1
|
Farooqi ZUR, Qadir AA, Alserae H, Raza A, Mohy-Ud-Din W. Organic amendment-mediated reclamation and build-up of soil microbial diversity in salt-affected soils: fostering soil biota for shaping rhizosphere to enhance soil health and crop productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109889-109920. [PMID: 37792186 DOI: 10.1007/s11356-023-30143-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Soil salinization is a serious environmental problem that affects agricultural productivity and sustainability worldwide. Organic amendments have been considered a practical approach for reclaiming salt-affected soils. In addition to improving soil physical and chemical properties, organic amendments have been found to promote the build-up of new halotolerant bacterial species and microbial diversity, which plays a critical role in maintaining soil health, carbon dynamics, crop productivity, and ecosystem functioning. Many reported studies have indicated the development of soil microbial diversity in organic amendments amended soil. But they have reported only the development of microbial diversity and their identification. This review article provides a comprehensive summary of the current knowledge on the use of different organic amendments for the reclamation of salt-affected soils, focusing on their effects on soil properties, microbial processes and species, development of soil microbial diversity, and microbial processes to tolerate salinity levels and their strategies to cope with it. It also discusses the factors affecting the microbial species developments, adaptation and survival, and carbon dynamics. This review is based on the concept of whether addition of specific organic amendment can promote specific halotolerant microbe species, and if it is, then which amendment is responsible for each microbial species' development and factors responsible for their survival in saline environments.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Ayesha Abdul Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hussein Alserae
- Department of Soil Sciences and Water Resources, College of Agricultural Engineering Science, Baghdad University, Baghdad, Iraq
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
2
|
Zheng N, Yu Y, Li Y, Ge C, Chapman SJ, Yao H. Can aged biochar offset soil greenhouse gas emissions from crop residue amendments in saline and non-saline soils under laboratory conditions? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151256. [PMID: 34717998 DOI: 10.1016/j.scitotenv.2021.151256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Applying biochar in association with crop residues might optimize costs and effectiveness in the reclamation of saline soils. Here, we explored the potential effects of biochar in association with crop residue amendments on soil greenhouse gas (GHG) emissions, and microbial communities. Previously, we found that soil N2O emission significantly increased with increasing salinity levels followed by cotton straw addition. In the present study, microcosm experiments were performed to investigate the interaction of salinity (0 and 1.2% salt) with the aging of biochar following soil amendments over an incubation period of 80 days. The results indicated that N2O emissions were approximately 5-10 times higher in saline soils than in non-saline soils, and the cumulative N2O emissions following two straw amendments treatment were the highest of all the treatments. Salinity increased the contribution of nitrification to soil N2O emissions stimulated by the cotton straw amendments, and aged biochar performed better in decreasing soil N2O emissions in saline soils than in non-saline soils. In addition, aged biochar increased soil C mineralization and CO2 emissions under saline conditions. Soil CO2 and N2O emissions were affected by both soil abiotic and biotic factors under non-saline and saline conditions. Moreover, much more specific but fewer microbial groups survived and utilized crop residues under saline than non-saline conditions, and aged biochar decreased salt stress in soil microorganisms. These findings indicated that aged biochar and crop residues together would be an optimal way to address soil C storage and mitigate N2O emissions under saline conditions.
Collapse
Affiliation(s)
- Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, People's Republic of China.
| | | | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China.
| |
Collapse
|
3
|
Wichern F, Islam MR, Hemkemeyer M, Watson C, Joergensen RG. Organic Amendments Alleviate Salinity Effects on Soil Microorganisms and Mineralisation Processes in Aerobic and Anaerobic Paddy Rice Soils. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
4
|
Hechmi S, Hamdi H, Mokni-Tlili S, Zoghlami IR, Khelil MN, Benzarti S, Hassen A, Jedidi N. Carbon mineralization, biological indicators, and phytotoxicity to assess the impact of urban sewage sludge on two light-textured soils in a microcosm. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:460-471. [PMID: 33016418 DOI: 10.1002/jeq2.20011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/15/2019] [Indexed: 06/11/2023]
Abstract
The agricultural reuse of urban sewage sludge (USS) modifies soil properties depending on sludge quality, management, and pedo-environmental conditions. The aim of this microcosm study was to assess C mineralization and subsequent changes in soil properties after USS addition to two typical Mediterranean soils: sandy (Soil S) and sandy loam (Soil A) at equivalent field rates of 40 t ha-1 (USS-40) and 120 t ha-1 (USS-120). Outcomes proved the biodegradability of USS through immediate CO2 release inside incubation bottles in a dose-dependent manner. Accordingly, the highest rates of daily C emission were recorded with USS-120 (3.7 and 3.9 mg kg-1 d-1 for Soils S and A, respectively) after 84 d of incubation at 25 °C. The addition of USS also improved soil fertility by enhancing soil macronutrients, microbial proliferation, and protease activity. Protease showed significant correlation with N, total organic C, and heterotrophic bacteria, reflecting the biostimulation and bioaugmentation effects of sludge. Soil indices like C/N/P stoichiometry and metabolic quotient (qCO2 ) varied mostly with mineralization rates of C and P in both soils. Despite a significant increase of soil salinity and total heavy metal content (lead, nickel, zinc, and copper) with USS dose, wheat germination was not affected by these changes. Both experimental soils showed intrinsic (Soil A) and incubation-induced (Soil S) phytotoxicities that were alleviated by USS addition. This was likely due to the enhancement of biodegradation and/or retention of phytotoxicants originating from previous land uses. Urban sewage sludge amendments could have applications in soil remediation by reducing the negative effects of allelopathic and/or anthropogenic phytoinhibitors.
Collapse
Affiliation(s)
- Sarra Hechmi
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar Univ., P.O. Box 2713, Doha, Qatar
| | - Sonia Mokni-Tlili
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Inès Rahma Zoghlami
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Mohamed Naceur Khelil
- National Institute for Research in Rural Engineering, Water and Forestry, P.O. Box 10, Ariana, 2080, Tunisia
| | - Saoussen Benzarti
- Higher School of Agriculture at Mograne, Mograne, Zaghouan, 1121, Tunisia
| | - Abdennaceur Hassen
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Naceur Jedidi
- Water Research and Technology Center, Univ. of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| |
Collapse
|
5
|
Guo H, Hu Z, Zhang H, Min W, Hou Z. Comparative Effects of Salt and Alkali Stress on Antioxidant System in Cotton (Gossypium Hirsutum L.) Leaves. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThis pot experiment was to evaluate how salts (NaCl, Na2SO4) and alkali (Na2CO3+NaHCO3) affect the physiological and biochemical characteristics during the seedling stage of two cotton cultivars (salt-tolerant, L24; salt-sensitive, X45). Salt and alkali stress reduced seedling emergence rate, relative biomass, and chlorophyll content, however, the REC and MDA content increased. Salt and alkali stress increased markedly superoxide dismutase (SOD) activity. Peroxidase (POD) activity increased first and then decreased as the increase of salt and alkali stress. Catalase (CAT) activity initially increased and then decreased as NaCl stress increased. In addition, the SOD activity, REC, and MDA content was markedly higher in salt stress than that in alkali stress. The proline content of L24 was higher than that of X45 under salt and alkali stress. However, glycine betaine and soluble sugar content of L24 was lower than that of X45 under alkali stress. The REC and MDA content of L24 were lower than those of X45, however, the relative biomass, chlorophyll content, SOD, POD, CAT, and Pro were higher than those of X45. In conclusion, salt tolerant cotton cultivars may possess a superior protection effect by increasing antioxidant enzymes activity under salt and alkali stress.
Collapse
Affiliation(s)
- Huijuan Guo
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Zhiqiang Hu
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Huimin Zhang
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Wei Min
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Zhenan Hou
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang 832003, People’s Republic of China
| |
Collapse
|
6
|
Guo H, Li S, Min W, Ye J, Hou Z. Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress. PLoS One 2019; 14:e0226776. [PMID: 31869397 PMCID: PMC6927655 DOI: 10.1371/journal.pone.0226776] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022] Open
Abstract
Soil salinity is a major abiotic stress factor that limits cotton production worldwide. To improve salt tolerance in cotton, an in-depth understanding of ionic balance is needed. In this study, a pot experiment using three levels of soil salinity (0%, 0.2%, and 0.4%, represented as CK, SL, and SH, respectively) and two cotton genotypes (salt-tolerant genotype: L24; salt-sensitive genotype: X45) was employed to investigate how sodium chloride (NaCl) stress effects cotton growth, ion distribution, and transport, as well as to explore the related mechanism. The results showed that SL treatment mainly inhibited shoot growth, while SH treatment caused more extensive impairment to roots and shoots. The growth inhibition ratio of NaCl stress on X45 was more marked than that of L24. Under NaCl stress, the Na concentration in the roots, stems and leaves significantly increased, whereas the K, Cu, B, and Mo concentration in roots, as well as Mg and S concentrations in the leaves, significantly decreased. Under salt stress conditions, salt-tolerant cotton plants can store Na in the leaves, and as a result, a larger amount of minerals (e.g., Cu, Mo, Si, P, and B) tend to transport to the leaves. By contrast, salt-sensitive varieties tend to accumulate certain minerals (e.g., Ca, P, Mg, S, Mn, Fe, Cu, B, Mo, and Si) in the roots. Most genes related to ion transport and homeostasis were upregulated in L24, but not in X45. The expression level of GhSOS1 in X45 was higher than L24, but GhNHX1 in L24 was higher than X45. Our findings suggest that the two varieties response to salt stress differently; for X45 (salt-sensitive), the response is predominantly governed by Na+ efflux, whereas for L24 (salt-tolerant), vacuolar sequestration of Na+ is the major mechanism. The expression changes of the genes encoding the ion transporters may partially explain the genotypic difference in leaf ion accumulation under salt stress conditions.
Collapse
Affiliation(s)
- Huijuan Guo
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Shuangnan Li
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Wei Min
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Jun Ye
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| | - Zhenan Hou
- Department of Resources and Environmental Science, Shihezi University, Shihezi, Xinjiang, People’s Republic of China
| |
Collapse
|
7
|
Redman ZC, Parikh SJ, Hengel MJ, Tjeerdema RS. Influence of Flooding, Salinization, and Soil Properties on Degradation of Chlorantraniliprole in California Rice Field Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8130-8137. [PMID: 31287295 DOI: 10.1021/acs.jafc.9b02947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chlorantraniliprole (3-bromo-N-[4-chloro-2-methyl-6-(methylcarbamoyl)phenyl]-1-(3-chloro-2-pyridine-2-yl)-1H-pyrazole-5-carboxamide; CAP) was granted supplemental registration for use in rice cultivation in California through December, 2018. Previous work investigated the partitioning of CAP in California rice field soils; however, its degradation in soils under conditions relevant to California rice culture has not been investigated. The degradation of CAP in soils from two California rice fields was examined under aerobic and anaerobic conditions with varying salinity via microcosm experiments. Results indicate that soil properties governing bioavailability may have a greater influence on degradation than flooding practices or field salinization over a typical growing season. Differences between native and autoclaved soils (t1/2 = 59.0-100.2 and 78.5-171.7 days) suggest that biological processes were primarily responsible for CAP degradation; however, future work should be done to confirm specific biotic processes as well as to elucidate abiotic processes, such as degradation via manganese oxides and formation of nonextractable residues, which may contribute to its dissipation.
Collapse
|
8
|
Sánchez-Rodríguez AR, Hill PW, Chadwick DR, Jones DL. Crop residues exacerbate the negative effects of extreme flooding on soil quality. BIOLOGY AND FERTILITY OF SOILS 2017; 53:751-765. [PMID: 32009699 PMCID: PMC6961515 DOI: 10.1007/s00374-017-1214-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 06/10/2023]
Abstract
Extreme flood events are predicted to have a negative impact on soil quality. Currently, there is a lack of information about the effect of agricultural practices on soil functioning and microbial processes under these events. We hypothesized that the impact of flooding on soil quality will be exacerbated when crop residues are present in the soil as they will induce more extreme anaerobicity. A spring extreme flood event (10 °C, 9 weeks) was simulated in mesocosms containing an arable sandy-loam soil low in nutrients. The main treatments were (1) with and without flooding and (2) with and without maize residue addition (8 Mg ha-1). We monitored changes in soil chemical quality indicators (e.g. pH, salinity, Fe3+, P, C, NH4 +, NO3 - and organic N), greenhouse gas (GHG) emissions (CO2, CH4, N2O) and soil microbial community composition (PLFAs) during a prolonged flood period (9 weeks) and an 8-week "recovery" period after flooding. In comparison to the other treatments, flooding in the presence of crop residues resulted in a dramatic drop in soil redox potential. This was associated with the enhanced release of Fe and C into solution and an increase in CH4 emissions. In contrast, maize residues reduced potential nitrate losses and N2O emissions, possibly due to complete denitrification and microbial N immobilization. Both flooding and maize residues stimulated microbial growth and promoted a shift in microbial community composition. Following floodwater removal, most of the soil quality indicators returned to the levels of the control treatment within 5 weeks. After this short recovery phase, no major impact of flooding could be observed on plant growth (maize pot-grown). Overall, we conclude that both extreme flooding and management regime negatively impact upon a range of soil quality indicators (e.g. redox, GHG emissions); however, the soil showed high resilience and recovered quickly after floodwater removal. Further work is required to investigate the impact of repeated extreme flood events on soil quality and function over longer timescales.
Collapse
Affiliation(s)
| | - Paul W. Hill
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd LL57 2UW UK
| | - David R. Chadwick
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd LL57 2UW UK
| | - Davey L. Jones
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd LL57 2UW UK
| |
Collapse
|