomarkers in the vascular complications of T2DM.
Collapse
|
22
|
Emerging role of microRNAs in ischemic stroke with comorbidities. Exp Neurol 2020; 331:113382. [DOI: 10.1016/j.expneurol.2020.113382] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
|
23
|
Paseban M, Marjaneh RM, Banach M, Riahi MM, Bo S, Sahebkar A. Modulation of microRNAs by aspirin in cardiovascular disease. Trends Cardiovasc Med 2020; 30:249-254. [DOI: 10.1016/j.tcm.2019.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/12/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
|
24
|
Liu Z, Zhou X, Wang J, Yu F, Feng X, Huang Q, Liao D, Li X, Zhan Q, Liu Y, Yang Q, Jin X, Xia J. Association of AMPK Pathway-Related Gene Polymorphisms with Symptomatic Intracranial Atherosclerotic Stenosis in a Chinese Han Population. Genet Test Mol Biomarkers 2020; 24:230-238. [PMID: 32267777 DOI: 10.1089/gtmb.2019.0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: Recently, AMP-activated protein kinase (AMPK) signaling was confirmed to be intimately associated with atherosclerosis. Evidence indicates that genetic susceptibility plays an important role in the etiology of symptomatic intracranial atherosclerotic stenosis (sICAS), however few genes have been pinpointed being etiologically associated. This study investigated possible links between single nucleotide polymorphisms (SNPs) of AMPK-related genes and sICAS in Han Chinese subjects. Methods: Target gene sequencing was carried out in 400 sICAS Han Chinese patients and 1007 healthy controls for 11 AMPK pathway-related genes. Chi-squared testing and multiple logistic regression in dominant, recessive, and additive models were used to evaluate the association between SNPs and risk of sICAS. Bonferroni corrections were performed with a p < (0.05/44 = 0.0011) as statistically significant. Further subgroup data analyses was conducted using chi-squared or t-tests. Results: There were 44 common variants of 11 candidate genes distributed differently between sICAS patients and healthy controls, among which the INSR rs78312382 SNP remained significant even after a Bonferroni correction. Logistic regression analysis showed that rs78312382 was significantly associated with the risk of sICAS in both dominant and additive models (pBonferroni = 7.874e-5 and 0.000506, respectively), with the A allele being much more prevalent in the sICAS group (p = 0.000404). Conclusions: Variants of the INSR rs7831282 locus may play an important role in the development of sICAS among the Han Chinese with the A allele being a risk factor and a potential biomarker for this illness.
Collapse
Affiliation(s)
- Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoqing Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyan Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhai Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qidong Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Jin
- Department of Intensive Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Vasudeva K, Munshi A. miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers. Eur J Neurosci 2020; 52:3610-3627. [PMID: 32022336 DOI: 10.1111/ejn.14695] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/10/2020] [Accepted: 01/31/2020] [Indexed: 01/14/2023]
Abstract
Stroke is one of the leading causes of death and disability in both developing and developed countries. Biomarkers for stroke and its outcome can greatly facilitate early detection and management of the disease. miRNAs have been explored for their potential as biomarkers for diagnosis, prognosis and brain injury in ischaemic stroke. A substantial body of evidence suggests that miRNAs play key roles in numerous cellular changes following ischaemic stroke including mitochondrial dysfunction, energy failure, cytokine-mediated cytotoxicity, oxidative stress, activation of glial cells, increased intracellular calcium levels inflammatory responses and disruption of the blood-brain barrier (BBB). In addition, targeting specific miRNAs, therapeutic modulation of brain injury and apoptosis can also be achieved. Therefore, the current review has been compiled within an aim to give an overview of the developments exploiting miRNAs at different stages of stroke as prognostic, diagnostic, protective and therapeutic biomarkers.
Collapse
Affiliation(s)
- Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| |
Collapse
|
26
|
Rashid U, Khan MR, Sajid M. Antioxidant, anti-inflammatory and hypoglycemic effects of Fagonia olivieri DC on STZ-nicotinamide induced diabetic rats - In vivo and in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112038. [PMID: 31247238 DOI: 10.1016/j.jep.2019.112038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fagonia olivieri (Zygophyllaceae) is used in Pakistan for management of diabetes and for treatment of stress related disorders of liver and kidneys. The objective of present study was to evaluate antidiabetic activity of F. olivieri using streptozotocin-nicotinamide induced diabetic rat model. METHODS Powder of the whole plant of F. olivieri was extracted with methanol (FOME) and the residue was fractionated with n-hexane (FOHE), chloroform (FOCE), ethyl acetate (FOCE), n-butanol (FOBE) and the remaining soluble aqueous fraction (FOAE). The extract/fractions were evaluated for in vitro inhibition of α-amylase and α-glucosidase and for the antidiabetic studies in Sprague-Dawley rats. FOAE was evaluated in 21 day chronic multiple dose study. Glibenclamide (10 mg/kg) and FOAE were used at a concentration of 200 mg/kg (164.8 μg of catechin) and 400 mg/kg (329.6 μg of catechin) in streptozotocin (STZ)-induced diabetic rats. Various serum parameters, blood cell parameters and oxidative stress induced parameters of the liver and kidneys were investigated. RESULTS Results showed that aqueous fraction of F. olivieri (FOAE) potentially inhibited activity of pancreatic α-amylase, intestinal maltase and sucrase. Administration of FOAE (200 mg/kg; 400 mg/kg) to diabetic rats for 21 days increased body weight, hemoglobin and its indices, RBCs, platelets, lymphocytes and neutrophils against diabetic group. In serum level of glucose, transaminases, ALP, LDH, total bilirubin, creatinine and lipids decreased while insulin, total protein and albumin increased in contrast to diabetic group. Further, level of cytokines; TGF-β1, TNF-α and IL-6 in serum and altered level of antioxidant enzymes, glutathione and lipid peroxides of liver and kidney tissues restored towards control animals. CONCLUSION This study demonstrated that FOAE inhibited activity of digestive enzymes and exhibited antioxidant, anti-inflammatory and antihyperglycemic activity in STZ-nicotinamide prompted diabetic rats and suggested that FOAE might be used as a therapeutic agent for the management of type-2 diabetes.
Collapse
Affiliation(s)
- Umbreen Rashid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Moniba Sajid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
27
|
Sheikhbahaei S, Manizheh D, Mohammad S, Hasan TM, Saman N, Laleh R, Mahsa M, Sanaz AK, Shaghayegh HJ. Can MiR-503 be used as a marker in diabetic patients with ischemic stroke? BMC Endocr Disord 2019; 19:42. [PMID: 31035988 PMCID: PMC6489259 DOI: 10.1186/s12902-019-0371-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Some microRNAs are involved in diabetes pathology and some are known to have role in stroke. MiR-503 causes endothelial dysfunction in diabetic patients, predisposing to ischemia. There has been no study evaluating Mir-503 level in diabetic patients with or without ischemic stroke. METHODS We designed a cross-sectional study to assess and compare serum level of MiR-503 in 4 groups of diabetic patients with ischemic stroke (I), non-diabetic patients with stroke (II), diabetic patients (III), and healthy controls (IV) in acute phase and 3 months later. RESULTS Our data analysis showed that mean relative expression of MiR-503 in group (I) was significantly higher than 3 other groups (p < 0.05). The level of miR-503 was related to the patients' fasting blood glucose, Cholesterol level, NIHSS score and acute-phase modified Rankin Scale (mRS) (r = 0.49, p = 0.001, r = 0.5, p = 0.009, r = 0.45, p = 0.009, r = 0.48, p = 0.003, CI = 95%). Relative expression of miR in patients with mRS ≤ 2 (good outcome) was lower than in patients with mRS > 2 (poor outcome) (p = 0.008). After 3 months, level of miR decreased significantly only in group (I) (p = 0.002). Mean relative expression of miR-503 in chronic phase was not significantly different among groups (p-value> 0.05). There was no relation between miRNA level and mRS in chronic phase. CONCLUSION Hyperglycemia and ischemia together raise the level of MiR-503 acutely but it does not remain at high level after 3 months. Although higher miR was related to more disability in acute phase, it does not affect long-term outcome in ischemic patients. As MiR-503 is stable enough in blood it can be used as a potential diagnostic marker of an ischemic stroke in diabetic patient. Its level also is an indicator of stroke severity and patients' short-term outcome. It is recommended to study whether antagomiR-503 is a new therapeutic agent reducing the severity of and disability due to stroke.
Collapse
Affiliation(s)
- Saba Sheikhbahaei
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danesh Manizheh
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saadatnia Mohammad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Rafiee Laleh
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
28
|
Elia E, Montecucco F, Portincasa P, Sahebkar A, Mollazadeh H, Carbone F. Update on pathological platelet activation in coronary thrombosis. J Cell Physiol 2019; 234:2121-2133. [PMID: 30317596 DOI: 10.1002/jcp.27575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Although coronary thrombosis (CT) is integral to cardiovascular outcomes, the underlying pathophysiological mechanisms remain unclear. CT may occur in case of atherosclerotic plaque erosion/rupture, or even after stenting implantation. Platelets (PLT) activation is the keystone of atherothrombosis and depends on many dysregulated elements, including endothelial dysfunction, oxidized lipoproteins, and immune response. Besides the classical view of PLT as an effector of hemostatic response, a new repertoire of PLT activities is emerging. PLT lipidome oxidation is a self-maintaining process which promotes PLT reactivity, coagulation cascade, and inflammatory cell activation. PLT-innate immune cell interaction is also sustained by neutrophil extracellular traps and NLRP3 inflammasome pathways. Other noteworthy emerging mechanisms are implicated in the crosstalk between PLT and surrounding cells. Especially, microvesicles (MVs) released from PLT may extend their signaling network far beyond the classical cell-cell interactions. Moreover, the recognition of noncoding RNA in PLT MVs introduce another layer of complexity in terms of intercellular signaling by a direct regulation of messenger RNA profile and gene expression in the recipient cells. The aim of this narrative review is to update the recent advance in CT and intracoronary stent thrombosis, including causal factors and potential translation of experimental evidence into the clinical setting.
Collapse
Affiliation(s)
- Edoardo Elia
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Internal Medicine, First Clinic of Internal Medicine, Ospedale Policlinico San Martino, 10 Largo Benzi, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri," University of Bari Medical School, Bari, Italy
| | - Amirhossein Sahebkar
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
Molecular Mechanisms Underpinning Microparticle-Mediated Cellular Injury in Cardiovascular Complications Associated with Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6475187. [PMID: 30915196 PMCID: PMC6399542 DOI: 10.1155/2019/6475187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Microparticles (MPs) are small vesicles shed from the cytoplasmic membrane of healthy, activated, or apoptotic cells. MPs are very heterogeneous in size (100–1,000 nm), and they harbor proteins and surface antigens specific to cells they originate from. Virtually, all cells can shed MPs, and therefore, they can be found in all body fluids, but also entrapped in tissues. Of interest and because of their easy detection using a variety of techniques, circulating MPs were recognized as biomarkers for cell activation. MPs were also found to mediate critical actions in intercellular communication and transmitting biological messages by acting as paracrine vehicles. High plasma numbers of MPs were reported in many cardiovascular and metabolic disturbances that are closely associated with insulin resistance and low-grade inflammation and have been linked to adverse actions on cardiovascular function. This review highlights the involvement of MPs in cardiovascular complications associated with diabetes and discusses the molecular mechanisms that underpin the pathophysiological role of MPs in the onset and progression of cellular injury in diabetes.
Collapse
|
30
|
Abstract
Vascular smooth muscle cell (VSMC) phenotype switching from a contractile state to a synthetic phenotype has been implicated in intimal remodeling during vascular injury. While multiple studies have focused on dedifferentiation of VSMCs, prevention of VSMC-mediated excessive repair remains poorly understood. In this issue of the JCI, Zeng et al. identified a mechanism by which platelet-derived microRNA-223 (miRNA-223) reverses VSMC dedifferentiation. The authors show that suppression of proliferation occurs after platelet internalization by VSMCs. Moreover, they demonstrate that miRNA-223 inhibits dedifferentiation and intimal hyperplasia in diabetic mice by decreasing PDGFRβ expression in VSMCs. Together, these results identify platelet-derived miRNA-223 as a potential therapeutic target in vascular injury.
Collapse
|
31
|
Provost P. Platelet MicroRNAs. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
|
33
|
Qu YM, Sun X, Yan XL, Jin H, Guo ZN, Yang Y. Identification of microRNAs and messenger RNAs involved in human umbilical cord mesenchymal stem cell treatment of ischemic cerebral infarction using integrated bioinformatics analysis. Neural Regen Res 2019; 14:1610-1616. [PMID: 31089061 PMCID: PMC6557085 DOI: 10.4103/1673-5374.255998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, a large number of differentially expressed genes have been identified in human umbilical cord mesenchymal stem cell (hUMSC) transplants for the treatment of ischemic cerebral infarction. These genes are involved in various biochemical processes, but the role of microRNAs (miRNAs) in this process is still unclear. From the Gene Expression Omnibus (GEO) database, we downloaded two microarray datasets for GSE78731 (messenger RNA (mRNA) profile) and GSE97532 (miRNA profile). The differentially expressed genes screened were compared between the hUMSC group and the middle cerebral artery occlusion group. Gene ontology enrichment and pathway enrichment analyses were subsequently conducted using the online Database for Annotation, Visualization, and Integrated Discovery. Identified genes were applied to perform weighted gene co-suppression analyses, to establish a weighted co-expression network model. Furthermore, the protein-protein interaction network for differentially expressed genes from turquoise modules was built using Cytoscape (version 3.40) and the most highly correlated subnetwork was extracted from the protein-protein interaction network using the MCODE plugin. The predicted target genes for differentially expressed miRNAs were also identified using the online database starBase v3.0. A total of 3698 differentially expressed genes were identified. Gene ontology analysis demonstrated that differentially expressed genes that are related to hUMSC treatment of ischemic cerebral infarction are involved in endocytosis and inflammatory responses. We identified 12 differentially expressed miRNAs in middle cerebral artery occlusion rats after hUMSC treatment, and these differentially expressed miRNAs were mainly involved in signaling in inflammatory pathways, such as in the regulation of neutrophil migration. In conclusion, we have identified a number of differentially expressed genes and differentially expressed mRNAs, miRNA-mRNAs, and signaling pathways involved in the hUMSC treatment of ischemic cerebral infarction. Bioinformatics and interaction analyses can provide novel clues for further research into hUMSC treatment of ischemic cerebral infarction.
Collapse
Affiliation(s)
- Yin-Meng Qu
- Stroke Center, Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xin Sun
- Stroke Center, Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiu-Li Yan
- Stroke Center, Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hang Jin
- Stroke Center, Neuroscience Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Neuroscience Center, Department of Neurology; Clinical Trial and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
34
|
Fan B, Luk AOY, Chan JCN, Ma RCW. MicroRNA and Diabetic Complications: A Clinical Perspective. Antioxid Redox Signal 2018; 29:1041-1063. [PMID: 28950710 DOI: 10.1089/ars.2017.7318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The rising global prevalence of diabetes and its debilitating complications give rise to significant disability and premature mortality. Due to the silent nature of diabetes and its vascular complications, and limitations in current methods for detection, there is a need for novel biomarkers for early detection and prognosis. Recent Advances: Metabolic memory and epigenetic factors are important in the pathogenesis of diabetic complications and interact with genetic variants, metabolic factors, and clinical risk factors. Micro(mi)RNAs interact with epigenetic mechanisms and pleiotropically mediate the effects of hyperglycemia on the vasculature. Utilizing mature profiling techniques and platforms, an increasing number of miRNA signatures and interaction networks have been identified for diabetes and its related cardiorenal complications. As a result, these short, single-stranded molecules are emerging as potential diagnostic and predictive tools in human studies, and may function as disease biomarkers, as well as treatment targets. CRITICAL ISSUES However, there is complex interaction between the genome and epigenome. The regulation of miRNAs may differ across species and tissues. Most profiling studies to date lack validation, often requiring large, well-characterized cohorts and reliable normalization strategies. Furthermore, the incremental benefits of miRNAs as biomarkers, beyond prediction provided by traditional risk factors, are critical issues to consider, yet often neglected in published studies. FUTURE DIRECTIONS All in all, the future for miRNA-based diagnostics and therapeutics for diabetic complications appears promising. Improved understanding of the complex mechanisms underlying miRNA dysregulation, and more well-designed studies utilizing prospective samples would facilitate the translation to clinical use.
Collapse
Affiliation(s)
- Baoqi Fan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China
| | - Andrea On Yan Luk
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China
| | - Juliana Chung Ngor Chan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China .,3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Shatin, China .,4 The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine , Shatin, China
| | - Ronald Ching Wan Ma
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China .,3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Shatin, China .,4 The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine , Shatin, China
| |
Collapse
|
35
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Akbarinia A, Kargarfard M, Naderi M. Aerobic training improves platelet function in type 2 diabetic patients: role of microRNA-130a and GPIIb. Acta Diabetol 2018; 55:893-899. [PMID: 29855803 DOI: 10.1007/s00592-018-1167-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 01/16/2023]
Abstract
AIMS MicroRNAs (miRs) that are mediators of gene expression have been implicated in type 2 diabetes mellitus (T2DM). Platelet hyper-reactivity is one of the most important disorders in T2DM patients. In this study, we explored the effects of aerobic training (AT) on platelet aggregation and Glycoprotein IIb (GPIIb) receptor and miR-130a expression. METHODS In a quasi-experimental controlled trial, 24 sedentary, eligible female participants with T2DM were selected (age 61.92 ± 3.63) and divided into AT and control (CON) groups based on their peak oxygen consumption (VO2peak). AT protocol was performed three times per week in non-consecutive days on a treadmill with mean intensity (60-75% VO2peak) for 8 weeks, while the control group refrained from any type of exercise training. Two blood samples were taken before and after this period. Real-time PCR was used to determine the expression of platelet GPIIb and miR-130a. Moreover, platelet indices (PLT, MPV, PDW, and PCT), collagen-induced platelet aggregation and glycemic variables were measured. RESULTS Analyses of data showed that anthropometric variables, VO2peak and glycemic control improved significantly (P < 0.01) after AT. Furthermore, MPV, PDW (P < 0.01), and platelet aggregation (P < 0.001) decreased significantly following AT compared with control group. Platelet GPIIb expression down-regulated significantly (P < 0.05) in AT group but up-regulation of miR-130a expression was not significant between two groups (P > 0.05). CONCLUSIONS Platelet hyper-reactivity in T2DM females might be decreased not only by glycemic control and amelioration of anthropometric and platelet indices, but also the down-regulation of GPIIb following AT. However, more research is needed to determine the effects of exercise training on platelet miR-130a.
Collapse
Affiliation(s)
- Atousa Akbarinia
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Abstract
Stroke is a leading cause of death and disability worldwide. Aspirin is the most commonly used antiplatelet drug in both primary and secondary prevention of cerebrovascular and cardiovascular diseases. A proportion of patients may have stroke recurrence while they are on treatment with aspirin, giving rise to term aspirin resistance or aspirin failure. Studies have suggested that such recurrence could partly be attributed to biochemical aspirin resistance, with an estimated prevalence ranging between 5% and 65% among patients with ischemic stroke in the published studies. Common methods to evaluate laboratory aspirin resistance include light transmission aggregometry, PFA-100, VerifyNow-Aspirin assay, serum thromboxane B2, and urinary 11-dehydrothromboxane B2. Aspirin resistance is multifactorial in origin and involves diverse environmental and genetic factors, including single-nucleotide polymorphisms, miRNAs, drug interactions, and co-morbid risk factors. The current review overviews the concept of aspirin resistance, its evaluation and relationship with stroke recurrence, its outcome, and its implications on stroke management in the future.
Collapse
Affiliation(s)
- Pranjal Sisodia
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Bhatia
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
38
|
Szeto V, Chen NH, Sun HS, Feng ZP. The role of K ATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacol Sin 2018; 39:683-694. [PMID: 29671418 PMCID: PMC5943906 DOI: 10.1038/aps.2018.10] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke.
Collapse
Affiliation(s)
- Vivian Szeto
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Nai-hong Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-shuo Sun
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- Surgery
- Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
39
|
Taghizadeh M, Ahmadizad S, Naderi M. Effects of endurance training on hsa-miR-223, P2RY12 receptor expression and platelet function in type 2 diabetic patients. Clin Hemorheol Microcirc 2018. [PMID: 29526844 DOI: 10.3233/ch-170300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mahmoudreza Taghizadeh
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Iran
| | - Sajad Ahmadizad
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
40
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [PMID: 28842356 PMCID: PMC11884751 DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Stroke is the number one cause of neurological dysfunction in adults and has a heavy socioeconomic burden worldwide. The etiological origins of ischemic stroke and resulting pathological processes are mediated by a multifaceted cascade of molecular mechanisms that are in part modulated by posttranscriptional activity. Accumulating evidence has revealed a role for microRNAs (miRNAs) as essential mediators of posttranscriptional gene silencing in both the physiology of brain development and pathology of ischemic stroke. In this review, we compile miRNAs that have been reported to regulate various stroke risk factors and pre-disease mechanisms, including hypertension, atherosclerosis, and diabetes, followed by an in-depth analysis of miRNAs in ischemic stroke pathogenesis, such as excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis and neurogenesis. Since promoting or suppressing expression of miRNAs by specific pharmaceutical and non-pharmaceutical therapies may be beneficial to post-stroke recovery, we also highlight the potential therapeutic value of miRNAs in clinical settings.
Collapse
Affiliation(s)
- Guangwen Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | | | - Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China; Beijing Institute for Brain Disorders and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 10053, China.
| |
Collapse
|
41
|
Zheng H, Han Y, Du Y, Shi X, Huang H, Yu X, Tan X, Hu C, Wang Y, Zhou S. Regulation of Hypertension for Secondary Prevention of Stroke: The Possible 'Bridging Function' of Acupuncture. Complement Med Res 2018; 25:45-51. [PMID: 29393105 DOI: 10.1159/000475930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, stroke is the leading cause of mortality and disability, with hypertension being an independent risk factor for a secondary stroke. Acupuncture for the treatment of hypertension gains more attention in alternative and complementary medicine, but the results are inconsistent. Few studies regarding the secondary prevention of stroke by managing hypertension with acupuncture have been carried out as there are some problems regarding the antihypertensive drug status in the secondary prevention of stroke. Still, the potential of acupuncture in regulating the blood pressure for secondary stroke prevention deserves our focus. This review is based on papers recorded in the PubMed, Embase, and Web of Science databases, from their inception until March 28, 2017, and retrieved with the following search terms: hypertension and acupuncture, limited in spontaneously hypertensive rats (SHRs), stress-induced (or cold-induced) hypertensive or pre-hypertensive models. We find that, in these hypertensive animals, acupuncture could mainly influence factors related to the nervous system, oxidative stress, the endocrine system, cardiovascular function, and hemorheology, which are closely associated with the stroke outcome. This trend may give us a hint that acupuncture might well participate in the secondary prevention of stroke through these pathways when used in the management of hypertension.
Collapse
|
42
|
De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne) 2018; 9:2. [PMID: 29387042 PMCID: PMC5776102 DOI: 10.3389/fendo.2018.00002] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a common metabolic disorder predisposing to diabetic cardiomyopathy and atherosclerotic cardiovascular disease (CVD), which could lead to heart failure through a variety of mechanisms, including myocardial infarction and chronic pressure overload. Pathogenetic mechanisms, mainly linked to hyperglycemia and chronic sustained hyperinsulinemia, include changes in metabolic profiles, intracellular signaling pathways, energy production, redox status, increased susceptibility to ischemia, and extracellular matrix remodeling. The close relationship between type 2 DM and CVD has led to the common soil hypothesis, postulating that both conditions share common genetic and environmental factors influencing this association. However, although the common risk factors of both CVD and type 2 DM, such as obesity, insulin resistance, dyslipidemia, inflammation, and thrombophilia, can be identified in the majority of affected patients, less is known about how these factors influence both conditions, so that efforts are still needed for a more comprehensive understanding of this relationship. The genetic, epigenetic, and environmental backgrounds of both type 2 DM and CVD have been more recently studied and updated. However, the underlying pathogenetic mechanisms have seldom been investigated within the broader shared background, but rather studied in the specific context of type 2 DM or CVD, separately. As the precise pathophysiological links between type 2 DM and CVD are not entirely understood and many aspects still require elucidation, an integrated description of the genetic, epigenetic, and environmental influences involved in the concomitant development of both diseases is of paramount importance to shed new light on the interlinks between type 2 DM and CVD. This review addresses the current knowledge of overlapping genetic and epigenetic aspects in type 2 DM and CVD, including microRNAs and long non-coding RNAs, whose abnormal regulation has been implicated in both disease conditions, either etiologically or as cause for their progression. Understanding the links between these disorders may help to drive future research toward an integrated pathophysiological approach and to provide future directions in the field.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Daniela P. Foti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| |
Collapse
|
43
|
Aitbaev KA, Murkamilov IT, Fomin VV, Murkamilova JA, Yusupov FA. MicroRNA in ischemic stroke. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:48-56. [DOI: 10.17116/jnevro20181183248-56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, Malek L, Postula M. The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular Events in High-Risk Populations, Including Diabetic Patients: A Review. Front Endocrinol (Lausanne) 2018; 9:74. [PMID: 29615970 PMCID: PMC5869202 DOI: 10.3389/fendo.2018.00074] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a pivotal role in the development and progression of atherosclerosis, which often leads to potentially fatal ischemic events at later stages of the disease. Platelets and platelet microvesicles (PMVs) contain large amounts of microRNA (miRNA), which contributes largely to the pool of circulating miRNAs. Hence, they represent a promising option for the development of innovative diagnostic biomarkers, that can be specific for the underlying etiology. Circulating miRNAs can be responsible for intracellular communication and may have a biological effect on target cells. As miRNAs associated to both cardiovascular diseases (CVD) and diabetes mellitus can be measured by means of a wide array of techniques, they can be exploited as an innovative class of smart disease biomarkers. In this manuscript, we provide an outline of miRNAs associated with platelet function and reactivity (miR-223, miR-126, miR-197, miR-191, miR-21, miR-150, miR-155, miR-140, miR-96, miR-98) that should be evaluated as novel biomarkers to improve diagnostics and treatment of CVD.
Collapse
Affiliation(s)
- Justyna Pordzik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Pisarz
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Axel Dyve Jones
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- URT-CNR, Department of Medicine, Consiglio Nazionale delle Ricerche of IFC, Catanzaro, Italy
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postula,
| |
Collapse
|
45
|
Long Y, Zhan Q, Yuan M, Duan X, Zhou J, Lu J, Li Z, Yu F, Zhou X, Yang Q, Xia J. The Expression of microRNA-223 and FAM5C in Cerebral Infarction Patients with Diabetes Mellitus. Cardiovasc Toxicol 2017; 17:42-48. [PMID: 26717922 DOI: 10.1007/s12012-015-9354-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of the study was to investigate the expression of miR-223 and FAM5C in the peripheral blood mononuclear cells (PBMCs) of cerebral infarction patients with or without diabetes. Sixteen cases with diabetes mellitus (DM), 14 cases with cerebral infarction (CI), 12 cases with cerebral infarction and diabetes mellitus (CIDM), and 18 healthy subjects were included in this study. Real-time PCR was used to quantify mRNA expression. Western blot was used to detect FAM5C protein level. Recombinant plasmids expressing miR-223-3p and 3' UTR of FAM5C were constructed. Dual-luciferase reporter system was used to analyze the binding of miR-223-3p to FAM5C 3' UTR. FAM5C mRNA and protein level were significantly higher in the PBMCs of CIDM patients compared with healthy controls (P < 0.05). miR-223-3p expression in PBMCs was significantly lower in DM patients than in healthy controls (P < 0.05). The expression of miR-223-3p was negatively correlated with FAM5C mRNA in all patients and healthy controls. Co-transfection of miR-223-3p plasmid with FAM5C 3'UTR dual-luciferase plasmid significantly inhibited the luciferase activity (P < 0.01). FAM5C, but not miR-223, is a risk factor for CI in type 2 DM patients.
Collapse
Affiliation(s)
- Yuming Long
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Qiong Zhan
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Mei Yuan
- Department of Neurology, Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaomei Duan
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Juan Zhou
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jinfeng Lu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Zhibin Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaoqing Zhou
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Qidong Yang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
46
|
Alipoor B, Ghaedi H, Meshkani R, Torkamandi S, Saffari S, Iranpour M, Omrani MD. Association of MiR-146a Expression and Type 2 Diabetes Mellitus: A Meta-Analysis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2017; 6:156-163. [PMID: 29682487 PMCID: PMC5898639 DOI: 10.22088/acadpub.bums.6.3.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023]
Abstract
Although deregulation of miR-146a has been reported in type 2 diabetes repeatedly, the direction of deregulation events (up or down) remained to be inconsistent in literatures. Therefore, in this study we performed a meta-analysis on the possible association between miR-146a expression levels and type 2 diabetes. A systematic literature searching of PubMed, ISI Web of Science and Google Scholar was performed up to the end of September 2016. Finally, a total of 12 studies including 344 diabetic patients and 316 controls were selected for meta-analysis. All statistical analysis was performed using the metafor package with R software. Moreover, publication bias was assessed by Egger’s and sensitivity analysis was applied on the meta-analysis. The results are presented as log10 odds ratios (logORs), 95% confidence intervals (CI) with relevant P values. The results revealed that miR-146a was downregulated in type 2 diabetes cases compared with normal subjects (P=0.01, logOR:-4.76, 95% CI:-8.41, -1.11). Furthermore, sub-group analysis showed that the association between miR-146a expression levels and type 2 diabetes in whole blood (P<0.001) and PBMCs (P<0.001) samples were significant. However, this association was not significant in the serum (P=0.67) and plasma (P=0.90) samples. Our finding suggests that miR-146a downregulation could be associated with type 2 diabetes susceptibility. Further investigations with larger sample size are required to evaluate this association in the type 2 diabetes pathogenesis.
Collapse
Affiliation(s)
- Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran.,Both authors contributed equally to this work
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Both authors contributed equally to this work
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sana Saffari
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Iranpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Maitrias P, Metzinger-Le Meuth V, Nader J, Reix T, Caus T, Metzinger L. The Involvement of miRNA in Carotid-Related Stroke. Arterioscler Thromb Vasc Biol 2017; 37:1608-1617. [PMID: 28775076 DOI: 10.1161/atvbaha.117.309233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in developed countries. Stroke is associated with a marked disability burden and has a major economic impact; this is especially true for carotid artery stroke. Major advances in primary and secondary prevention during the last few decades have helped to tackle this public health problem. However, better knowledge of the physiopathology of stroke and its underlying genetic mechanisms is needed to improve diagnosis and therapy. miRNAs are an important, recently identified class of post-transcriptional regulators of gene expression and are known to be involved in cerebrovascular disease. These endogenous, small, noncoding RNAs may have applications as noninvasive biomarkers and therapeutic tools in practice. Here, we review the involvement of several miRNAs in cell-based and whole-animal models of stroke, with a focus on human miRNA profiling studies of carotid artery stroke. Lastly, we describe the miRNAs' potential role as a biomarker of stroke.
Collapse
Affiliation(s)
- Pierre Maitrias
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.).
| | - Valérie Metzinger-Le Meuth
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Joseph Nader
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Thierry Reix
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Thierry Caus
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Laurent Metzinger
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| |
Collapse
|
48
|
Promoter hypomethylation of microRNA223 gene is associated with atherosclerotic cerebral infarction. Atherosclerosis 2017; 263:237-243. [DOI: 10.1016/j.atherosclerosis.2017.06.924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023]
|
49
|
Ambrose AR, Alsahli MA, Kurmani SA, Goodall AH. Comparison of the release of microRNAs and extracellular vesicles from platelets in response to different agonists. Platelets 2017; 29:446-454. [PMID: 28727490 DOI: 10.1080/09537104.2017.1332366] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
On activation platelets release microRNAs and extracellular vesicles (EV) into circulation. The release of EV from platelets has been shown to be dependent on the agonist; in this study, we investigated whether the microRNA profile or EV released from platelets was also agonist specific. Washed platelets from healthy subjects were maximally stimulated with agonists specific for the receptors for collagen (Glycoprotein VI (GPVI)), thrombin (PAR1/PAR4), or ADP (P2Y1/P2Y12) with/without inhibiting secondary mediators, using aspirin to block cyclooxygenase-1 and apyrase to remove ADP. The released microRNAs were profiled using TaqMan microRNA microarray cards. Platelet-derived EV (pdEV) were characterized by size (Nanoparticle Tracking Analysis, NTA), for procoagulant activity (Annexin-V binding and support of thrombin generation), and for the EV markers CD63 and HSP70. Platelet activation triggered the release of 57-79 different microRNAs, dependent upon agonist, with a core of 46 microRNAs observed with all agonists. There was a high level of correlation between agonists (r2 > 0.98; p < 0.0001 for all), and with the microRNA content of the parent platelets (r2 > 0.98; p < 0.0001). The 46 microRNAs seen in all samples are predicted to have significant effects on the translation of proteins involved in endocytosis, cell cycle control, and differentiation. MiR-223-3p was the most abundant in all samples and has previously been implicated in myeloid lineage development and demonstrated to have anti-inflammatory effects. Stimulation through GPVI produced a pdEV population with significantly more procoagulant activity than the other agonists. Apyrase significantly reduced microRNA and pdEV release, while aspirin had little effect. These data suggest that all tested agonists trigger the release of a similar microRNA profile while the procoagulant activity of the pdEV was agonist dependent. ADP was shown to play an important role in the release of both microRNAs and pdEV.
Collapse
Affiliation(s)
- Ashley R Ambrose
- a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK
| | - Mohammed A Alsahli
- a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK.,b College of Applied Medical Sciences , Qassim University , KSA
| | - Sameer A Kurmani
- a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK
| | - Alison H Goodall
- a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK
| |
Collapse
|
50
|
Sunderland N, Skroblin P, Barwari T, Huntley RP, Lu R, Joshi A, Lovering RC, Mayr M. MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens. Circ Res 2017; 120:418-435. [PMID: 28104774 DOI: 10.1161/circresaha.116.309303] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
Over the last few years, several groups have evaluated the potential of microRNAs (miRNAs) as biomarkers for cardiometabolic disease. In this review, we discuss the emerging literature on the role of miRNAs and other small noncoding RNAs in platelets and in the circulation, and the potential use of miRNAs as biomarkers for platelet activation. Platelets are a major source of miRNAs, YRNAs, and circular RNAs. By harnessing multiomics approaches, we may gain valuable insights into their potential function. Because not all miRNAs are detectable in the circulation, we also created a gene ontology annotation for circulating miRNAs using the gene ontology term extracellular space as part of blood plasma. Finally, we share key insights for measuring circulating miRNAs. We propose ways to standardize miRNA measurements, in particular by using platelet-poor plasma to avoid confounding caused by residual platelets in plasma or by adding RNase inhibitors to serum to reduce degradation. This should enhance comparability of miRNA measurements across different cohorts. We provide recommendations for future miRNA biomarker studies, emphasizing the need for accurate interpretation within a biological and methodological context.
Collapse
Affiliation(s)
- Nicholas Sunderland
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Philipp Skroblin
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Temo Barwari
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Rachael P Huntley
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Ruifang Lu
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Abhishek Joshi
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Ruth C Lovering
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.).
| |
Collapse
|