1
|
Sun Y, Zhang H, Zhang C, Chang X, Zhao H, Sun X, Cortellini P, Liu K, Hou J. A Randomized Controlled Study on the Treatment of Isolated Interdental Intrabony Defects Using the Modified Minimally Invasive Surgical Technique With or Without a Collagen-Enriched Bovine-Derived Xenograft: A 2-Year Analysis. J Clin Periodontol 2025. [PMID: 40386833 DOI: 10.1111/jcpe.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/20/2025]
Abstract
AIM This study aimed to evaluate the efficacy of the modified minimally invasive surgical technique (M-MIST) combined with a collagen-enriched bovine-derived xenograft (CEBDX) for the treatment of isolated interdental intrabony defects. MATERIALS AND METHODS This is a randomized controlled trial including 40 isolated interdental intrabony defects in 40 patients. The test group received M-MIST and CEBDX, and the control group received M-MIST alone. Re-evaluations were performed 1 and 2 years after surgery, with probing depth (PD) and clinical attachment level (CAL) measured at the buccal/labial and lingual/palatal sides of the defects as at baseline. Periapical radiographs and CBCT were also performed to evaluate the radiographic bone changes of the defects. RESULTS Thirty-eight defects were evaluated at the 1- and 2-year follow-ups, and both groups showed statistically significant improvements in PD, CAL and radiographic bone volume. The test group exhibited increased PD reduction (3.95 ± 1.39 mm vs. 2.95 ± 1.51 mm, p = 0.041) and CAL gain (3.58 vs. 2.53 mm on average, p = 0.043) at the buccal side of the defects. No difference was found at the lingual side. A significantly greater radiographic bone volume gain (17.77 ± 11.44 mm3 vs. 8.63 ± 7.10 mm3, p = 0.011) was found in the test group at the 2-year follow-up. CONCLUSIONS M-MIST was effective both alone and with CEBDX. The addition of CEBDX significantly improved radiographic bone volume gain and PD reduction, and CAL gain at the buccal side of the defects.
Collapse
Affiliation(s)
- Yuzhe Sun
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, China
| | - Haidong Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, China
| | - Churen Zhang
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaochi Chang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, China
| | - Hongqiao Zhao
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, China
| | - Pierpaolo Cortellini
- Private Practice, Florence, Italy
- European Research Group on Periodontology (ERGOPERIO), Bern, Switzerland
- Section of Periodontology, Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals, KU Leuven, Leuven, Belgium
| | - Kaining Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, China
| | - Jianxia Hou
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, China
| |
Collapse
|
2
|
Wang R, Wang T, Chen Z, Jiang J, Du Y, Yuan H, Pan Y, Wang Y. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1025-1041. [PMID: 39825206 DOI: 10.1007/s11427-024-2745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 01/20/2025]
Abstract
Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing. BBR-HB-CM contained bioactive materials that promoted the polarization of macrophages from M1 to M2, impeded the formation of ANs and NETs, and modulated M2 macrophage efferocytosis in vivo and in vitro. Mechanistically, BBR-HB-CM promoted bone formation by inhibiting macrophage-myofibroblast transition and reprogrammed macrophage polarization through p85/AKT/mTOR pathway-dependent autophagy. The 3-methyladenine abolished the therapeutic effects of BBR-HB-CM. Further studies revealed that BBR-HB-CM accelerated TES healing in rats with type 2 diabetes mellitus. Overall, our results demonstrated that BBR-HB-CM had high potential to promote rapid TES healing.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
- Department of Stomatology, Chongzhou People's Hospital, Chengdu, 611230, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyu Chen
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Li H, Yang C, Chen G, Wang B, Li J, Xu L. Effect of radiation cross-linked collagen scaffold in alveolar ridge preservation of extraction socket. J Biomed Mater Res A 2024; 112:1699-1711. [PMID: 38606694 DOI: 10.1002/jbm.a.37723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
This study aimed to evaluate the properties of radiation cross-linked collagen scaffold (RCS) and its efficacy for alveolar ridge preservation (ARP). RCS was prepared from collagen dispersion by electron beam irradiation and freeze-drying. The microstructure, swelling ratio, area alteration and mechanical properties of RCS were characterized. Fifty-four New Zealand rabbits performing incisor extraction on maxilla and mandible were randomly assigned into positive, sham operation or treatment groups. Micro-computed tomography (micro-CT) scans, performed after 1, 4, and 12 weeks of surgery, were to assess changes in ridge height at buccal and palatal side, in ridge width and in micromorphological parameters. Histological analysis accessed socket microarchitecture. The results showed that RCS had stable mechanical properties and morphologic features that provided a reliable physical support for ARP. Dimensional changes in treatment group revealed significantly greater vertical height at buccal (5.32 [3.37, 7.26] mm, p < .0001) and palatal (4.37 [2.66, 6.09] mm, p < .0001) side, and horizontal width at the maxilla (0.16 [0.04, 0.28] mm, p < .01) and mandible (0.33 [0.11, 0.54] mm, p < .01) than those in sham operation group after 12 weeks. The treatment group had advantage than positive group in vertical height preservation, quantitatively. The order and density of bone trabeculae were improved in treatment group. These findings indicated that RCS had the potential to serve as an effective scaffold for ARP.
Collapse
Affiliation(s)
- Hongwei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Chen Yang
- Department of Stomatology, Xiang An Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Gong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Bozhao Wang
- Department of Stomatology, Xiang An Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Jian Li
- Department of Stomatology, Xiang An Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Wang Z, Zheng Y, Xu J, Jia Q, Jiang HB, Lee ES. A Simplified GBR Treatment and Evaluation of Posterior Seibert Class I Ridge Defects via Bio-collagen and Platelet-Rich Fibrin: A Retrospective Study. Tissue Eng Regen Med 2024; 21:959-967. [PMID: 38943036 PMCID: PMC11286611 DOI: 10.1007/s13770-024-00654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Classical guided bone regeneration (GBR) treatments can achieve favorable clinical results for ridge defects. However, extensive bone augmentation in the non-esthetic area in the posterior region for minor ridge defects is unnecessary. Therefore, this study used a collagen and Platelet-rich fibrin (PRF) mixture for bone augmentation on minor posterior ridge defects and evaluated the effects. METHODS 22 Seibert Class I ridge defects were treated with BC and covered with a PRF membrane (simplified guided bone regeneration, simplified GBR) and other 22 were treated with Bio-Oss and covered with Bio-Gide (classical GBR). Cone-beam computed tomography imaging was conducted 6 months post-surgery to compare the ridge's horizontal width (HW) and buccal ridge's horizontal width to assess the osteogenic effect. In addition, the buccal ridge contour morphology was studied and classified. RESULTS The buccal ridge contour of simplified GBR was Type A in 14 cases, Type B in 7 cases, and Type C in 1 case and it of classical GBR was Type A in 11 cases, Type B in 8 cases, and Type C in 3 cases. The mean HW significantly increased by 1.50 mm of simplified GBR treatment, while it increased by 1.83 mm in classical GBR treatment. CONCLUSION The combined use of BC and PRF had a significant effect on bone augmentation and this treatment exhibited promising clinical results for correcting posterior Seibert Class I ridge defects. The morphological classification of the reconstructive effect in this study can be utilized in future clinical work.
Collapse
Affiliation(s)
- Zhi Wang
- Second Clinical Division, School and Hospital of Stomatology, Peking University, Beijing, 100101, China.
| | - Yafeng Zheng
- Second Clinical Division, School and Hospital of Stomatology, Peking University, Beijing, 100101, China
| | - Jiaqi Xu
- Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, 250117, Shandong, China
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Heng Bo Jiang
- Department of Stomatological Technology, School of Stomatology, Shandong First Medical University, Jinan, 250117, Shandong, China
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
5
|
Su D, Swearson S, Eliason S, Rice K, Amendt B. RNA Technology to Regenerate and Repair Alveolar Bone Defects. J Dent Res 2024; 103:622-630. [PMID: 38715225 PMCID: PMC11122091 DOI: 10.1177/00220345241242047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
microRNA-200a (miR-200a) targets multiple signaling pathways that are involved in osteogenic differentiation and bone development. However, its therapeutic function in osteogenesis and bone regeneration remains unknown. In this study, we use in vitro and in vivo models to investigate the molecular function of miR-200a overexpression and miR-200a inhibition using a plasmid-based miR inhibitor system (PMIS) on osteogenic differentiation and bone regeneration. Inhibition of miR-200a using PMIS-miR-200a significantly increased osteogenic biomarkers of human embryonic palatal mesenchyme cells and promoted bone regeneration in rat tooth socket defects. In rat maxillary M1 molar extractions, the supporting tooth structures were removed with an implant drill to yield a 3-mm defect in the alveolar bone. A collagen sponge was inserted into the open alveolar defect and PMIS-miR-200a plasmid DNA was added to the sponge and the wound sutured to protect the sponge and close the defect. It was important to remove the existing tooth supporting structure, which can influence alveolar bone regeneration. The alveolar bone was regenerated in 4 wk. The collagen sponge acts to stabilize and deliver the PMIS-miR-200a DNA to cells entering the sponge in the bone defect. We show that mesenchymal stem cells expressing CD90 and Stro-1 enter the sponges, take up the DNA, and express PMIS-miR-200a. PMIS-miR-200a initiates a bone regeneration program in transformed cells in vivo. In vitro inhibition of miR-200a was found to upregulate Wnt and BMP signaling activity as well as Runx2, OCN, Lef-1, Msx2, and Dlx5 associated with osteogenesis. Liver and blood toxicity testing of PMIS-miR-200a-treated rats showed no increase in several biomarkers of liver disease. These results demonstrate the therapeutic function of PMIS-miR-200a for rapid bone regeneration. Furthermore, the studies were designed to demonstrate the ease of use of PMIS-miR-200a in solution and applied using a syringe in the clinic through a simple one-time application.
Collapse
Affiliation(s)
- D. Su
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S. Swearson
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - S. Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K.G. Rice
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - B.A. Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Center for Craniofacial Anomalies Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
Guo F, Li J, Chen Z, Wang T, Wang R, Wang T, Bian Y, Du Y, Yuan H, Pan Y, Jin J, Jiang H, Han F, Jiang J, Wu F, Wang Y. An Injectable Black Phosphorus Hydrogel for Rapid Tooth Extraction Socket Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25799-25812. [PMID: 38727024 DOI: 10.1021/acsami.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.
Collapse
Affiliation(s)
- Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianfeng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ziyu Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
7
|
Qin Z, Han Y, Du Y, Zhang Y, Bian Y, Wang R, Wang H, Guo F, Yuan H, Pan Y, Jin J, Zhou Q, Wang Y, Han F, Xu Y, Jiang J. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1010-1026. [PMID: 38489007 DOI: 10.1007/s11427-023-2454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 03/17/2024]
Abstract
Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yixuan Zhang
- Gusu school, Nanjing medical university, Suzhou, 215002, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiandong Jiang
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
8
|
Lee JH, Kim YT, Jeong SN. Alveolar ridge preservation of damaged or periodontally compromised extraction sockets with bovine- and porcine-derived block bone substitutes: A retrospective case-control study. Clin Implant Dent Relat Res 2023; 25:1033-1043. [PMID: 37431152 DOI: 10.1111/cid.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Alveolar ridge preservation (ARP) was introduced to minimize postextraction alveolar bone loss and extraction socket remodeling; however, current knowledge of the ARP procedure for nonintact extraction sockets is still limited and inconclusive. This retrospective study aimed to evaluate the difference between using deproteinized bovine bone mineral with 10% collagen (DBBM-C) and deproteinized porcine bone mineral with 10% collagen (DPBM-C) when performing ARP procedures in damaged or periodontally compromised extraction sockets based on clinical, radiographic, and profilometric outcomes. METHODS In total, 108 extraction sockets were grafted with 67 DBBM-C and 41 DPBM-C. Changes in radiographic (horizontal width and vertical height) and profilometric outcomes were measured after the ARP procedure and before the implant surgery. Postoperative discomfort (including the severity and duration of pain and swelling), early wound healing outcomes (including spontaneous bleeding and persistent swelling), implant stability, and treatment modalities for implant placement were also assessed. RESULTS Radiographically, the DBBM-C group decreased by -1.70 ± 2.26 mm (-21.50%) and - 1.39 ± 1.85 mm (-30.47%) horizontally and vertically, and the corresponding DPBM-C group decreased by -1.66 ± 1.80 mm (-20.82%) and -1.44 ± 1.97 mm (-27.89%) horizontally and vertically at an average of 5.6 months. There were no serious or adverse complications in any of the cases, and none of the measured parameters differed significantly between the groups. CONCLUSION Within the limitations of this study, ARP with DBBM-C and DPBM-C showed similar clinical, radiographic, and profilometric outcomes in nonintact extraction sockets.
Collapse
Affiliation(s)
- Jae-Hong Lee
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, South Korea
| | - Yeon-Tae Kim
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, South Korea
| | - Seong-Nyum Jeong
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, South Korea
| |
Collapse
|
9
|
Abstract
Collagen is commonly used as a regenerative biomaterial due to its excellent biocompatibility and wide distribution in tissues. Different kinds of hybridization or cross-links are favored to offer improvements to satisfy various needs of biomedical applications. Previous reviews have been made to introduce the sources and structures of collagen. In addition, biological and mechanical properties of collagen-based biomaterials, their modification and application forms, and their interactions with host tissues are pinpointed. However, there is still no review about collagen-based biomaterials for tissue engineering. Therefore, we aim to summarize and discuss the progress of collagen-based materials for tissue regeneration applications in this review. We focus on the utilization of collagen-based biomaterials for bones, cartilages, skin, dental, neuron, cornea, and urological applications and hope these experiences and outcomes can provide inspiration and practical techniques for the future development of collagen-based biomaterials in related application fields. Moreover, future improving directions and challenges for collagen-based biomaterials are proposed as well.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Prosthodontics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yan Dong
- Department of Prosthodontics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
10
|
Lazarov A. Soft-Tissue Augmentation in Periodontally Compromised Patients during Immediate Placement and Immediate Loading Dental Implant Surgery - A Retrospective Study. Ann Maxillofac Surg 2023; 13:37-43. [PMID: 37711524 PMCID: PMC10499271 DOI: 10.4103/ams.ams_207_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/13/2023] [Accepted: 03/15/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction The purpose of this article is to describe a soft-tissue augmentation procedure for multiple tooth extraction sites during immediate placement and immediate loading (IPIL) dental implant surgery in periodontally compromised patients and to present follow-up results of its effectiveness. Methods A retrospective study was conducted on data from patients who underwent IPIL dental implant surgery between 2018 and 2021 at an oral implant centre in Bulgaria. Based on inclusion and exclusion criteria, 103 patients were included, 53 of whom had pre-operative indications for connective tissue grafts (CTGs) and 50 of whom did not. The post-operative incidence of gum recession was evaluated in the two patient groups. Results The majority of the 53 patients (56.60%) had six, seven or eight tooth sites grafted. A significant proportion (87%) needed CTGs at the canine teeth (13 and 23), P < 0.001. The post-operative data showed a low incidence of gum recessions in both the patient groups, with a lower rate in the CTG group at tooth no: 13 (2.20% vs. 18%, P = 0.016) and in the total sum of 10 tooth sites with CTGs (P = 0.001). A reduction in gum problems and increased satisfaction with gum health and aesthetics were reported by 100% of the CTG patients. Discussion Soft-tissue augmentation at multiple tooth extraction sites during IPIL dental implant treatment may benefit periodontally compromised patients through an improved prosthesis-tissue interface in the aesthetic area and a reduction in gum infections, swelling, bleeding and pain.
Collapse
Affiliation(s)
- Aleksandar Lazarov
- Department of Research and Evidence, International Implant Foundation, Munich, Germany
- Department of Prosthodontics, Jaipur Dental College, Maharaj Vinayak Global, Jaipur, Rajasthan, India
- Private Oral Implant Center ALDENTAL, Sofia, Bulgaria
| |
Collapse
|
11
|
Evaluation of a New Porcine Bone Graft on the Repair of Surgically Created Critical Bone Defects in Rat Calvaria: Histomorphometric and Microtomographic Study. J Funct Biomater 2022; 13:jfb13030124. [PMID: 36135558 PMCID: PMC9504591 DOI: 10.3390/jfb13030124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to evaluate the use of a new porcine bone graft in rat calvaria bone defects. Critical defects were surgically created in 24 rats that were divided into four experimental groups according to defect filling (n = 6): Control Group (CG)—blood clot; Porcine Bone Group (PG)—porcine-derived bone substitute; (BG): Bio-Oss Group (BG)−chemically and heat-treated bovine graft; Bonefill Group (BFG)—chemically treated bovine bone substitute. Euthanasia of the animals occurred 30 days after the surgery, and the area of the original surgical defect and the surrounding tissues were removed for micro-CT and histomorphometric analysis. In the micro-CT evaluation, the PG presented statistically significant differences (p < 0.05) in comparison to the CG, BG and BFG, for the parameters percentage of Bone Volume (BV/TV), Surface Bone Density (BS/TV), Number of Trabeculae (Tb.N) and Bone Connectivity (Conn), but not for Total Porosity (Po.tot) and Trabecular Thickness (Tb.Th). The histomorphometric analysis showed that the PG presented similar results to the BG regarding newly formed bone extension and to the BG and BFG regarding newly formed bone area. The porcine-derived graft presented superior microtomographic and histomorphometric results when compared to the two bovine bone substitutes.
Collapse
|
12
|
Influence of Xenogeneic and Alloplastic Carriers for Bone Augmentation on Human Unrestricted Somatic Stem Cells. MATERIALS 2022; 15:ma15144779. [PMID: 35888245 PMCID: PMC9317635 DOI: 10.3390/ma15144779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023]
Abstract
Alloplastic and xenogeneic bone grafting materials are frequently used for bone augmentation. The effect of these materials on precursor cells for bone augmentation is yet to be determined. The aim of this study was to ascertain, in vitro, how augmentation materials influence the growth rates and viability of human unrestricted somatic stem cells. The biocompatibility of two xenogeneic and one alloplastic bone graft was tested using human unrestricted somatic stem cells (USSCs). Proliferation, growth, survival and attachment of unrestricted somatic stem cells were monitored after 24 h, 48 h and 7 days. Furthermore, cell shape and morphology were evaluated by SEM. Scaffolds were assessed for their physical properties by Micro-CT imaging. USSCs showed distinct proliferation on the different carriers. Greatest proliferation was observed on the xenogeneic carriers along with improved viability of the cells. Pore sizes of the scaffolds varied significantly, with the xenogeneic materials providing greater pore sizes than the synthetic inorganic material. Unrestricted somatic stem cells in combination with a bovine collagenous bone block seem to be very compatible. A scaffold’s surface morphology, pore size and bioactive characteristics influence the proliferation, attachment and viability of USSCs.
Collapse
|
13
|
Jain G, Blaauw D, Chang S. A Comparative Study of Two Bone Graft Substitutes–InterOss® Collagen and OCS-B Collagen®. J Funct Biomater 2022; 13:jfb13010028. [PMID: 35323228 PMCID: PMC8951741 DOI: 10.3390/jfb13010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Bone is a complex hierarchical tissue composed of organic and inorganic materials that provide structure, support, and protection to organs. However, there are some critical size defects that are unable to regenerate on their own and therefore require clinical repair. Bone graft substitutes allow repair by providing a temporary resorbable device. Among the common filler materials that aid in regeneration is hydroxyapatite particles of either animal or human origin which is used to fill or reconstruct periodontal and bony defects in the mouth. However, particulate graft substitutes suffer from localized migration away from the implantation site, necessitating the use of a barrier membrane. In this study, we designed InterOss Collagen, combining bovine hydroxyapatite granules with porcine-skin derived collagen to form a bone filler composite. Physiochemical properties of InterOss Collagen and a commercially available product, OsteoConductive Substitute-Bovine(OCS-B) Collagen, referred to as OCS-B Collagen, were examined. We found two bone graft substitutes to be mostly similar, though InterOss Collagen showed comparatively higher surface area and porosity. We conducted an in vivo study in rabbits to evaluate local tissue responses, percent material resorption and bone formation and showed that the two materials exhibited similar degradation profiles, inflammatory and healing responses following implantation. Based on these results, InterOss Collagen is a promising dental bone grafting material for periodontal and maxillofacial surgeries.
Collapse
|
14
|
Keranmu D, Nuermuhanmode N, Ainiwaer A, Guli, Taxifulati D, Shan W, Ling W. Clinical application of concentrate growth factors combined with bone substitute in Alveolar ridge preservation of anterior teeth. BMC Oral Health 2022; 22:54. [PMID: 35241047 PMCID: PMC8895668 DOI: 10.1186/s12903-022-02091-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the clinical effect of concentrated growth factors (CGF) combined with deproteinized bovine bone mineral (DBBM) on Alveolar ridge preservation during implantology.
Methods A total of 38 patients were selected and randomly divided into 2 groups, with 19 cases in each group. The extraction sockets were filled with DBBM with or without CGF. Visual analogue scale (VAS) pain score was recorded within1 week and Landry wound healing index (LWHI) was recorded at 1, 2 and 3 weeks after operation. CBCT was taken preoperatively and 3 and 6 months postoperatively to measure and compare the changes of vertical height, width and gray value of alveolar bone at extraction site. The changes of alveolar bone contour were observed clinically and compared between the two groups. Results The VAS score of CGF group was lower than control group on the 1st and 3rd day after operation (P < 0.05). The LWHI of CGF group was higher than control group 1 week after operation (P < 0.05). The absorption of the labial and palatal plates height and the width in the CGF group was significantly less than the control group at 3 months (P < 0.05). The gray value of alveolar bone in CGF group was significantly higher than control group at 3 months (P < 0.05). There was no significant difference in new bone contour between the two groups (P > 0.05). 94.7% cases in CGF group did not undergo bone grafting, which was significantly higher than control group (78.9%). Conclusions The use of CGF combined with DBBM can help to reduce postoperative pain at the early stage of healing, form sufficient keratinized gingival tissue, effectively maintain the height and width of alveolar bone in the three-dimensional direction and provide good conditions for implant repair in the future.
Collapse
Affiliation(s)
- Dilinuer Keranmu
- Outpatient Department of Oral Surgery, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital). Research Institute of Stomatology of Xinjiang Uygur Autonomous Region, No.393, Xinyi Road, Xinshi District, Ürümqi, 830054, Xinjiang, China
| | - Nijiati Nuermuhanmode
- Outpatient Department of Oral Surgery, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital). Research Institute of Stomatology of Xinjiang Uygur Autonomous Region, No.393, Xinyi Road, Xinshi District, Ürümqi, 830054, Xinjiang, China
| | - Ailimaierdan Ainiwaer
- Outpatient Department of Oral Surgery, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital). Research Institute of Stomatology of Xinjiang Uygur Autonomous Region, No.393, Xinyi Road, Xinshi District, Ürümqi, 830054, Xinjiang, China
| | - Guli
- Outpatient Department of Oral Surgery, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital). Research Institute of Stomatology of Xinjiang Uygur Autonomous Region, No.393, Xinyi Road, Xinshi District, Ürümqi, 830054, Xinjiang, China
| | - Dilidaer Taxifulati
- Outpatient Department of Oral Surgery, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital). Research Institute of Stomatology of Xinjiang Uygur Autonomous Region, No.393, Xinyi Road, Xinshi District, Ürümqi, 830054, Xinjiang, China
| | - Wang Shan
- Outpatient Department of Oral Surgery, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital). Research Institute of Stomatology of Xinjiang Uygur Autonomous Region, No.393, Xinyi Road, Xinshi District, Ürümqi, 830054, Xinjiang, China
| | - Wang Ling
- Outpatient Department of Oral Surgery, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital). Research Institute of Stomatology of Xinjiang Uygur Autonomous Region, No.393, Xinyi Road, Xinshi District, Ürümqi, 830054, Xinjiang, China.
| |
Collapse
|