1
|
Zheng T, Hou J, Wu T, Jin H, Dai Y, Xu J, Yang K, Lin D. Ferric Oxide Nanomaterials and Plant-Rhizobacteria Symbionts Cogenerate Iron Plaque for Removing Highly Chlorinated Contaminants in Dryland Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11063-11073. [PMID: 38869036 DOI: 10.1021/acs.est.4c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rhizosphere iron plaques derived from Fe-based nanomaterials (NMs) are a promising tool for sustainable agriculture. However, the requirement for flooded conditions to generate iron plaque limits the scope of the NM application. In this study, we achieved in situ Fenton oxidation of a highly chlorinated persistent organic pollutant (2,2',4,5,5'-pentachlorobiphenyl, PCB101) through iron plaque mediated by the interaction between α-Fe2O3 NMs and plant-rhizobacteria symbionts under dryland conditions. Mechanistically, the coexistence of α-Fe2O3 NMs and Pseudomonas chlororaphis JD37 stimulated alfalfa roots to secrete acidic and reductive agents as well as H2O2, which together mediated the rhizosphere Fenton reaction and converted α-Fe2O3 NMs into iron plaque rich in Fe(II)-silicate. Further verifications reproduced the Fenton reaction in vitro using α-Fe2O3 NMs and rhizosphere compounds, confirming the critical role of •OH in the oxidative degradation of PCB101. Significant reductions in PCB101 content by 18.6%, 42.9%, and 23.2% were respectively found in stem, leaf, and soil after a 120-d treatment, proving the effectiveness of this NMs-plant-rhizobacteria technique for simultaneously safe crop production and soil remediation. These findings can help expand the potential applications of nanobio interaction and its mediated iron plaque generation for both agricultural practice and soil remediation.
Collapse
Affiliation(s)
- Tianying Zheng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yunbu Dai
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
2
|
He Z, Chen J, Yuan S, Chen S, Hu Y, Zheng Y, Li D. Iron Plaque: A Shield against Soil Contamination and Key to Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1476. [PMID: 38891285 PMCID: PMC11174575 DOI: 10.3390/plants13111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Soils play a dominant role in supporting the survival and growth of crops and they are also extremely important for human health and food safety. At present, the contamination of soil by heavy metals remains a globally concerning environmental issue that needs to be resolved. In the environment, iron plaque, naturally occurring on the root surface of wetland plants, is found to be equipped with an excellent ability at blocking the migration of heavy metals from soils to plants, which can be further developed as an environmentally friendly strategy for soil remediation to ensure food security. Because of its large surface-to-volume porous structure, iron plaque exhibits high binding affinity to heavy metals. Moreover, iron plaque can be seen as a reservoir to store nutrients to support the growth of plants. In this review, the formation process of iron plaque, the ecological role that iron plaque plays in the environment and the interaction between iron plaque, plants and microbes, are summarized.
Collapse
Affiliation(s)
- Zeping He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
| | - Jinyuan Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
| | - Shilin Yuan
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
| | - Sha Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China;
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China
| | - Yi Zheng
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
| | - Ding Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (S.Y.); (S.C.); (Y.Z.)
- Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing, Hunan University of Technology, Zhuzhou 412007, China
- Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
3
|
Wu J, Jiao Y, Ran M, Li J. The role of an Sb-oxidizing bacterium in modulating antimony speciation and iron plaque formation to reduce the accumulation and toxicity of Sb in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133897. [PMID: 38442599 DOI: 10.1016/j.jhazmat.2024.133897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/04/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microbial antimony (Sb) oxidation in the root rhizosphere and the formation of iron plaque (IP) on the root surface are considered as two separate strategies to mitigate Sb(III) phytotoxicity. Here, the effect of an Sb-oxidizing bacterium Bacillus sp. S3 on IP characteristics of rice exposed to Sb(III) and its alleviating effects on plant growth were investigated. The results revealed that Fe(II) supply promoted IP formation under Sb(III) stress. However, the formed IP facilitated rather than hindered the uptake of Sb by rice roots. In contrast, the combined application of Fe(II) and Bacillus sp. S3 effectively alleviated Sb(III) toxicity in rice, resulting in improved rice growth and photosynthesis, reduced oxidative stress levels, enhanced antioxidant systems, and restricted Sb uptake and translocation. Despite the ability of Bacillus sp. S3 to oxidize Fe(II), bacterial inoculation inhibited the formation of IP, resulting in a reduction in Sb absorption on IP and uptake into the roots. Additionally, the bacterial inoculum enhanced the transformation of Sb(III) to less toxic Sb(V) in the culture solution, further influencing the adsorption of Sb onto IP. These findings highlight the potential of combining microbial Sb oxidation and IP as an effective strategy for minimizing Sb toxicity in sustainable rice production systems.
Collapse
Affiliation(s)
- Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
4
|
Fan Y, Sun S, He S. Iron plaque formation and its effect on key elements cycling in constructed wetlands: Functions and outlooks. WATER RESEARCH 2023; 235:119837. [PMID: 36905735 DOI: 10.1016/j.watres.2023.119837] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Ecological restoration of wetland plants has emerged as an environmentally-friendly and less carbon footprint method for treating secondary effluent wastewater. Root iron plaque (IP) is located at the important ecological niches in constructed wetlands (CWs) ecosystem and is the critical micro-zone for pollutants migration and transformation. Root IP can affect the chemical behaviors and bioavailability of key elements (C, N, P) since its formation/dissolution is a dynamic equilibrium process jointly influenced by rhizosphere habitats. However, as an efficient approach to further explore the mechanism of pollutant removal in CWs, the dynamic formation of root IP and its function have not been fully studied, especially in substrate-enhanced CWs. This article concentrates on the biogeochemical processes between Fe cycling involved in root IP with carbon turnover, nitrogen transformation, and phosphorus availability in CWs rhizosphere. As IP has the potential to enhance pollutant removal by being regulated and managed, we summarized the critical factors affecting the IP formation from the perspective of wetland design and operation, as well as emphasizing the heterogeneity of rhizosphere redox and the role of key microbes in nutrient cycling. Subsequently, interactions between redox-controlled root IP and biogeochemical elements (C, N, P) are emphatically discussed. Additionally, the effects of IP on emerging contaminants and heavy metals in CWs rhizosphere are assessed. Finally, major challenges and outlooks for future research in regards to root IP are proposed. It is expected that this review can provide a new perspective for the efficient removal of target pollutants in CWs.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, China.
| |
Collapse
|
5
|
Meng H, Yan Z, Li X. Effects of exogenous organic acids and flooding on root exudates, rhizosphere bacterial community structure, and iron plaque formation in Kandelia obovata seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154695. [PMID: 35337868 DOI: 10.1016/j.scitotenv.2022.154695] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The rhizosphere of coastal wetland plants is the active interface of iron (Fe) redox transformation. However, coupling mechanism between organic acids (OAs) exuded by plant roots and Fe speciation transformation participated by Fe redox cycling bacteria in the rhizosphere is still unclear. Effects of four common OAs (citric acid, malic acid, tartaric acid, and oxalic acid) on root exudation, rhizosphere bacterial community structure, root Fe plaque, and Fe redox cycling bacterial communities of Kandelia obovata were investigated in this study. Long-term flooding (10 h) was conducive to K. obovata seedlings exuding additional dissolved organic carbon (DOC) and nitrogen and phosphorus organic matter (NH4+-N, NO3--N, and dissolved inorganic phosphorus [DIP]) under each OA level. DOC, NH4+-N, NO3--N, and DIP in root exudates increased significantly with the increase of exogenous OA level. Notably, long flooding time corresponds to an evidently increasing trend. Exogenous OAs also significantly increased contents of formic and oxalic acids in root exudates. Exogenous OAs and flooding enhanced the rhizosphere effect of K. obovata and significantly enhanced bacterial diversity of the rhizosphere and relative abundance of dominant bacteria in rhizoplane. Bacterial diversity in the rhizosphere of K. obovata seedlings was significantly higher than that in the rhizoplane under the same level of OAs and flooding. Fe plaque content of K. obovata root decreased significantly and the relative abundance of typical Fe-oxidizing bacteria, such as Gallionella, unclassified_f__Gallionellaceae, and Sideroxydans, decreased significantly in the rhizosphere but increased significantly in the rhizoplane with the increase of the treatment level of exogenous OAs. This finding is likely due to the Fe3+ reduction caused by acidification of rhizosphere environment after exogenous OA treatment rather than the result of chemotactic colonization of Fe redox cycling bacteria in the rhizoplane.
Collapse
Affiliation(s)
- Huijie Meng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:111986. [PMID: 33486195 DOI: 10.1016/j.jenvman.2021.111986] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland (CW) represents an efficient eco-technological conglomerate interweaving water security, energy possibility and environmental protection. In the context of wastewater treatment technologies requiring substantial efficiency at reduced cost, chemical input and low environmental impact, applications of CW is being demonstrated at laboratory and field level with reasonably high contaminant removal efficiency and ecological benefits. However, along with the scope of applications, role of individual wetland component has to be re-emphasized through related research interventions. Hence, this review distinctively explores the concerns for extracting maximum benefit of macrophyte (focusing on interface of pollutant removal, root radial oxygen loss, root iron plaque, endophyte-macrophyte assisted treatment in CW, and prospects of energy harvesting from macrophyte) and role of biofilm (effect on treatment efficiency, composition and factors affecting) in a CW. Another focus of the review is on recent advances and developments in alternative low-cost substrate materials (including conventional type, industrial by-products, organic waste, mineral based and hybrid type) and their effect on target pollutants. The remainder of this review is organized to discuss the concerns of CW with respect to wastewater type (municipal, industrial, agricultural and farm wastewater). Attempt is made to analyze the practical relevance and significance of these aspects incorporating all recent developments in the areas to help making informed decisions about future directions for research and development related to CW.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change (MoEFCC), Indira Paryavaran Bhavan, New Delhi, India
| |
Collapse
|
7
|
Sulfidogenesis establishment under increasing metal and nutrient concentrations: An effective approach for biotreating sulfate-rich wastewaters using an innovative structured-bed reactor (AnSTBR). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Meng Y, Liu T, Yu S, Cheng Y, Lu J, Yuan X, Wang H. Biomimic-Inspired and Recyclable Nanogel for Contamination Removal from Water and the Application in Treating Bleaching Effluents. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yi Meng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Tanglong Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanshan Yu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
9
|
Xiao A, Li WC, Ye Z. Effects of Fe-oxidizing bacteria (FeOB) on iron plaque formation, As concentrations and speciation in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110136. [PMID: 31901806 DOI: 10.1016/j.ecoenv.2019.110136] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Large areas of the paddy fields in South China are contaminated with arsenic (As), which causes serious problems, including high As concentrations in brown rice. Three As-resistant iron-oxidizing bacteria (FeOB) namely, Bacillus sp. T2, Pseudomonas sp. Yangling I4 and Bacillus sp. TF1-3, were isolated and applied to rice grown in different As-contaminated environments to study the effects of FeOB on the As accumulation in rice and clarify the possible mechanisms involved. The results showed that FeOB inoculation significantly decreased the inorganic As concentrations in brown rice grown in pots and paddy fields by 3.7-13.3% and 4.6-12.1%, respectively. FeOB inoculation enhanced the formation of Fe plaque, which sequestered more As on the root surface. Moreover, a significantly lower level of As(III) influx was observed in the rice cultivated with FeOB than in the control. FeOB inoculation also decreased the As concentrations in pore water and the Fe(II)/Fe(III) ratio in rhizosphere soil. The present results suggest that FeOB inoculation decreased the inorganic As concentrations in brown rice by affecting the formation of Fe plaque, As(III) uptake kinetics and rhizosphere soil properties. Based on our results, FeOB inoculation could be considered a useful method to decrease inorganic As concentrations in brown rice grown in As-contaminated paddy fields.
Collapse
Affiliation(s)
- Anwen Xiao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Wai Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
10
|
Cui JL, Zhao YP, Chan TS, Zhang LL, Tsang DCW, Li XD. Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121208. [PMID: 31563672 DOI: 10.1016/j.jhazmat.2019.121208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/20/2019] [Accepted: 09/10/2019] [Indexed: 05/10/2023]
Abstract
Contaminated mining sites require ecological restoration work, of which phytoremediation using appropriate plant species is an attractive option. Our present study is focused on one typical contaminated mine site with indigenous plant cover. The X-ray absorption near edge structure (XANES) analysis indicated that Cu (the major contaminant) was primarily associated with goethite (adsorbed fraction), with a small amount of Cu oxalate-like species (organic fraction) in mine affected soil. With growth of plant species like Miscanthus floridulus and Stenoloma chusanum, the Cu-oxalate like organic species in rhizosphere soil significantly increased, with corresponding decrease in Cu-goethite. In the root cross-section of Miscanthus floridulus, synchrotron-based micro-X-ray fluorescence (μ-XRF) microscopy and micro-XANES results indicated that most Cu was sequestered around the root surface/epidermis, primarily forming Cu alginate-like species as a Cu-tolerance mechanism. From the root epidermis to the cortex and vascular bundle, more Cu(I)-glutathione was observed, suggesting reductive detoxification ability of Cu(II) to Cu(I) during the transport of Cu in the root. The observation of Cu-histidine in root internal cell layers showed another Cu detoxification pathway based on coordinating amino ligands. Miscanthus floridulus showed ability to accumulate phosphorous and nitrogen nutrients in rhizosphere and may be an option for in situ phytostabilization of metals in contaminated mining area.
Collapse
Affiliation(s)
- Jin-Li Cui
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yan-Ping Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Li-Li Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201214, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Song S, Han Y, Zhang Y, Ma H, Zhang L, Huo J, Wang P, Liang M, Gao M. Protective role of citric acid against oxidative stress induced by heavy metals in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36820-36831. [PMID: 31745774 DOI: 10.1007/s11356-019-06853-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The adverse effects of heavy metals, such as cadmium, zinc, and copper, occur due to the generation of reactive oxygen species (ROS). The use of Caenorhabditis elegans for the purposes of conservation and biomonitoring is of great interest. In the present study, ROS, malondialdehyde (MDA), and citric acid levels and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in a model organism were tested to study toxicity. C. elegans was exposed to three different concentrations of cadmium (CdCl2, 5, 10, 50 μM), zinc (ZnSO4, 10, 100, 500 μM), and copper (CuSO4, 10, 100, 500 μM) for 3 days. ROS levels increased by 1.3- to 2.1-fold with increasing metal concentrations. The MDA content increased by approximately 7-, 5-, 2-fold after exposure to high concentrations of cadmium, zinc, and copper, respectively. Furthermore, the citric acid content increased by approximately 3-fold in the cadmium (Cd, 5 μM), zinc (Zn, 10 μM), and copper (Cu, 100 μM) treatment groups compared to that in untreated C. elegans. Therefore, citric acid may play an important role in heavy metal detoxification. Excess citric acid also slightly increased the LC50 by 1.3- to 2.0-fold, basic movements by 1.0- to 1.5-fold, decreased the ROS content by 2.4- to 2.1-fold, the MDA content by 4- to 2-fold, the SOD activity by 9- to 3-fold, the GPx activity by 4.0- to 3.0-fold, and the mRNA expression levels of GPxs by 3.2- to 1.8-fold after metals treatment. And it is most significantly in the alleviation of citric acid to cadmium. This study not only provides information to further understand the effects of heavy metal exposure on ROS, MDA, GPx, SOD, and citric acid in worms but also indicates that supplemental citric acid can protect animals from heavy metal stress and has broad application prospects in decreasing oxidative damage caused by heavy metals.
Collapse
Affiliation(s)
- Shaojuan Song
- Changzhi Medical College, No. 161, Jiefangdong Road, Changzhi, 046000, Shanxi, China.
| | - Yan Han
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yun Zhang
- Changzhi Medical College, No. 161, Jiefangdong Road, Changzhi, 046000, Shanxi, China
| | - Honglian Ma
- Changzhi Medical College, No. 161, Jiefangdong Road, Changzhi, 046000, Shanxi, China
| | - Lei Zhang
- Changzhi Medical College, No. 161, Jiefangdong Road, Changzhi, 046000, Shanxi, China
| | - Jing Huo
- Changzhi Medical College, No. 161, Jiefangdong Road, Changzhi, 046000, Shanxi, China
| | - Peisheng Wang
- Changzhi Medical College, No. 161, Jiefangdong Road, Changzhi, 046000, Shanxi, China
| | - Mengrui Liang
- Changzhi Medical College, No. 161, Jiefangdong Road, Changzhi, 046000, Shanxi, China
| | - Ming Gao
- Changzhi Medical College, No. 161, Jiefangdong Road, Changzhi, 046000, Shanxi, China
| |
Collapse
|
12
|
Cui JL, Zhao YP, Lu YJ, Chan TS, Zhang LL, Tsang DCW, Li XD. Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. ENVIRONMENT INTERNATIONAL 2019; 126:717-726. [PMID: 30878867 DOI: 10.1016/j.envint.2019.02.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Long term mining activities can cause significant metal pollution in the environment, thereby showing potential risk to the paddy field. Elucidating the interfacial processes of trace metals from contaminated paddy soil to rice within the rhizosphere can provide important information on metal biogeochemistry and food safety. The current study aims to explore the spatial distribution and molecular speciation of Cu from rhizosphere to rice plant in a mining-impacted paddy soil, and reveal the possible uptake mechanisms. X-ray absorption near edge structure (XANES) analysis indicated that Cu was primarily associated with iron oxide and sulfide in soil with a minor proportion of organic complexed species. In the rice samples, Cu showed much higher concentrations in the roots than the shoots, as most Cu was sequestered in the root surface and epidermis (primarily in the form of C/N ligands bound Cu species), rather than root xylem, as identified by micro X-ray fluorescence (μ-XRF) imaging coupling with μ-XANES. By contrast, in the root xylem, thiol-S bound Cu(I) complex was observed, representing the reduced product of Cu(II) by thiol-S ligands in rice root. The absorbed Cu was probably transported from the root to the aerial part as C/N ligand bound Cu complex such as Cu-histidine like species, which was observed in the root xylem. The large retention capacity and reduction of Cu(II) in rice root alleviated Cu toxicity to rice, which was beneficial for food safety (e.g., lower concentration of Cu in rice grains). These findings showed for the first time that the uptake mechanisms by rice from field contaminated sites, which shed light on Cu detoxification process and potential remediation strategies.
Collapse
Affiliation(s)
- Jin-Li Cui
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yan-Ping Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ying-Jui Lu
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Li-Li Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Guo L, Cutright TJ. Bioaccumulation of metals in reeds collected from an acid mine drainage contaminated site in winter and spring. ENVIRONMENTAL TECHNOLOGY 2016; 37:1821-1828. [PMID: 26789500 DOI: 10.1080/09593330.2015.1133716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Wetland plants such as Phragmites australis has been used to treat acid mine drainage (AMD) contaminated soil which is a serious environmental issue worldwide. This project investigated metal plaque content(s) and metal uptake in reeds grown in an AMD field in winter and spring. The results indicated that the level of Fe plaque was much higher than Mn and Al plaque as the soil contained more Fe than Al and Mn. The amounts of Mn and Al plaque formed on reeds in spring were not significantly different from that in winter (p > .05). However, more Fe plaque was formed on reeds collected in spring. The concentrations of metals in underground organs were positively related to the metal levels in soils. More Mn and Al transferred to the aboveground tissues of reeds during the spring while the Fe levels in reeds did not significantly vary with seasons. Roots and rhizomes were the main organs for Fe sequestration (16.3 ± 4.15 mg/g in roots in spring) while most Al was sequestered in the shoots of reeds (2.05 ± 0.09 mg/g in shoots in spring). Further research may be needed to enhance the translocation of metals in reeds and increase the phytoremediation efficiency.
Collapse
Affiliation(s)
- Lin Guo
- a Department of Biological and Environmental Sciences , Texas A&M University-Commerce , Commerce , TX , USA
| | - Teresa J Cutright
- b Department of Civil Engineering, Auburn Science and Engineering Center (ASEC) 210 , The University of Akron , Akron , OH , USA
| |
Collapse
|