1
|
Wang G, Tang T, Liu R, Li J, Xu Y, Liao S. Novel Electrochemical Sensor Based on Cu-MOF/MWCNT-COOH for the Simultaneous Detection of Ascorbic Acid and Dopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4102-4112. [PMID: 39901329 DOI: 10.1021/acs.langmuir.4c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
By utilizing carboxylated multiwalled carbon nanotubes (MWCNT-COOH) to strengthen the interaction between the electrode and the analytes and improve the conductivity of the composite material and in conjunction with the superior catalytic properties of copper-based metal-organic framework (MOFs), a novel electrochemical sensor was fabricated from a Cu-MOF/MWCNT-COOH composite, specifically designed for the simultaneous and distinct detection of ascorbic acid (AA) and dopamine (DA). Electrochemical analyses were conducted on the innovative Cu-MOF/MWCNT-COOH electrode through both CV and DPV, revealing unique electrochemical behaviors for AA and DA. The sensor not only showed exceptional electrocatalytic properties but also distinguished itself by its broad dynamic response ranges, covering concentrations from 3 to 1800 μM for AA and from 2 to 180 μM for DA, with detection limits (S/N = 3) of 3.00 μM for AA and 0.32 μM for DA. Furthermore, this electrochemical detection platform exhibited robust reproducibility and selectivity. Examinations of serum samples yielded the recovery rates of AA and DA which were 101.9% and 102.1%, respectively, confirming the sensor's capability to perform reliably under varied biological conditions. The findings confirm the sensor's potential of the proposed method for the simultaneous, sensitive, and reliable detection of AA and DA. In conclusion, the electrochemical sensor has a promising potential for practical applications.
Collapse
Affiliation(s)
- Guoping Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan Province, PR China
- Guang'an Institute of Technology, Guang 'an 638000 Sichuan Province, PR China
| | - Tian Tang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Ruichen Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Jingwen Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Yi Xu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Sen Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan Province, PR China
| |
Collapse
|
2
|
Ciarrocchi D, Pecoraro PM, Zompanti A, Pennazza G, Santonico M, di Biase L. Biochemical Sensors for Personalized Therapy in Parkinson's Disease: Where We Stand. J Clin Med 2024; 13:7458. [PMID: 39685917 DOI: 10.3390/jcm13237458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Since its first introduction, levodopa has remained the cornerstone treatment for Parkinson's disease. However, as the disease advances, the therapeutic window for levodopa narrows, leading to motor complications like fluctuations and dyskinesias. Clinicians face challenges in optimizing daily therapeutic regimens, particularly in advanced stages, due to the lack of quantitative biomarkers for continuous motor monitoring. Biochemical sensing of levodopa offers a promising approach for real-time therapeutic feedback, potentially sustaining an optimal motor state throughout the day. These sensors vary in invasiveness, encompassing techniques like microdialysis, electrochemical non-enzymatic sensing, and enzymatic approaches. Electrochemical sensing, including wearable solutions that utilize reverse iontophoresis and microneedles, is notable for its potential in non-invasive or minimally invasive monitoring. Point-of-care devices and standard electrochemical cells demonstrate superior performance compared to wearable solutions; however, this comes at the cost of wearability. As a result, they are better suited for clinical use. The integration of nanomaterials such as carbon nanotubes, metal-organic frameworks, and graphene has significantly enhanced sensor sensitivity, selectivity, and detection performance. This framework paves the way for accurate, continuous monitoring of levodopa and its metabolites in biofluids such as sweat and interstitial fluid, aiding real-time motor performance assessment in Parkinson's disease. This review highlights recent advancements in biochemical sensing for levodopa and catecholamine monitoring, exploring emerging technologies and their potential role in developing closed-loop therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Davide Ciarrocchi
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessandro Zompanti
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giorgio Pennazza
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marco Santonico
- Unit of Electronics for Sensor Systems, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Lazzaro di Biase
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
3
|
da Silva JMG, de Almeida RF, Zeraik ML. Comparative Metabolite Profiling of Three Savannic Species of Banisteriopsis (Malpighiaceae) via UPLC-MS/MS and Chemometric Tools. Chem Biodivers 2024; 21:e202400679. [PMID: 38822223 DOI: 10.1002/cbdv.202400679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Banisteriopsis (Malpighiaceae) is an important genus of neotropical savannas with related biological and medicinal activities but under-explored metabolomic profiles. We present a chemometric analysis for discriminating secondary metabolites of three species of Banisteriopsis (B. laevifolia, B. malifolia, and B. stellaris) leaves. Initially, each species was separately extracted with ethanol:water (4 : 1, v/v) and analysed by Ultra Performance Liquid Chromatography coupled with Mass Spectrometry (UPLC-MS/MS). The chromatographic profiles were subjected to Global Natural Product Social (GNPS) and Partial Least Squares Discriminant Analysis (PLS-DA). Eighty-nine compounds (cosine≥0.90) were annotated, including flavonoids, phenolics, and acids. The chemometric analysis (VIP Score) showed each species' relative concentration of the more relevant compounds. In addition, four compounds that discriminate the metabolomic profiles of B. laevifolia, B. malifolia, and B. stellaris were identified by PLS-DA.
Collapse
Affiliation(s)
| | - Rafael Felipe de Almeida
- Department of Biology, State University of Goiás, 75860-000, Quirinópolis, GO, Brazil
- Accelerated Taxonomy, Royal Botanic Gardens Kew, TW9 3AE, London, Surrey, United Kingdom
| | - Maria Luiza Zeraik
- Laboratory of Phytochemistry and Biomolecules, Department of Chemistry, State University of Londrina (UEL), 86051-990, Londrina, PR, Brazil
| |
Collapse
|
4
|
Jiang M, Zeng D, Zheng X, Yuan H. Detection of epinephrine using a K 2Fe 4O 7 modified glassy carbon electrode. RSC Adv 2024; 14:15408-15412. [PMID: 38741971 PMCID: PMC11089534 DOI: 10.1039/d4ra00242c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Iron-based electrochemical catalysts used to modify electrodes for biosensing have received more attention from biosensor manufacturers because of their excellent biocompatibility and low cost. In this work, a fast-ion conductor potassium ferrite (K2Fe4O7) modified glassy carbon electrode (GCE) was prepared for detecting epinephrine (EP) by electrochemical techniques. The obtained K2Fe4O7/GCE electrode exhibited not only a wide linear range over EP concentration from 2 μM to 260 μM with a detection limit of 0.27 μM (S/N = 3) but also high selectivity toward EP in the presence of common interferents ascorbic acid (AA) and uric acid (UA), as well as good reproducibility and stability.
Collapse
Affiliation(s)
- Mingcheng Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 PR China
| | - Decheng Zeng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 PR China
| | - Xinxin Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 PR China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 PR China
| |
Collapse
|
5
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
6
|
Wang TP, Cheng TK, Chen PY, Lee CL. Sonoelectrochemical exfoliation of defective black phosphorus nanosheet with black phosphorus quantum dots as a uric acid sensor. ULTRASONICS SONOCHEMISTRY 2024; 104:106814. [PMID: 38382394 PMCID: PMC10900925 DOI: 10.1016/j.ultsonch.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
To maintain human health, the development of rapid uric acid (UA) sensing is crucial. In this study, defective black phosphorus nanosheets with black phosphorus quantum dots (dBPN/BPQDs) were successfully and rapidly prepared by sonoelectrochemical exfoliation. In this process, the intercalation of phosphate ions into the black phosphorus working electrode was improved by coupling ultrasonic radiation with a high intercalating potential (8 V vs. Ag/AgCl/3M). The dBPN/BPQDs with various vacancies (5-9 defects, 5-7-7-5 defects, and 5-8-5 defect vacancies) exhibited a remarkable mass activity (jm, 1.22 × 10-3 mA μg-1) for uric acid oxidation, which was 5.92 times greater than that of reduced graphene oxide (rGO) (2.06 × 10-4 mA μg-1). In addition, the sensitivity of the dBPN/BPQD UA sensor was 474.2 μA mM-1 cm-2 in the linear analysis range of 0.1-1.3 mM. The sensitivity of the sensor was apparently higher than 67.7 μA mM-1cm-2 for rGO. The data from real sample experiments using serum showed that the dBPN/BPQD catalyst had high recoveries (97.3 %-100.2 %) and low related standard deviation (0.44 %-1.52 %). The dBPN/BPQDs exhibited the potential as an amperometric sensor to detect UA without needing enzymes.
Collapse
Affiliation(s)
- Tzu-Pei Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Tain-Kei Cheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Po-Yu Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Liang Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan.
| |
Collapse
|
7
|
Thamilselvan A, Dang TV, Kim MI. Highly Conductive Peroxidase-like Ce-MoS 2 Nanoflowers for the Simultaneous Electrochemical Detection of Dopamine and Epinephrine. BIOSENSORS 2023; 13:1015. [PMID: 38131775 PMCID: PMC10742101 DOI: 10.3390/bios13121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The accurate and simultaneous detection of neurotransmitters, such as dopamine (DA) and epinephrine (EP), is of paramount importance in clinical diagnostic fields. Herein, we developed cerium-molybdenum disulfide nanoflowers (Ce-MoS2 NFs) using a simple one-pot hydrothermal method and demonstrated that they are highly conductive and exhibit significant peroxidase-mimicking activity, which was applied for the simultaneous electrochemical detection of DA and EP. Ce-MoS2 NFs showed a unique structure, comprising MoS2 NFs with divalent Ce ions. This structural design imparted a significantly enlarged surface area of 220.5 m2 g-1 with abundant active sites as well as enhanced redox properties, facilitating electron transfer and peroxidase-like catalytic action compared with bare MoS2 NFs without Ce incorporation. Based on these beneficial features, Ce-MoS2 NFs were incorporated onto a screen-printed electrode (Ce-MoS2 NFs/SPE), enabling the electrochemical detection of H2O2 based on their peroxidase-like activity. Ce-MoS2 NFs/SPE biosensors also showed distinct electrocatalytic oxidation characteristics for DA and EP, consequently yielding the highly selective, sensitive, and simultaneous detection of target DA and EP. Dynamic linear ranges for both DA and EP were determined to be 0.05~100 μM, with detection limits (S/N = 3) of 28 nM and 44 nM, respectively. This study shows the potential of hierarchically structured Ce-incorporated MoS2 NFs to enhance the detection performances of electrochemical biosensors, thus enabling extensive applications in healthcare, diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
| | | | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Gyeonggi, Republic of Korea; (A.T.); (T.V.D.)
| |
Collapse
|
8
|
Gatou MA, Vagena IA, Pippa N, Gazouli M, Pavlatou EA, Lagopati N. The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications. CRYSTALS 2023; 13:1236. [DOI: 10.3390/cryst13081236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Chu Z, Gong W, Muhammad Y, Shah SJ, Liu Q, Xing L, Zhou X, Liu Y, Zhao Z, Zhao Z. Construction of a nano dispersed Cr/Fe-polycrystalline sensor via high-energy mechanochemistry for simultaneous electrochemical determination of dopamine and uric acid. Mikrochim Acta 2023; 190:101. [PMID: 36821056 DOI: 10.1007/s00604-023-05688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
A bimetallic polycrystalline sensor (Cr/Fe-SNCM) having nanosized and high dispersion was designed and used for the electrochemical simultaneous determination of dopamine (DA) and uric acid (UA). Catalytic nanosized Cr/Fe were highly anchored on N/S/O-contained porous carbon with high dispersion and polycrystalline Cr/Fe via energetic mechanochemical method and high-temperature carbonization. The obtained Cr/Fe-SNCM exhibited high graphitized carbon supporter and endowed high electron transport and signal output for the whole sensor. Moreover, highly dispersed Cr/Fe sites and the polycrystalline form (metal-N/S/O) efficiently enhanced the catalytic reaction, leading to a limits of detection (based on the 3σ/m criterion) of 25.8 and 22.5 nM for DA and UA, respectively. This is 1-2 orders of magnitude lower than many state-of-the-art reported sensors. The Cr/Fe-SNCM1.0 sensor exhibited wide working range (0.1 to 10.0 μM), high recovery (96-103%) and low relative standard deviation (RSD = 3.2-4.7%) for DA and UA in real serum samples, possessing high significance for practical large-scale applications.
Collapse
Affiliation(s)
- Zhe Chu
- School of Chemistry and Chemical Engineering, New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Wenxue Gong
- School of Chemistry and Chemical Engineering, New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Yaseen Muhammad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, KP, Pakistan
| | - Syed Jalil Shah
- School of Chemistry and Chemical Engineering, New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Linguang Xing
- Guangxi Nanning Baihui Pharmaceutical Group Co., Ltd., No. 2, Zhongyu South Road, Xixiangtang District, Nanning City, China
| | - Xueyun Zhou
- Guangxi Nanning Baihui Pharmaceutical Group Co., Ltd., No. 2, Zhongyu South Road, Xixiangtang District, Nanning City, China
| | - Ying Liu
- Guangxi Nanning Baihui Pharmaceutical Group Co., Ltd., No. 2, Zhongyu South Road, Xixiangtang District, Nanning City, China
| | - Zhenxia Zhao
- School of Chemistry and Chemical Engineering, New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China
| | - Zhongxing Zhao
- School of Chemistry and Chemical Engineering, New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
10
|
Fredj Z, Sawan M. Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends. BIOSENSORS 2023; 13:211. [PMID: 36831978 PMCID: PMC9953752 DOI: 10.3390/bios13020211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in which they act at the brain's highest levels of mental function and play key roles in neurological disorders. Accordingly, the analysis of such catecholamines in biological samples has shown a great interest in clinical and pharmaceutical importance toward the early diagnosis of neurological diseases such as Epilepsy, Parkinson, and Alzheimer diseases. As promising routes for the real-time monitoring of catecholamine neurotransmitters, optical and electrochemical biosensors have been widely adopted and perceived as a dramatically accelerating development in the last decade. Therefore, this review aims to provide a comprehensive overview on the recent advances and main challenges in catecholamines biosensors. Particular emphasis is given to electrochemical biosensors, reviewing their sensing mechanism and the unique characteristics brought by the emergence of nanotechnology. Based on specific biosensors' performance metrics, multiple perspectives on the therapeutic use of nanomaterial for catecholamines analysis and future development trends are also summarized.
Collapse
Affiliation(s)
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| |
Collapse
|
11
|
Sethu Madhavan A, Kakkaraparambil Vijayan J, Rajith L. A Layered Electrochemical Sensor for Epinephrine Based on a Nitrogen‐Doped Reduced Graphene Oxide‐ZnFe
2
O
4
/β‐Cyclodextrin‐Modified Platinum Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Arya Sethu Madhavan
- Department of Applied Chemistry Cochin University of Science and Technology Kochi 682022 India
| | | | - Leena Rajith
- Department of Applied Chemistry Cochin University of Science and Technology Kochi 682022 India
| |
Collapse
|
12
|
Kaynar B, Öztürk G, Kul D. Electrochemical Analysis of Antipsychotic Drug Quetiapine Fumarate Using Multi‐Walled Carbon Nanotube Modified Glassy Carbon Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Dai B, Zhou R, Ping J, Ying Y, Xie L. Recent advances in carbon nanotube-based biosensors for biomolecular detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Tapia MA, Gusmão R, Pérez-Ràfols C, Subirats X, Serrano N, Sofer Z, Díaz-Cruz JM. Enhanced voltammetric performance of sensors based on oxidized 2D layered black phosphorus. Talanta 2022; 238:123036. [PMID: 34801894 DOI: 10.1016/j.talanta.2021.123036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
The exceptional properties of 2D layered black phosphorus (BP) make it a promising candidate for electrochemical sensing applications and, even though BP is considered unstable and tends to degrade by the presence of oxygen and moisture, its oxidation can be beneficial in some situations. In this work, we present an unequivocal demonstration that the exposition of BP-based working electrodes to normal ambient conditions can indeed be advantageous, leading to an enhancement of voltammetric sensing applications. This point was proved using a BP modified screen-printed carbon electrode (BP-SPCE) for the voltammetric determination of dopamine (DA) as a model target analyte. Oxidized BP-SPCE (up to 35% of PxOy at the surface) presented an enhanced analytical performance with a 5-fold and 2-fold increase in sensitivity, as compared to bare-SPCE and non-oxidized BP-SPCE stored in anhydrous atmosphere, respectively. Good detection limit, repeatability, reproducibility, stability, selectivity, and accuracy were also achieved. Overall, the results presented herein display the prominent possibilities of preparing and working with BP based-sensors in normal ambient settings and showcase their implementation under physiological conditions.
Collapse
Affiliation(s)
- María A Tapia
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Rui Gusmão
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Clara Pérez-Ràfols
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Xavier Subirats
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
15
|
ZIF-8/electro-reduced graphene oxide nanocomposite for highly electrocatalytic oxidation of hydrazine in industrial wastewater. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|