1
|
Hmaissia A, Vaneeckhaute C. Effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula. CHEMOSPHERE 2025; 372:144077. [PMID: 39761703 DOI: 10.1016/j.chemosphere.2025.144077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The role of inoculum in initiating anaerobic digestion (AD), and accelerating the start-up of anaerobic digesters has been well-documented. However, the effect of aligning the origin temperature of the inoculum with the operational temperature of the new digester remains underexplored. This study investigates how the origin temperature and characteristics of the inoculum affect the kinetics and biodegradability of sewage sludge (SS) and microcrystalline cellulose (MCC) under mesophilic and thermophilic conditions. Three inocula were used: one thermophilic (I1) and two mesophilic inocula (I2 and I3) in six Biomethane Potential tests (BMP) at 37 and 55 °C. Results indicated that inoculum temperature had no significant impact on the BMP values for MCC and SS, regardless of the experimental temperature. However, kinetic analyses revealed that I2 significantly outperformed I1 and I3 under both temperature conditions. This was attributed to I2's more diverse bacterial structure and lower inhibitor concentrations. High alkalinity, ammonia, and volatile fatty acids (VFA), as well as the presence of denitrifying bacteria (41.7 % of total communities in I1) contributed to poor kinetics of I1 and I3, which were unsuitable for mesophilic and thermophilic temperatures, respectively. Alkalinity (correlation with the Simpson index = -0.92, p < 0.05) and ammonia (correlations with Chao and ACE = -0.93 and -0.91, respectively, p < 0.05) were significantly linked to low bacterial diversity, while high VFA levels were strongly associated with poor inoculum kinetics (correlation with degradation kinetics = -0.90 to -0.99, p < 0.05). These findings offer insights into assessing the inoculum suitability based on its characteristics.
Collapse
Affiliation(s)
- Amal Hmaissia
- BioEngine Research team on green process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec, Québec, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Céline Vaneeckhaute
- BioEngine Research team on green process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec, Québec, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
2
|
Chen X, He H, Zhu N, Jia P, Tian J, Song W, Cui Z, Yuan X. Food waste impact on dry anaerobic digestion of straw in a novel reactor: Biogas yield, stability, and hydrolysis-methanogenesis processes. BIORESOURCE TECHNOLOGY 2024; 406:131023. [PMID: 38914235 DOI: 10.1016/j.biortech.2024.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Gradient anaerobic digestion reactor (GADR) can improve substrate utilization efficiency by solving the problem of the "short circuit" of materials. However, the substrate's composition significantly affects the reactor's performance. This study investigated the impact of food waste (FW) levels on corn straw's dry anaerobic digestion (AD) in a novel GADR. The results show that biomethane production can be improved by coupling urban and agricultural solid waste recycling. The mechanism is to increase the hydrolysis and acid production efficiency, and the abundance of enzymes related to methanogenesis. The maximum methane yield (494.2 mL CH4/g VS) and the highest anaerobic biodegradability (85.7 %) were obtained when the FW was added at 60 %. The co-digestion of FW and straw can improve the hydrolysis and acid production efficiency and methane yield, which improves the buffering capacity and stability of the system compared with the single digestion of FW.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Huiban He
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Na Zhu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Peiqiao Jia
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jinxiang Tian
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Wenyue Song
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy/ Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Alavi-Borazjani SA, da Cruz Tarelho LA, Capela MI. Biohythane production via anaerobic digestion process: fundamentals, scale-up challenges, and techno-economic and environmental aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49935-49984. [PMID: 39090294 PMCID: PMC11364592 DOI: 10.1007/s11356-024-34471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Biohythane, a balanced mixture comprising bioH2 (biohydrogen) and bioCH4 (biomethane) produced through anaerobic digestion, is gaining recognition as a promising energy source for the future. This article provides a comprehensive overview of biohythane production, covering production mechanisms, microbial diversity, and process parameters. It also explores different feedstock options, bioreactor designs, and scalability challenges, along with techno-economic and environmental assessments. Additionally, the article discusses the integration of biohythane into waste management systems and examines future prospects for enhancing production efficiency and applicability. This review serves as a valuable resource for researchers, engineers, and policymakers interested in advancing biohythane production as a sustainable and renewable energy solution.
Collapse
Affiliation(s)
- Seyedeh Azadeh Alavi-Borazjani
- Department of Environment and Planning/Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Luís António da Cruz Tarelho
- Department of Environment and Planning/Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria Isabel Capela
- Department of Environment and Planning/Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
4
|
Zhang L, Yao D, Tsui TH, Loh KC, Wang CH, Dai Y, Tong YW. Plastic-containing food waste conversion to biomethane, syngas, and biochar via anaerobic digestion and gasification: Focusing on reactor performance, microbial community analysis, and energy balance assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114471. [PMID: 35026716 DOI: 10.1016/j.jenvman.2022.114471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
To manage the mixture of food waste and plastic waste, a hybrid biological and thermal system was investigated for converting plastic-containing food waste (PCFW) into renewable energy, focusing on performance evaluation, microbial community analysis, and energy balance assessment. The results showed that anaerobic digestion (AD) of food waste, polyethylene (PE)-containing food waste, polystyrene (PS)-containing food waste, and polypropylene (PP)-containing food waste generated a methane yield of 520.8, 395.6, 504.2, and 479.8 mL CH4/gVS, respectively. CO2 gasification of all the plastic-containing digestate produced more syngas than pure digestate gasification. Syngas from PS-digestate reached the maximum yield of 20.78 mol/kg. During the digestate-derived-biochar-amended AD of PCFW, the methane yields in the biochars-amended digesters were 6-30% higher than those of the control digesters. Bioinformatic analysis of microbial communities confirmed the significant difference between control and biochar-amended digesters in terms of bacterial and methanogenic compositions. The enhanced methane yields in biochars-amended digesters could be partially ascribed to the selective enrichment of genus Methanosarcina, leading to an improved equilibrium between hydrogenotrophic and acetoclastic methanogenesis pathways. Moreover, energy balance assessment demonstrated that the hybrid biological and thermal conversion system can be a promising technical option for the treatment of PCFW and recovery of renewable biofuels (i.e., biogas and syngas) and bioresource (i.e., biochar) on an industrial scale.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Dingding Yao
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chi-Hwa Wang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
5
|
da Silva GH, Barros NO, Santana LAR, Carneiro JDC, Otenio MH. Shifts of acidogenic bacterial group and biogas production by adding two industrial residues in anaerobic co-digestion with cattle manure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1503-1511. [PMID: 34903145 DOI: 10.1080/10934529.2021.2015987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic biodigestion figures as a sustainable alternative to avoid discharge of cattle manure in the environment, which results in biogas and biofertilizer. The anaerobic bioconversion of biomass to methane via anaerobic biodigestion requires a multi-step biological process, including microorganisms with distinct roles. Here, the dynamics of acidogenic bacterial populations by classical microbiology, as well as biogas productivity by gasometer and chromatography, in the anaerobic co-digestion process were studied. This paper presents a performance evaluation of co-digestion systems for biogas production using cattle manure and wastes from the Sewage Treatment Station of a brewery and ricotta cheese whey. The search revealed that the type of substrate added in co-digestion with cattle manure, Carbon/Nitrogen ratio, and Ammonia Nitrogen were the most influential factors that explained many of the variations of the microbiota in the biodigesters fed. This study demonstrated a good potential for the use of ricotta cheese whey in the production of biogas and its further conversion into energy. These findings could provide some fundamental and technical information for the co-treatment of industrial derived wastes in centralized anaerobic biodigestion facilities in a sustainable manner with high process capacity and methane recovery.
Collapse
Affiliation(s)
- Guilherme Henrique da Silva
- Institute of Biological Sciences, Graduate Program in Ecology, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Nathan Oliveira Barros
- Institute of Biological Sciences, Graduate Program in Ecology, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Larice Aparecida Rezende Santana
- Faculty of Pharmacy, Graduate Program in Science and Technology of Milk and Derivatives, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | |
Collapse
|
6
|
Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor. SUSTAINABILITY 2021. [DOI: 10.3390/su13126509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Small-scale anaerobic digestion (AD) can be an effective organic waste management system that also provides energy for small businesses and rural communities. This study measured fuel production from digestions of single and mixed feedstocks using an unheated, 2 m3 digester operated continuously in a temperate climate for over three years. Using local food waste, brewery waste, grease waste, and agricultural residues, this study determined that small-scale AD co-digestions were almost always higher yielding than single feedstocks during psychrophilic operation and seasonal temperature transitions. Agricultural residues from Miscanthus x giganteus had the greatest impact on biomethane production during co-digestion (4.7-fold greater average biogas %CH4), while mesophilic digestion of brewery waste alone produced the most biogas (0.76 gCH4 gVS−1 d−1). Biogas production during the transition from mesophilic to psychrophilic was temporarily maintained at levels similar to mesophilic digestions, particularly during co-digestions, but biogas quality declined during these temperature shifts. Full-time operation of small-scale, unheated AD systems could be feasible in temperate climates if feedstock is intentionally amended to stabilize carbon content.
Collapse
|
7
|
Zhang L, Li F, Kuroki A, Loh KC, Wang CH, Dai Y, Tong YW. Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis. BIORESOURCE TECHNOLOGY 2020; 302:122892. [PMID: 32028149 DOI: 10.1016/j.biortech.2020.122892] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The impact of algal biochar addition on mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste was investigated with a focus on semi-continuous operations and functional microbial communities. Under batch co-digestion, the highest co-digestion synergy was observed for a mixture of 25% food waste and 75% algal biomass. During semi-continuous co-digestion of 25% food waste-75% algal biomass mixture, biochar amended digesters exhibited a 12-54% increase in average methane yield (275.8-394.6 mL/gVS) compared to the controls. Elevated temperature induced narrow distributions of volatile fatty acids (VFAs) by inhibiting the production of branched VFAs. Genus Proteiniphilum was selectively enriched by 3.2 folds in mesophilic digesters with biochar amendment while genus Defluviitoga was selectively enriched in thermophilic digesters due to elevated temperature. Methanogenic communities were significantly different in mesophilic and thermophilic digesters. Biochar amendment contributed to shifts in the predominant methanogens leading to a more balanced state of two methanogenic pathways.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Fanghua Li
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Agnès Kuroki
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Chi-Hwa Wang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
8
|
Suksong W, Kongjan P, Prasertsan P, O-Thong S. Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 291:121851. [PMID: 31374416 DOI: 10.1016/j.biortech.2019.121851] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Thermotolerant cellulolytic consortium for improvement biogas production from oil palm empty fruit bunches (EFB) by prehydrolysis and bioaugmentation strategies was investigated via solid-state anaerobic digestion (SS-AD). The prehydrolysis EFB with Clostridiaceae and Lachnospiraceae rich consortium have maximum methane yield of 252 and 349 ml CH4 g-1 VS with total EFB degradation efficiency of 62% and 86%, respectively. Clostridiaceae and Lachnospiraceae rich consortium augmentation in biogas reactor have maximum methane yield of 217 and 85.2 ml CH4 g-1 VS with degradation efficiency of 42% and 16%, respectively. The best improvement of biogas production was achieved by prehydrolysis EFB with Lachnospiraceae rich consortium with maximum methane production of 113 m3 CH4 tonne-1 EFB. While, Clostridiaceae rich consortium was suitable for augmentation in biogas reactor with maximum methane production of 70.6 m3 CH4 tonne-1 EFB. Application of thermotolerant cellulolytic consortium into the SS-AD systems could enhance biogas production of 3-11 times.
Collapse
Affiliation(s)
- Wantanasak Suksong
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Prawit Kongjan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Poonsuk Prasertsan
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Sompong O-Thong
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand; Research Center in Energy and Environment, Faculty of Science, Thaksin University, Phatthalung, Thailand.
| |
Collapse
|
9
|
Zhang W, Chen B, Li A, Zhang L, Li R, Yang T, Xing W. Mechanism of process imbalance of long-term anaerobic digestion of food waste and role of trace elements in maintaining anaerobic process stability. BIORESOURCE TECHNOLOGY 2019; 275:172-182. [PMID: 30584962 DOI: 10.1016/j.biortech.2018.12.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/09/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
This study investigated mechanism of process imbalance of long-term anaerobic digestion (AD) of food waste (FW) and role of trace elements (TEs) in maintaining process stability. AD of FW was strongly inhibited by volatile fatty acids (VFA, mainly propionate). The deficiency of essential TEs in FW was the fundamental reason. TEs contents in digester gradually decreased with regular substrate feeding and digestate discharge, which greatly limited growth and metabolism of hydrogenotrophic methanogens and Methanosarcina. Finally, Methanosaeta replaced Methanosarcina and became dominant methanogen and hydrogenotrophic methanogens almost disappeared accompanied by declining methanogenic community diversity, which greatly suppressed ecological functions of methanogens and led to propionate inhibition. TEs supplementation eliminated all factors causing process imbalance and significantly enhanced process stability by maintaining strong ecological functions of methanogens via stimulating dominant growth of Methanosarcina (relative abundance between 67.2% and 87.5%), sustaining stable relative abundances of hydrogenotrophic methanogens (about 10%) and enhancing methanogenic community diversity.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Energy and Environment, Key Laboratory of Clean Energy (Liaoning Province), Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang 110136, PR China.
| | - Bin Chen
- School of Energy and Environment, Key Laboratory of Clean Energy (Liaoning Province), Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang 110136, PR China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Rundong Li
- School of Energy and Environment, Key Laboratory of Clean Energy (Liaoning Province), Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang 110136, PR China
| | - Tianhua Yang
- School of Energy and Environment, Key Laboratory of Clean Energy (Liaoning Province), Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang 110136, PR China
| | - Wanli Xing
- School of Energy and Environment, Key Laboratory of Clean Energy (Liaoning Province), Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang 110136, PR China.
| |
Collapse
|
10
|
Zhang W, Xing W, Li R. Real-time recovery strategies for volatile fatty acid-inhibited anaerobic digestion of food waste for methane production. BIORESOURCE TECHNOLOGY 2018; 265:82-92. [PMID: 29883850 DOI: 10.1016/j.biortech.2018.05.098] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 05/25/2023]
Abstract
This study investigated effects of real-time recovery strategies on VFA (volatile fatty acid)-inhibited anaerobic system of FW (food waste) and identified key driver of process recovery. The long-term anaerobic system of FW encountered serious VFA (mainly propionate) inhibition. The pH adjustment (PA) strategy could not reverse process imbalance but only delayed the process failure. The short-term effect of reinoculation (RI) strategy was greatly effective, but its long-term effect was non-sustainable. Trace elements were key drivers of process recovery owing to their indispensable roles in activating methanogenesis and therefore stimulating propionate conversion. From the viewpoint of economic feasibility, the single strategy of trace elements supplementation (TE) and the combinational strategy of PA + TE were respectively recommended in the initial and medium VFA-inhibition stages. The three-in-one strategy of PA + TE + RI was always effective but was costly. This study provided practical guidance on real-time recovery of VFA-inhibited anaerobic system of FW.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Energy and Environment, Key Laboratory of Clean Energy of Liaoning Province, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang 110136, PR China.
| | - Wanli Xing
- School of Energy and Environment, Key Laboratory of Clean Energy of Liaoning Province, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang 110136, PR China
| | - Rundong Li
- School of Energy and Environment, Key Laboratory of Clean Energy of Liaoning Province, Shenyang Aerospace University, No. 37 Daoyi South Avenue, Shenyang 110136, PR China.
| |
Collapse
|
11
|
Wojcieszak M, Pyzik A, Poszytek K, Krawczyk PS, Sobczak A, Lipinski L, Roubinek O, Palige J, Sklodowska A, Drewniak L. Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage. Front Microbiol 2017; 8:1881. [PMID: 29033919 PMCID: PMC5625012 DOI: 10.3389/fmicb.2017.01881] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022] Open
Abstract
A well-balanced microbial consortium is crucial for efficient biogas production. In turn, one of a major factor that influence on the structure of anaerobic digestion (AD) consortium is a source of microorganisms which are used as an inoculum. This study evaluated the influence of inoculum sources (with various origin) on adaptation of a biogas community and the efficiency of the biomethanization of maize silage. As initial inocula for AD of maize silage the samples from: (i) an agricultural biogas plant (ABP) which utilizes maize silage as a main substrate, (ii) cattle slurry (CS), which contain elevated levels of lignocelluloses materials, and (iii) raw sewage sludge (RSS) with low content of plant origin materials were used. The adaptation of methanogenic consortia was monitored during a series of passages, and the functionality of the adapted consortia was verified through start-up operation of AD in two-stage reactors. During the first stages of the adaptation phase, methanogenic consortia occurred very slowly, and only after several passages did the microbial community adapts to allow production of biogas with high methane content. The ABP consortium revealed highest biogas production in the adaptation and in the start-up process. The biodiversity dynamics monitored during adaptation and start-up process showed that community profile changed in a similar direction in three studied consortia. Native communities were very distinct to each other, while at the end of the Phase II of the start-up process microbial diversity profile was similar in all consortia. All adopted bacterial communities were dominated by representatives of Porphyromonadaceae, Rikenellaceae, Ruminococcaceae, and Synergistaceae. A shift from low acetate-preferring acetoclastic Methanosaetaceae (ABP and RSS) and/or hydrogenotrophic Archaea, e.g., Methanomicrobiaceae (CS) prevailing in the inoculum samples to larger populations of high acetate-preferring acetoclastic Methanosarcinaceae was observed by the end of the experiment. As a result, three independent, functional communities that syntrophically produced methane from acetate (primarily) and H2/CO2, methanol and methylamines were adapted. This study provides new insights into the specific process by which different inocula sampled from typical methanogenic environments that are commonly used to initiate industrial installations gradually adapted to allow biogas production from maize silage.
Collapse
Affiliation(s)
- Martyna Wojcieszak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam Pyzik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Poszytek
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Sobczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Leszek Lipinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Otton Roubinek
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Jacek Palige
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Aleksandra Sklodowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Ward AJ. Near-Infrared Spectroscopy for Determination of the Biochemical Methane Potential: State of the Art. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Mendonça Costa MSSD, Lucas JD, Mendonça Costa LAD, Orrico ACA. A highly concentrated diet increases biogas production and the agronomic value of young bull's manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 48:521-527. [PMID: 26452426 DOI: 10.1016/j.wasman.2015.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/18/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
The increasing demand for animal protein has driven significant changes in cattle breeding systems, mainly in feedlots, with the use of young bulls fed on diets richer in concentrate (C) than in forage (F). These changes are likely to affect animal manure, demanding re-evaluation of the biogas production per kg of TS and VS added, as well as of its agronomic value as a biofertilizer, after anaerobic digestion. Here, we determined the biogas production and agronomic value (i.e., the macronutrient concentration in the final biofertilizer) of the manure of young bulls fed on diets with more (80% C+20% F; 'HighC' diet) or less (65% C+35% F; 'LowC' diet) concentrate, evaluating the effects of temperature (25, 35, and 40°C) and the use of an inoculum, during anaerobic digestion. A total of 24 benchtop reactors were used, operating in a semi-continuous system, with a 40-day hydraulic retention time (HRT). The manure from animals given the HighC diet had the greatest potential for biogas production, when digested with the use of an inoculum and at 35 or 40°C (0.6326 and 0.6207m(3)biogas/kg volatile solids, or VS, respectively). We observed the highest levels of the macronutrients N, P, and K in the biofertilizer from the manure of animals given HighC. Our results show that the manure of young bulls achieves its highest potential for biogas production and agronomic value when animals are fed diets richer in concentrate, and that biogas production increases if digestion is performed at higher temperatures, and with the use of an inoculum.
Collapse
Affiliation(s)
- Mônica Sarolli Silva de Mendonça Costa
- Research Group on Water Resources and Environmental Sanitation, Western Parana State University, Agricultural Engineering Graduate Program, Rua Universitária, Jardim Universitário, 2069, 85.819-110 Cascavel, Paraná, Brazil
| | - Jorge de Lucas
- Department of Rural Engineering, São Paulo State University, College of Agricultural and Veterinary Sciences at Jaboticabal, São Paulo, Brazil
| | - Luiz Antonio de Mendonça Costa
- Research Group on Water Resources and Environmental Sanitation, Western Parana State University, Agricultural Engineering Graduate Program, Rua Universitária, Jardim Universitário, 2069, 85.819-110 Cascavel, Paraná, Brazil
| | | |
Collapse
|
14
|
|
15
|
Hidalgo D, Martín-Marroquín JM. Biochemical methane potential of livestock and agri-food waste streams in the Castilla y León Region (Spain). Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.12.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Carballa M, Regueiro L, Lema JM. Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 2015; 33:103-11. [DOI: 10.1016/j.copbio.2015.01.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 02/04/2023]
|
17
|
Torres-Lozada P, Díaz-Granados JS, Parra-Orobio BA. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:1016-1021. [PMID: 26360763 DOI: 10.2166/wst.2015.291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.
Collapse
Affiliation(s)
- Patricia Torres-Lozada
- Universidad del Valle, Engineering Faculty, EIDENAR School, A. A. 25360, Calle 13 No. 100-00 Cali, Colombia E-mail:
| | - José Sánchez Díaz-Granados
- Institute for Marine and Coastal Research (INVEMAR), Carrera 2A No. 3-19 Edificio Centro Empresarial del Pacífico Oficina 403 Buenaventura, Colombia
| | - Brayan Alexis Parra-Orobio
- Universidad del Valle, Engineering Faculty, EIDENAR School, A. A. 25360, Calle 13 No. 100-00 Cali, Colombia E-mail:
| |
Collapse
|