1
|
Belal F, Mabrouk M, Hammad S, Ahmed H, Barseem A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 2024; 34:119-138. [PMID: 37222883 DOI: 10.1007/s10895-023-03276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
2
|
Goida A, Rogov A, Kuzin Y, Porfireva A, Evtugyn G. Impedimetric DNA Sensors for Epirubicin Detection Based on Polythionine Films Electropolymerized from Deep Eutectic Solvent. SENSORS (BASEL, SWITZERLAND) 2023; 23:8242. [PMID: 37837072 PMCID: PMC10575168 DOI: 10.3390/s23198242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
An electrochemically active polymer, polythionine (PTN), was synthesized in natural deep eutectic solvent (NADES) via multiple potential scans and characterized using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). NADES consists of citric acid monohydrate, glucose, and water mixed in the molar ratio of 1:1:6. Electrodeposited PTN film was then applied for the electrostatic accumulation of DNA from salmon sperm and used for the sensitive detection of the anticancer drug epirubicin. Its reaction with DNA resulted in regular changes in the EIS parameters that made it possible to determine 1.0-100 µM of epirubicin with the limit of detection (LOD) of 0.3 µM. The DNA sensor developed was successfully applied for the detection of epirubicin in spiked samples of artificial and natural urine and saliva, with recovery ranging from 90 to 109%. The protocol of the DNA sensor assembling utilized only one drop of reactants and was performed with a minimal number of steps. Together with a simple measurement protocol requiring 100 µL of the sample, this offers good opportunities for the further use of the DNA sensor in monitoring the drug level in biological samples, which is necessary in oncology treatment and for the pharmacokinetics studies of new antitumor drugs.
Collapse
Affiliation(s)
- Anastasia Goida
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia;
| | - Yurii Kuzin
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
3
|
ERDEM A, ŞENTÜRK H, YILDIZ E, MARAL M, YILDIRIM A, BOZOĞLU A, KIVRAK B, AY NC. Electrochemical DNA biosensors developed for the monitoring of biointeractions with drugs: a review. Turk J Chem 2023; 47:864-887. [PMID: 38173734 PMCID: PMC10760829 DOI: 10.55730/1300-0527.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
The interaction of drugs with DNA is important for the discovery of novel drug molecules and for understanding the therapeutic effects of drugs as well as the monitoring of side effects. For this reason, many studies have been carried out to investigate the interactions of drugs with nucleic acids. In recent years, a large number of studies have been performed to electrochemically detect drug-DNA interactions. The fast, sensitive, and accurate results of electrochemical techniques have resulted in a leading role for their implementation in this field. By means of electrochemical techniques, it is possible not only to demonstrate drug-DNA interactions but also to quantitatively analyze drugs. In this context, electrochemical biosensors for drug-DNA interactions have been examined under different headings including anticancer, antiviral, antibiotic, and central nervous system drugs as well as DNA-targeted drugs. An overview of the studies related to electrochemical DNA biosensors developed for the detection of drug-DNA interactions that were reported in the last two decades in the literature is presented herein along with their applications and they are discussed together with their future perspectives.
Collapse
Affiliation(s)
- Arzum ERDEM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Huseyin ŞENTÜRK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Esma YILDIZ
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Meltem MARAL
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Ayla YILDIRIM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Aysen BOZOĞLU
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Burak KIVRAK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Neslihan Ceren AY
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| |
Collapse
|
4
|
Cheraghi S, Şenel P, Dogan Topal B, Agar S, Majidian M, Yurtsever M, Bellur Atici E, Gölcü A, Ozkan SA. Elucidation of DNA-Eltrombopag Binding: Electrochemical, Spectroscopic and Molecular Docking Techniques. BIOSENSORS 2023; 13:300. [PMID: 36979512 PMCID: PMC10046231 DOI: 10.3390/bios13030300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Eltrombopag is a powerful adjuvant anticancer drug used in treating MS (myelodysplastic syndrome) and AML (acute myeloid leukemia) diseases. In this study, the interaction mechanism between eltrombopag and DNA was studied by voltammetry, spectroscopic techniques, and viscosity measurements. We developed a DNA-based biosensor and nano-biosensor using reduced graphene oxide-modified glassy carbon electrode to detect DNA-eltrombopag binding. The reduction of desoxyguanosine (dGuo) and desoxyadenosine (dAdo) oxidation signals in the presence of the drug demonstrated that a strong interaction could be established between the eltrombopag and dsDNA. The eltrombopag-DNA interaction was further investigated by UV absorption and fluorescence emission spectroscopy to gain more quantitative insight on binding. Viscosity measurements were utilized to characterize the binding mode of the drug. To shed light on the noncovalent interactions and binding mechanism of eltrombopag molecular docking and molecular dynamics (MD), simulations were performed. Through simultaneously carried out experimental and in silico studies, it was established that the eltrombopag binds onto the DNA via intercalation.
Collapse
Affiliation(s)
- Somaye Cheraghi
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran
| | - Pelin Şenel
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| | - Burcu Dogan Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Soykan Agar
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| | - Mahsa Majidian
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| | | | - Ayşegül Gölcü
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
5
|
Cheraghi S, Shalali F, Taher MA. Kojic acid exploring as an essential food additive in real sample by a nanostructure sensor amplified with ionic liquid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
N-doped, silver, and cerium co-doped carbon quantum dots based sensor for detection of Hg2+ and captopril. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Abazar F, Sharifi E, Noorbakhsh A. Antifouling properties of carbon quantum dots-based electrochemical sensor as a promising platform for highly sensitive detection of insulin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhang HW, Li HK, Han ZY, Yuan R, He H. Incorporating Fullerenes in Nanoscale Metal-Organic Matrixes: An Ultrasensitive Platform for Impedimetric Aptasensing of Tobramycin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7350-7357. [PMID: 35076206 DOI: 10.1021/acsami.1c23320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rational design and preparation of available fullerene@metal-organic matrix hybrid materials are of profound significance in electrochemical biosensing applications due to their unique photoelectric properties. In this work, C60@UiO-66-NH2 nanocomposites serve as greatly promising materials to modify electrodes and fix aptamers, resulting in a remarkable electrochemical aptasensor for impedimetric sensing of tobramycin (TOB). Nanoscale composites have preferable electroactivity and small particle size with more exposed functional sites, such as Zr(IV) and -NH2, to immobilize aptamers for enhanced detection performance. As we know, most of the electrochemical impedance aptasensors require a long time to complete the detection process, but this prepared biosensor shows the rapid quantitative identification of target TOB within 4 min. This work expands the synthesis of functional fullerene@metal-organic matrix hybrid materials in electrochemical biosensing applications.
Collapse
Affiliation(s)
- Han-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Hong-Kai Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhang-Ye Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Rongrong Yuan
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
9
|
Crapnell RD, Banks CE. Electroanalytical overview: utilising micro- and nano-dimensional sized materials in electrochemical-based biosensing platforms. Mikrochim Acta 2021; 188:268. [PMID: 34296349 PMCID: PMC8298255 DOI: 10.1007/s00604-021-04913-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
Research into electrochemical biosensors represents a significant portion of the large interdisciplinary field of biosensing. The drive to develop reliable, sensitive, and selective biosensing platforms for key environmental and medical biomarkers is ever expanding due to the current climate. This push for the detection of vital biomarkers at lower concentrations, with increased reliability, has necessitated the utilisation of micro- and nano-dimensional materials. There is a wide variety of nanomaterials available for exploration, all having unique sets of properties that help to enhance the performance of biosensors. In recent years, a large portion of research has focussed on combining these different materials to utilise the different properties in one sensor platform. This research has allowed biosensors to reach new levels of sensitivity, but we note that there is room for improvement in the reporting of this field. Numerous examples are published that report improvements in the biosensor performance through the mixing of multiple materials, but there is little discussion presented on why each nanomaterial is chosen and whether they synergise well together to warrant the inherent increase in production time and cost. Research into micro-nano materials is vital for the continued development of improved biosensing platforms, and further exploration into understanding their individual and synergistic properties will continue to push the area forward. It will continue to provide solutions for the global sensing requirements through the development of novel materials with beneficial properties, improved incorporation strategies for the materials, the combination of synergetic materials, and the reduction in cost of production of these nanomaterials.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
10
|
Baykal B, Kadikoylu G, Senturk H, Donar YO, Sınağ A, Erdem A. Preparation and characterization gallic acid-titanium dioxide nanocomposites for biosensing application on voltammetric detection of DNA. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Ramotowska S, Ciesielska A, Makowski M. What Can Electrochemical Methods Offer in Determining DNA-Drug Interactions? Molecules 2021; 26:3478. [PMID: 34200473 PMCID: PMC8201389 DOI: 10.3390/molecules26113478] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The interactions of compounds with DNA have been studied since the recognition of the role of nucleic acid in organisms. The design of molecules which specifically interact with DNA sequences allows for the control of the gene expression. Determining the type and strength of such interaction is an indispensable element of pharmaceutical studies. Cognition of the therapeutic action mechanisms is particularly important for designing new drugs. Owing to their sensitivity, simplicity, and low costs, electrochemical methods are increasingly used for this type of research. Compared to other techniques, they require a small number of samples and are characterized by a high reliability. These methods can provide information about the type of interaction and the binding strength, as well as the damage caused by biologically active molecules targeting the cellular DNA. This review paper summarizes the various electrochemical approaches used for the study of the interactions between pharmaceuticals and DNA. The main focus is on the papers from the last decade, with particular attention on the voltammetric techniques. The most preferred experimental approaches, the electrode materials and the new methods of modification are presented. The data on the detection ranges, the binding modes and the binding constant values of pharmaceuticals are summarized. Both the importance of the presented research and the importance of future prospects are discussed.
Collapse
Affiliation(s)
| | | | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (S.R.); (A.C.)
| |
Collapse
|
12
|
Kaur L, Sohal HS, Kaur M, Malhi DS, Garg S. A Mini-Review on Nano Technology in the Tumour Targeting Strategies: Drug Delivery to Cancer Cells. Anticancer Agents Med Chem 2021; 20:2012-2024. [PMID: 32753024 DOI: 10.2174/1871520620666200804103714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/20/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recently, the application of cancer nanotechnology-based drug delivery to cancer cells has arisen as an important method to resolve multiple molecular, biophysical, and biochemical obstacles, which the body is preparing to resist against the productive implementation of chemotherapeutic medications. Drug delivery technologies focused on nanoparticles, which have resolved some of the drawbacks of conventional chemotherapy as, decreased drug viscosity, chemo-resistance, precise malignity, limited medicative measures with low oral bioactivity. Due to their adjustable size and surface properties, the half-life period of a drug can be increased in the bloodstream. OBJECTIVE The aim of the current study is to collect and document the data available on the drug delivery system for anticancer drugs. The present study includes some of the drug carriers like liposomes, carbon dots, micelles, carbon nanotubes, magnetic nanoparticles, etc. Methods: To write this review, an exhaustive literature survey was carried out using relevant work published in various SCI, Scopus, and non-SCI indexed journals. The different search engines used to download the research/ review papers are Google search, PubMed, Science Direct, Google Scholar, Scientific Information Database and Research Gate, etc. Results: Nanotechnology offers better pharmacokinetics, reduces the systematic toxicities related to the chemotherapies and a better route of drug administration. In the analysis, we critically highlight recent studies on carcinoma-fighting nanotechnology. CONCLUSION In the present study, different kinds of nano-based drug delivery systems have been discussed along with their characteristic features, the encapsulation of anticancer agents into different types of nanometresized vehicles and their general mechanism.
Collapse
Affiliation(s)
- Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder S Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer S Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|