1
|
Markt R, Prem EM, Lackner N, Mutschlechner M, Illmer P, Wagner AO. Pre-treatment with Trichoderma viride: Towards a better understanding of its consequences for anaerobic digestion. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13281. [PMID: 38940659 PMCID: PMC11212294 DOI: 10.1111/1758-2229.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/30/2024] [Indexed: 06/29/2024]
Abstract
Understanding and optimising biological pre-treatment strategies for enhanced bio-methane production is a central aspect in second-generation biofuel research. In this regard, the application of fungi for pre-treatment seems highly promising; however, understanding the mode of action is crucial. Here, we show how aerobic pre-treatment of crystalline cellulose with the cellulolytic Trichoderma viride affects substrate degradability during mesophilic, anaerobic digestion. It could be demonstrated that fungal pre-treatment resulted in a slightly reduced substrate mass. Nevertheless, no significant impact on the overall methane yield was found during batch fermentation. Short chain organic acids accumulation, thus, overall degradation dynamics including methane production kinetics were affected by the pre-treatment as shown by Gompertz modelling. Finally, 16S rRNA amplicon sequencing followed by ANCOM-BC resulted in up to 53 operative taxonomic units including fermentative, syntrophic and methanogenic taxa, whereby their relative abundances were significantly affected by fungal pre-treatment depending on the duration of the pre-treatment. The results demonstrated the impact of soft rot fungal pre-treatment of cellulose on subsequent anaerobic cellulose hydrolysis as well as on methanogenic activity. To the best of our knowledge, this is the first study to investigate the direct causal effects of pre-treatment with T. viride on basic but crucial anaerobic digestion parameters in a highly standardised approach.
Collapse
Affiliation(s)
- Rudolf Markt
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Eva Maria Prem
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Nina Lackner
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | | - Paul Illmer
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
2
|
Civzele A, Stipniece-Jekimova AA, Mezule L. Fungal Ligninolytic Enzymes and Their Application in Biomass Lignin Pretreatment. J Fungi (Basel) 2023; 9:780. [PMID: 37504768 PMCID: PMC10381709 DOI: 10.3390/jof9070780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Lignocellulosic biomass is a significant source of sustainable fuel and high-value chemical production. However, due to the complex cross-linked three-dimensional network structure, lignin is highly rigid to degradation. In natural environments, the degradation is performed by wood-rotting fungi. The process is slow, and thus, the use of lignin degradation by fungi has not been regarded as a feasible technology in the industrial lignocellulose treatment. Fungi produce a wide variety of ligninolytic enzymes that can be directly introduced in industrial processing of lignocellulose. Within this study, screening of ligninolytic enzyme production using decolorization of ABTS and Azure B dyes was performed for 10 fungal strains with potentially high enzyme production abilities. In addition to standard screening methods, media containing lignin and hay biomass as carbon sources were used to determine the change in enzyme production depending on the substrate. All selected fungi demonstrated the ability to adapt to a carbon source limitation; however, four strains indicated the ability to secrete ligninolytic enzymes in all experimental conditions-Irpex lacteus, Pleurotus dryinus, Bjerkandera adusta, and Trametes versicolor-respectively displayed a 100%, 82.7%, 82.7%, and 55% oxidation of ABTS on lignin-containing media and 100%, 87.9%, 78%, and 70% oxidation of ABTS on hay-containing media after 168 h of incubation. As a result, the most potent strains of fungi were selected to produce lignocellulose-degrading enzymes and to demonstrate their potential application in biological lignocellulose pretreatment.
Collapse
Affiliation(s)
- Anna Civzele
- Water Research and Environmental Biotechnology Laboratory, Water Systems and Biotechnology Institute, Faculty of Civil Engineering, Riga Technical University, LV-1048 Riga, Latvia
| | - Alise Anna Stipniece-Jekimova
- Water Research and Environmental Biotechnology Laboratory, Water Systems and Biotechnology Institute, Faculty of Civil Engineering, Riga Technical University, LV-1048 Riga, Latvia
| | - Linda Mezule
- Water Research and Environmental Biotechnology Laboratory, Water Systems and Biotechnology Institute, Faculty of Civil Engineering, Riga Technical University, LV-1048 Riga, Latvia
| |
Collapse
|
3
|
Iyyappan J, Pravin R, Al-Ghanim KA, Govindarajan M, Nicoletti M, Baskar G. Dual strategy for bioconversion of elephant grass biomass into fermentable sugars using Trichoderma reesei towards bioethanol production. BIORESOURCE TECHNOLOGY 2023; 374:128804. [PMID: 36849101 DOI: 10.1016/j.biortech.2023.128804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, biodelignification and enzymatic hydrolysis of elephant grass were performed by recombinant and native strain of Trichoderma reesei, respectively. Initially, rT. reesei displaying Lip8H and MnP1 gene was used for biodelignification with NiO nanoparticles. Saccharification was performed by combining hydrolytic enzyme produced with NiO nanoparticles. Elephant grass hydrolysate was used for bioethanol production using Kluyveromyces marxianus. Maximum lignolytic enzyme production was obtained with 15 µg/L of NiO nanoparticles and initial pH of 5 at 32 °C. Subsequently, about 54% of lignin degradation was achieved after 192 h. Hydrolytic enzymes showed elevated enzyme activity and resulted in 84.52 ± 3.5 g/L of total reducing sugar at 15 µg/mL NiO NPs. About 14.65 ± 1.75 g/L of ethanol was produced using K. marxianus after 24 h. Thus, dual strategy employed for conversion of elephant grass biomass into fermentable sugar and subsequent biofuel production could become potential platform for commercialization.
Collapse
Affiliation(s)
- Jayaraj Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602107, India
| | - Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Rome 00185, Italy
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India.
| |
Collapse
|
4
|
Wang J, Cao L, Liu Y, Huang Z, Li C, Wu D, Ruan R. Multiple hydrolyses of rice straw by domesticated paddy soil microbes for methane production via liquid anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 354:127184. [PMID: 35447327 DOI: 10.1016/j.biortech.2022.127184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to investigate the hydrolysis of rice straw (RS) using domesticated paddy soil microbes (DPSMs) with swine wastewater (SW) as the nitrogen source and the multiple hydrolyses for CH4 production via liquid anaerobic digestion (L-AD). Three hydrolyses of RS with a 45% inoculation ratio (IR) under the conditions of a carbon/nitrogen ratio (C/N ratio) of 40, temperature of 37 °C, inoculum/substrate ratio (I/S ratio) of 2:1, and immersion depth of 6.0 cm were optimal, attaining maximum volatile fatty acids (VFAs) after five days, possibly owing to the synergistic effect of aerobic microbes (Firmicutes and Actinomycetes) and anaerobic microbes (Bacteroidetes and Acidobacteria). After three hydrolyses, the degradation rates of hemicellulose, cellulose, and lignin in RS were 88.45%, 83.19% and 70.09%, respectively. The accumulative CH4 production reached 462.11 mL/g VS after three hydrolyses, and its curve fitted well with the modified Gompertz model (R2 > 0.984).
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Zhenghua Huang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Congmiao Li
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Daishe Wu
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, 330047 Nanchang, China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
5
|
Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod. ENERGIES 2022. [DOI: 10.3390/en15103544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The production of biofuels (biogas, ethanol, methanol, biodiesel, and solid fuels, etc.), beginning with cocoa pod husk (CPH), is a way for obtaining a final product from the use of the principal waste product of the cocoa industry. However, there are limitations to the bioconversion of the material due to its structural components (cellulose, hemicellulose, and lignin). Currently, CPH pretreatment methods are considered a good approach towards the improvement of both the degradation process and the production of biogas or ethanol. The present document aims to set out the different methods for pretreating lignocellulosic material, which are: physical (grinding and extrusion, among others); chemical (acids and alkaline); thermochemical (pyrolysis); ionic liquid (salts); and biological (microorganism) to improve biofuel production. The use of CPH as a substrate in bioconversion processes is a viable and promising option, despite the limitations of each pretreatment method.
Collapse
|
6
|
Vasco-Correa J, Capouya R, Shah A, Mitchell TK. Sequential fungal pretreatment of unsterilized Miscanthus: changes in composition, cellulose digestibility and microbial communities. Appl Microbiol Biotechnol 2022; 106:2263-2279. [PMID: 35171342 DOI: 10.1007/s00253-022-11833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
A sequential fungal pretreatment of Miscanthus × giganteus was conducted by mixing unsterilized Miscanthus with material previously colonized with the white-rot fungus Ceriporiopsis subvermispora. For three generations, each generation started with inoculation by mixing unsterilized fresh Miscanthus with end material from the previous generation and ended after 28 days of incubation at 28 °C. After the first generation, the cellulose digestibility of the material doubled, compared to that of the unsterilized Miscanthus, but the second and third generations showed no enhancements in cellulose digestibility. Furthermore, high degradation of Miscanthus structural carbohydrates occurred during the first generation. A microbial community study showed that, even though the fungal community of the material previously colonized by C. subvermispora was composed mainly of this fungus (> 99%), by the first generation its relative abundance was down to only 9%, and other microbes had prevailed. Additionally, changes in the bacterial community occurred that might be associated with unwanted cellulose degradation in the system. This reiterates the necessity of feedstock microbial load reduction for the stability and reproducibility of fungal pretreatment of lignocellulosic biomass. KEY POINTS: • Sequential fungal pretreatment of unsterilized Miscanthus was unsuccessful. • Feedstock changes with white-rot fungi favored the growth of other microorganisms. • Feedstock microbial reduction is necessary for pretreatment with C. subvermispora.
Collapse
Affiliation(s)
- Juliana Vasco-Correa
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH, 44691, USA. .,Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA.
| | - Rachel Capouya
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Ajay Shah
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH, 44691, USA
| | - Thomas K Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
Banerjee A, Show BK, Chaudhury S, Balachandran S. Biological pretreatment for enhancement of biogas production. COST EFFECTIVE TECHNOLOGIES FOR SOLID WASTE AND WASTEWATER TREATMENT 2022:101-114. [DOI: 10.1016/b978-0-12-822933-0.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
8
|
Radhika NL, Sachdeva S, Kumar M. Microbe assisted depolymerization of lignin rich waste and its conversion to gaseous biofuel. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113684. [PMID: 34509817 DOI: 10.1016/j.jenvman.2021.113684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Biomethanation potential of lignin rich residue (LRR) obtained from lignocellulosic ethanol fermentation was evaluated after subjecting to microbe assisted pretreatment using selectively enriched lignin depolymerizing consortia (LDC). The efficiency of LDC in lignin depolymerization was established using alkali and dealkali lignins (AL and DL) along with LRR as feedstocks. Microbial growth on media having lignin as sole carbon source, activity of lignin depolymerizing enzymes, viz., lignin peroxidase and laccase, ability of culture to decolorize the lignin mimicking dyes like methylene blue and ramezol brilliant blue, were considered to confirm the efficiency of enriched mixed culture. Microbial treatment using LDC showed significant positive impact on lignin breakdown irrespective of the substrate (LRR, 46.33%; AL, 31.37%; DL, 34.20%). The hydrolysate of LRR obtained from microbial pretreatment showed higher biogas yield (424 ml/g VS) owing to the efficiency of lignin depolymerization and availability of readily available biodegradable components in residual lignin from previous processing. Depolymerization of commercial lignins also produced a good amount of biogas (302-324 ml/g VS) after pretreatment with LDC. Overall, an additional energy conversion efficiency of about 11.75 kJ/g VS was obtained by valorizing the residual lignin through integrating biomethanation technology to ethanol fermentation. Outcome of this study indicated the feasibility of using lignin rich residue generated from the second generation cellulosic bioethanol plants as a potential feedstock to meet the current gaseous fuel demands. This integration also helps in closing the biomass based biorefinery loop and also promotes the circular economy.
Collapse
Affiliation(s)
- N L Radhika
- Manav Rachna International Institute of Research and Studies (MRIIRS), Sector 43, Faridabad, Haryana, 121004, India; Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad, 121007, Haryana, India
| | - Sarita Sachdeva
- Manav Rachna International Institute of Research and Studies (MRIIRS), Sector 43, Faridabad, Haryana, 121004, India
| | - Manoj Kumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad, 121007, Haryana, India.
| |
Collapse
|
9
|
Bilal M, Qamar SA, Yadav V, Cheng H, Khan M, Adil SF, Taherzadeh MJ, Iqbal HM. Exploring the potential of ligninolytic armory for lignin valorization – A way forward for sustainable and cleaner production. JOURNAL OF CLEANER PRODUCTION 2021; 326:129420. [DOI: 10.1016/j.jclepro.2021.129420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Chu X, Cheng Q, Xu Y, Luo L, Wang M, Zheng G, Zhang H, Yi W, Liu X, Sun Y, Sun Y. Anaerobic digestion of corn straw pretreated by ultrasonic combined with aerobic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 341:125826. [PMID: 34523568 DOI: 10.1016/j.biortech.2021.125826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Corn straw (CS) was pretreated by ultrasonic combined aerobic with biogas slurry as medium for anaerobic digestion (AD), that strengthened the degradation efficiency CS, varied in the composition of digestion slurry, thereby the methane production was increased. Central combinatorial design (CCD) test was used to treat CS at ultrasonic power (200, 400, and 600 W), time (10, 20, and 30 min) and AD for 25 days, at 37 ± 1℃. According to data showed that the pH and volatile fatty acids (VFAs) affected methane production directly. With an ultrasonic power 309 W, time 26 min, it reached the maximum content of VFAs with 16.24 g/L, the cumulative methane production achieved the highest with 198.56 mL/g VS, which was 46.73% higher than unpretreated raw material as CK. Ultrasonic-aerobic hydrolysis pretreatment can obtain higher VFAs and methane production content in a short period of time that is great significance to biogas engineering.
Collapse
Affiliation(s)
- Xiaodong Chu
- College of engineering Northeast Agriculture University, Harbin 15000, PR China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Qiushuang Cheng
- College of engineering Northeast Agriculture University, Harbin 15000, PR China
| | - Yonghua Xu
- College of electrical and information Northeast Agriculture University, Harbin 15000, PR China
| | - Lina Luo
- College of engineering Northeast Agriculture University, Harbin 15000, PR China
| | - Ming Wang
- College of engineering Northeast Agriculture University, Harbin 15000, PR China
| | - Guoxiang Zheng
- College of engineering Northeast Agriculture University, Harbin 15000, PR China
| | - Hongqiong Zhang
- College of engineering Northeast Agriculture University, Harbin 15000, PR China
| | - Weiming Yi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, PR China
| | - Xiaofeng Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yong Sun
- College of engineering Northeast Agriculture University, Harbin 15000, PR China.
| |
Collapse
|
11
|
Mamimin C, Chanthong S, Leamdum C, O-Thong S, Prasertsan P. Improvement of empty palm fruit bunches biodegradability and biogas production by integrating the straw mushroom cultivation as a pretreatment in the solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 319:124227. [PMID: 33049444 DOI: 10.1016/j.biortech.2020.124227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Empty fruit bunches (EFB) have low biodegradability and restrict their commercial utilization in biogas plants. Integration of straw mushroom (Volvariella volvacea) cultivation as a function of bio-pretreatment on EFB to improve biodegradability and methane production by solid-state anaerobic digestion (SS-AD) was investigated. The mushroom yield was 47.3 kg·tonne-1 EFB with remaining weight in spent mushroom-EFB (S-mEFB) of 82%. The cellulose, hemicellulose, and lignin of EFB were degraded by 3.3%, 21.3%, and 17.6%, respectively, with an increased surface area of S-mEFB. The biodegradability of S-mEFB (62.7%) was 2 times higher than raw EFB (33.5%) with the highest methane yield and production of 281 mL CH4·g-1 VS and 50.6 m3·tonne-1 S-mEFB, respectively. The co-digestion of S-mEFB with 5% v/w POME had highest methane yield of 405 mL CH4·g-1 VS with biodegradability of 90.8%. Integrating straw mushroom cultivation with SS-AD is a promising strategy for achieving an environmentally friendly and economically feasible process.
Collapse
Affiliation(s)
- Chonticha Mamimin
- Research and Development Office, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sukonlarat Chanthong
- Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Chonticha Leamdum
- Research and Development Office, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sompong O-Thong
- International College, Thaksin University, Songkhla 90000, Thailand
| | - Poonsuk Prasertsan
- Research and Development Office, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
12
|
Ferraro A, Massini G, Mazzurco Miritana V, Rosa S, Signorini A, Fabbricino M. A novel enrichment approach for anaerobic digestion of lignocellulosic biomass: Process performance enhancement through an inoculum habitat selection. BIORESOURCE TECHNOLOGY 2020; 313:123703. [PMID: 32580121 DOI: 10.1016/j.biortech.2020.123703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Inocula enrichment was performed using an innovative habitat-based selection approach to improve wheat straw (WS) anaerobic digestion (AD) efficiency. The procedure was carried out by sequentially re-inoculating the primary microbial community seven times in subsequent anaerobic reactors containing untreated WS. Re-inocula were performed at different re-inoculum times (24, 48, and 96 h) by moving a porous support mimicking a rumen structure from one batch to the next (S-tests) or re-inoculating only the culture medium (C-tests). Highest H2 production yields were observed after four and five re-inocula (0.08 ± 0.02 NmL h-1 gVS-1 and 0.09 ± 0.02 NmL h-1 gVS-1) for S-24 and S-48, respectively. For S-96, higher CH4 yields were observed after the start-up test and sixth re-inoculum (0.05 ± 0.003 NmL h-1 gVS-1 and 0.04 ± 0.005 NmL h-1 gVS-1, respectively). Accordingly, S-96 showed the highest active Archaea component (7%). C-test microbial communities were dominated by fermenting, hydrogen-producing bacteria and showed lower microbial community diversity than S-tests.
Collapse
Affiliation(s)
- Alberto Ferraro
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125 Naples, Italy.
| | - Giulia Massini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Valentina Mazzurco Miritana
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Silvia Rosa
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Antonella Signorini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
13
|
Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12177205] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pretreatment of lignocellulosic biomass (LC biomass) prior to the anaerobic digestion (AD) process is a mandatory step to improve feedstock biodegradability and biogas production. An important potential is provided by lignocellulosic materials since lignocellulose represents a major source for biogas production, thus contributing to the environmental sustainability. The main limitation of LC biomass for use is its resistant structure. Lately, biological pretreatment (BP) gained popularity because they are eco-friendly methods that do not require chemical or energy input. A large number of bacteria and fungi possess great ability to convert high molecular weight compounds from the substrate into lower mass compounds due to the synthesis of microbial extracellular enzymes. Microbial strains isolated from various sources are used singly or in combination to break down the recalcitrant polymeric structures and thus increase biogasgeneration. Enzymatic treatment of LC biomass depends mainly on enzymes like hemicellulases and cellulases generated by microorganisms. The articles main purpose is to provide an overview regarding the enzymatic/biological pretreatment as one of the most potent techniques for enhancing biogas production.
Collapse
|
14
|
Wang Z, Cheng Q, Liu Z, Qu J, Chu X, Li N, Noor RS, Liu C, Qu B, Sun Y. Evaluation of methane production and energy conversion from corn stalk using furfural wastewater pretreatment for whole slurry anaerobic co-digestion. BIORESOURCE TECHNOLOGY 2019; 293:121962. [PMID: 31449921 DOI: 10.1016/j.biortech.2019.121962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 05/22/2023]
Abstract
In this study, corn stalk (CS) was pretreated with furfural wastewater (FWW) for whole slurry anaerobic digestion (AD), which increased the degradability of CS components, changed the parameters in pretreatment slurry and improved the biochemical methane potential (BMP). The ultimate goal was to optimize the time and temperature for FWW pretreatment and evaluate whether FWW pretreatment is feasible from BMP and energy conversion. The results of path analysis suggested that lignocellulosic degradability (LD) was the main factor affecting methane production with the comprehensive decision of 0.7006. The highest BMP (166.34 mL/g VS) was achieved by the pretreatment at 35 °C for 6 days, which was 70.36% higher than that of control check (CK) (97.64 mL/g VS) and the optimal pretreatment condition was predicted at 40.69 °C for 6.49 days by response surface methodology (RSM). The net residual value (NRV) for the pretreatment of 35 °C and 6 days was the highest (0.6201), which was the most appropriate condition for AD in real application.
Collapse
Affiliation(s)
- Zhi Wang
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Qiushuang Cheng
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Zhiyuan Liu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Jingbo Qu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Xiaodong Chu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Nan Li
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Rana Shahzad Noor
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Changyu Liu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Bin Qu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Yong Sun
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China.
| |
Collapse
|
15
|
Surra E, Bernardo M, Lapa N, Esteves IAAC, Fonseca I, Mota JPB. Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109351. [PMID: 31419673 DOI: 10.1016/j.jenvman.2019.109351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/10/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Maize Cob Waste (MCW) is available worldwide in high amounts, as maize is the most produced cereal in the world. MCW is generally left in the crop fields, but due to its low biodegradability it has a negligible impact in soil fertility. Moreover, MCW can be used as substrate to balance the C/N ratio during the Anaerobic co-Digestion (AcoD) with other biodegradable substrates, and is an excellent precursor for the production of Activated Carbons (ACs). In this context, a biorefinery is theoretically discussed in the present review, based on the idea that MCW, after proper pre-treatment is valorised as precursor of ACs and as co-substrate in AcoD for biomethane generation. This paper provides an overview on different scientific and technological aspects that can be involved in the development of the proposed biorefinery; the major topics considered in this work are the following ones: (i) the most suitable pre-treatments of MCW prior to AcoD; (ii) AcoD process with regard to the critical parameters resulting from MCW pre-treatments; (iii) production of ACs using MCW as precursor, with the aim to use these ACs in biogas conditioning (H2S removal) and upgrading (biomethane production), and (iv) an overview on biogas upgrading technologies.
Collapse
Affiliation(s)
- Elena Surra
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria Bernardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Nuno Lapa
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Isabel A A C Esteves
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Isabel Fonseca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - José P B Mota
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
16
|
Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183721] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lignocellulosic biomass is recalcitrant due to its heterogeneous structure, which is one of the major limitations for its use as a feedstock for methane production. Although different pretreatment methods are being used, intermediaries formed are known to show adverse effect on microorganisms involved in methane formation. This review, apart from highlighting the efficiency and limitations of the different pretreatment methods from engineering, chemical, and biochemical point of views, will discuss the strategies to increase the carbon recovery in the form of methane by way of amending pretreatments to lower inhibitory effects on microbial groups and by optimizing process conditions.
Collapse
|
17
|
Wang Z, Liu Z, Noor RS, Cheng Q, Chu X, Qu B, Zhen F, Sun Y. Furfural wastewater pretreatment of corn stalk for whole slurry anaerobic co-digestion to improve methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:49-57. [PMID: 31003087 DOI: 10.1016/j.scitotenv.2019.04.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Previous studies showed that excellent anaerobic digestion performance could be achieved using acid pretreatment, whereas the development of acid pretreatment was limited by high cost of acid consumption and severe operation. The aim of this study consisted in expanding the possibilities of low-cost acid pretreatment method for anaerobic digestion. For this, the feasibility of substituting conventional acid pretreatment with furfural wastewater was verified, and the whole slurry anaerobic digestion was performed to improve the production of methane. The furfural wastewater was used to pretreat crop stalk at different ambient temperatures (20, 35, 50°C) for different time periods (0, 3, 6, 9days). Subsequently, all treated and untreated crop stalk were digested at 35°C for 25days. According to experimental data showed that the dissimilar degradability of compositions for crop stalk was due to furfural wastewater pretreatment, and the reducing sugar content, volatile fatty acid content, pH during pretreatment phase, and their initial maximum & minimum values in anaerobic digestion phase were changed, which made a significant difference in methane production. The highest total methane production of anaerobic digestion (196.68mL/g VS) was achieved by the treatment at 35°C for 6days, which was 59.28% higher than untreated crop stalk (123.48mL/g VS). On the whole, the results showed that furfural wastewater pretreatment followed by the whole slurry anaerobic co-digestion was feasible and could contribute to application value for anaerobic digestion industry while providing an effective way for the treatment of furfural wastewater.
Collapse
Affiliation(s)
- Zhi Wang
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Zhiyuan Liu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Rana Shahzad Noor
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Qiushuang Cheng
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Xiaodong Chu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Bin Qu
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China
| | - Yong Sun
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, PR China.
| |
Collapse
|
18
|
Huang W, Wachemo AC, Yuan H, Li X. Modification of corn stover for improving biodegradability and anaerobic digestion performance by Ceriporiopsis subvermispora. BIORESOURCE TECHNOLOGY 2019; 283:76-85. [PMID: 30901591 DOI: 10.1016/j.biortech.2019.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Ceriporiopsis subvermispora was used to modify corn stover for improving the biodegradability and biomethane yield. Corn stover was incubated with C. subvermispora for 5-90 days then anaerobically digested. It was found that the corn stover modified for 15 days achieved the highest biomethane yield of 235 mL·g-1 VS, which was an increase of 15.2% over that of the non-modified one. The mechanism analyses indicated that the improvement resulted from the combined roles of degradation selectivity, destruction of lignocellulosic structures, and linkages. The analyses showed that C. subvermispora has a high relative selectivity of lignin degradation. The structure of the lignin and the linkages among lignin and hemicellulose and cellulose were broken obviously by acetyl group removal, and the enzymatic hydrolysis of cellulose was increased by 35.61%. The finding indicated that C. subvermispora modification is one of the effective methods for enhancing biomethane yield of corn stover.
Collapse
Affiliation(s)
- WenBo Huang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Akiber Chufo Wachemo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; Faculty of Water Supply and Environmental Engineering, Arba Minch University, P.O.Box 21, Arba Minch, Ethiopia
| | - HaiRong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - XiuJin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
19
|
Shen J, Zheng Q, Zhang R, Chen C, Liu G. Co-pretreatment of wheat straw by potassium hydroxide and calcium hydroxide: Methane production, economics, and energy potential analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:720-726. [PMID: 30772729 DOI: 10.1016/j.jenvman.2019.01.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/01/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
To improve the methane production of wheat straw (WS), the mono-pretreatment (MP) and co-pretreatment (CP) of WS with KOH and Ca(OH)2 were conducted in this study. The results showed that the MP with KOH presented better effects than the MP with Ca(OH)2. However, the CP with 2% KOH combined with 1% Ca(OH)2 displayed similar effects to those of the MP with 3% KOH, obtaining the cumulative methane yield of 239.8 mL gVS-1 and an improved biodegradability from 56.37% of raw WS to 66.10%. Methane production and kinetic analyses suggested that 2% KOH combined with 1% Ca(OH)2 was the ideal condition of alkaline pretreatment for anaerobic digestion of WS. The mechanism for the improvement in methane production was clearly described by biochemical component, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses. Moreover, preliminary economics and energy potential analyses also confirmed that alkaline co-pretreatment was a reasonable method, which not only gave important guidance for future utilization of WS waste but also showed useful reference for the efficient pretreatment of other lignocellulosic wastes.
Collapse
Affiliation(s)
- Jian Shen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qiang Zheng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, United States
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
20
|
Zhang M, Zhang Y, Li Z, Zhang C, Tan X, Liu X, Wan C, Yang X, Lee DJ. Anaerobic co-digestion of food waste/excess sludge: substrates - products transformation and role of NADH as an indicator. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:197-206. [PMID: 30472563 DOI: 10.1016/j.jenvman.2018.11.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The process of anaerobic co-digestion is vital importance to resource recovery from organic solid wastes such as food waste and municipal sludge. However, its application is hindered by the limited understanding on the complex substrates-products transformation reactions and mechanisms therein. In this study, food waste (FW) and excess sludge (ES) from municipal wastewater treatment were mixed at various ratios (ES/FW 5:0, 4:1, 2:1, 1:1, 1:2, 1:4, w/w), and the co-digestion process was studied in a batch test. The consumption of substrates including soluble proteins and carbohydrates, the variation in the intermediates such as various volatile fatty acids, and the production of hydrogen and methane gases were monitored. The results suggested that 4:1 was likely the optimal ratio where substrates were consumed and biogas generated efficiently, whereas 1:2 and 1:4 caused severe inhibition. Fermentation of ES alone produced mainly acetic and propionic acid, while the addition of FW led to butyric acid type fermentation. Intermediates in the fermentation liquid were tentatively identified, and the levels of NADH quantified using 3D-excitation/emission fluorescence spectrometry. One class of the intermediates, tryptophan-like proteins were correlated to the butyric acid accumulation in ES/FW mixtures, and NADH level was proposed as an indicator of VFAs production activities.
Collapse
Affiliation(s)
- Min Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Chen Zhang
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Xue Yang
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
21
|
Rouches E, Escudié R, Latrille E, Carrère H. Solid-state anaerobic digestion of wheat straw: Impact of S/I ratio and pilot-scale fungal pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:464-476. [PMID: 30803602 DOI: 10.1016/j.wasman.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Solid State Anaerobic Digestion (SSAD) of fungal pretreated wheat straw was evaluated in a leach bed reactor. During a first experiment, the effect of Substrate/Inoculum (S/I) ratios on the start-up phase was investigated. High S/I increased methane productivity but also raised the risk of reactor failure due to Volatile Fatty Acid (VFA) accumulation. With S/I ratios between 1.2 and 3.6 (Volatile Solid (VS) basis), the SSAD start-up using wheat straw was successful. Moreover, reactors were able to recover from acidification when the Total VFA/alkalinity ratio was lower than 2 gHAc_eq/gCaCO3, with VFA concentrations lower than 10 g/L and a pH close to 5.5. The conventional threshold of 0.6 gHAc_eq/gCaCO3 for stable wet AD is therefore not adapted to SSAD. During a second experiment, after the wheat straw was submitted to a fungal pretreatment in a non-sterile pilot-scale reactor, it was digested with an S/I ratio of 2.8-2.9. Under batch SSAD conditions, the biodegradability of pretreated wheat straw was slightly improved in comparison to the control (254 versus 215 NmL/g VS, respectively). Considering mass losses occurring during the pretreatment step, suboptimal pretreatment conditions caused a slightly lower methane production (161 versus 171 NmL/gTSinitial after 60-days anaerobic digestion). Nevertheless, pretreatment improved the start-up phase with lower acidification relative to controls. It would be particularly beneficial to improve the methane production in reactors with short reaction times.
Collapse
Affiliation(s)
- Elsa Rouches
- LBE, Univ. Montpellier, INRA, 102 Avenue des Etangs, F-11100 Narbonne, France
| | - Renaud Escudié
- LBE, Univ. Montpellier, INRA, 102 Avenue des Etangs, F-11100 Narbonne, France
| | - Eric Latrille
- LBE, Univ. Montpellier, INRA, 102 Avenue des Etangs, F-11100 Narbonne, France
| | - Hélène Carrère
- LBE, Univ. Montpellier, INRA, 102 Avenue des Etangs, F-11100 Narbonne, France.
| |
Collapse
|
22
|
Schimpf U, Schulz R. Industrial by-products from white-rot fungi production. Part II: Application in anaerobic digestion for enzymatic treatment of hay and straw. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Nosratpour MJ, Karimi K, Sadeghi M. Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:329-339. [PMID: 30125812 DOI: 10.1016/j.jenvman.2018.08.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Sugarcane bagasse was pretreated with sodium carbonate, sodium sulfite, and sodium acetate in concentrations of 0.5 M and 0.25 M, as well as hydrothermal pretreatment, to break down its structural recalcitrance and improve biogas and ethanol production. The pretreatments were conducted at 100, 140, and 180 °C for 1 h. The highest biogas and ethanol production was observed for sugarcane bagasse pretreated with 0.5 M sodium carbonate solution at 140 °C, which was 239 ± 20 Nml CH4/g VS, and 7.27 ± 0.70 g/l, respectively, containing gasoline equivalents of 164.2 ± 14.3 l/ton of raw bagasse and 147.8 ± 14.2 l/ton of raw bagasse, respectively. The highest gasoline equivalent was obtained for biogas production from the substrate pretreated with 0.5 M sodium sulfite solution at 100 °C (190.2 ± 2.1 l/ton of raw bagasse). In comparison to sodium carbonate and sodium sulfite, sodium acetate had less effect on biofuel production and was comparable with hydrothermal pretreatment. In contradiction to sodium acetate pretreated bagasse, in which increased pretreatment temperature intensified biofuel production, a reduction of biofuel production was observed for sodium carbonate and sodium sulfite pretreatment when temperature was increased from 140 to 180 °C. Besides considerable amounts of biofuel production at the best conditions obtained, over 762 and 543 kilotons of equivalent CO2 can be reduced annually in Iran by biogas and ethanol production from sugarcane, respectively.
Collapse
Affiliation(s)
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Morteza Sadeghi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
24
|
Hassan SS, Williams GA, Jaiswal AK. Emerging technologies for the pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2018; 262:310-318. [PMID: 29729930 DOI: 10.1016/j.biortech.2018.04.099] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 05/08/2023]
Abstract
Pretreatment of lignocellulosic biomass to overcome its intrinsic recalcitrant nature prior to the production of valuable chemicals has been studied for nearly 200 years. Research has targeted eco-friendly, economical and time-effective solutions, together with a simplified large-scale operational approach. Commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Recently, advances in applied chemistry approaches conducted under extreme and non-classical conditions has led to possible commercial solutions in the marketplace (e.g. High hydrostatic pressure, High pressure homogenizer, Microwave, Ultrasound technologies). These new industrial technologies are promising candidates as sustainable green pretreatment solutions for lignocellulosic biomass utilization in a large scale biorefinery. This article reviews the application of selected emerging technologies such as ionizing and non-ionizing radiation, pulsed electrical field, ultrasound and high pressure as promising technologies in the valorization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shady S Hassan
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland; School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Gwilym A Williams
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland.
| |
Collapse
|
25
|
Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production. ENERGIES 2018; 11:1797. [PMID: 30881604 PMCID: PMC6420082 DOI: 10.3390/en11071797] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With regard to social and environmental sustainability, second-generation biofuel and biogas production from lignocellulosic material provides considerable potential, since lignocellulose represents an inexhaustible, ubiquitous natural resource, and is therefore one important step towards independence from fossil fuel combustion. However, the highly heterogeneous structure and recalcitrant nature of lignocellulose restricts its commercial utilization in biogas plants. Improvements therefore rely on effective pretreatment methods to overcome structural impediments, thus facilitating the accessibility and digestibility of (ligno)cellulosic substrates during anaerobic digestion. While chemical and physical pretreatment strategies exhibit inherent drawbacks including the formation of inhibitory products, biological pretreatment is increasingly being advocated as an environmentally friendly process with low energy input, low disposal costs, and milder operating conditions. Nevertheless, the promising potential of biological pretreatment techniques is not yet fully exploited. Hence, we intended to provide a detailed insight into currently applied pretreatment techniques, with a special focus on biological ones for downstream processing of lignocellulosic biomass in anaerobic digestion.
Collapse
|
26
|
Tišma M, Planinić M, Bucić-Kojić A, Panjičko M, Zupančič GD, Zelić B. Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. BIORESOURCE TECHNOLOGY 2018; 253:220-226. [PMID: 29353750 DOI: 10.1016/j.biortech.2018.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
The objective of this research was to use white-rot fungus Trametes versicolor for corn silage pretreatment and to investigate the effect of pretreatment on biogas productivity. Semi-continuous pilot-scale experiment, comprised of two experimental phases, was carried out. In the first phase, operational conditions of the full-scale biogas plant were reproduced at pilot-scale. In that phase, the reactor was daily fed with the mixture of cow manure, digestate from industrial postfermentor, corn grits and ensiled corn silage, and the average methane generation rate was 0.167 m3CH4 kgVS-1. In the second phase, corn grits and ensiled corn silage were replaced with corn silage pretreated with T. versicolor, and the average methane generation rate increased up to 0.236 m3CH4 kgVS-1. The results of this study suggest that application of fungal-based solid-state pretreated corn silage has positive effect on pH stability and increase the biogas productivity.
Collapse
Affiliation(s)
- Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia.
| | - Mirela Planinić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
| | - Mario Panjičko
- CROTEH - Sustainable Technologies Development Centre Ltd., Dragutina Golika 63, HR-10000 Zagreb, Croatia
| | - Gregor D Zupančič
- CROTEH - Sustainable Technologies Development Centre Ltd., Dragutina Golika 63, HR-10000 Zagreb, Croatia
| | - Bruno Zelić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
27
|
Mechanical and Alkaline Hydrothermal Treated Corn Residue Conversion in to Bioenergy and Biofertilizer: A Resource Recovery Concept. ENERGIES 2018. [DOI: 10.3390/en11030516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this research fall time harvested corn residue (CR) was first mechanically pretreated to produce 5 mm chopped and <500 µm ground particles, which underwent an anaerobic digestion (AD) process to produce biomethane and biofertilizer. Another sample of CR was pretreated by an alkaline hydrothermal (HT) process using 1%, 2% and 3% NaOH to produce solid biocarbon and the resulting alkaline hydrothermal process water (AHTPW), a co-product of biocarbon, underwent fast digestion under AD conditions to produce biomethane and biofertilizer. A predetermined HT process of 240 °C for 30 min was considered and the effect of alkali content on the HT process for biocarbon and biomethane product a rate of 8.21 MJ kg−1 and 9.23 MJ kg−1 of raw CR, respectively. Among the three selected alkaline HT processes, the 1% NaOH HT process produced the highest hybrid bioenergy of 11.39 MJ kg−1 of raw CR with an overall energy recovery of 62.82% of raw CR. The AHTPW of 2% and 3% NaOH HT-treated CR did not produce considerable amount of biomethane and their biocarbons contained 3.44 MJ kg−1 and 3.27 MJ kg−1 of raw CR of bioenergy, respectively. The biomethane produced from 5 mm chopped CR, <500 µm ground CR and 1% alkaline AHTPW for 30 days retention time were of 275.38 L kg−1 volatile solid (VS), 309.59 L kg−1 VS and 278.70 L kg−1 VS, respectively, compared to non-treated CR of 144–187 L kg−1 VS. Nutrient enriched AD digestate is useable as liquid fertilizer. Biocarbon, biomethane and biofertilizer produced from the 1% alkaline HT process at 240 °C for 30 min can reduce the greenhouse gas (GHG) emissions of Ontario.
Collapse
|
28
|
Wyman V, Henríquez J, Palma C, Carvajal A. Lignocellulosic waste valorisation strategy through enzyme and biogas production. BIORESOURCE TECHNOLOGY 2018; 247:402-411. [PMID: 28961446 DOI: 10.1016/j.biortech.2017.09.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 05/25/2023]
Abstract
Lignocellulosic wastes are generally pre-treated to facilitate the hydrolysis stage during the anaerobic digestion process. A process consisting of solid state fermentation carried out by white rot fungi and anaerobic digestion was evaluated on corn stover to produce ligninolytic enzymes and biogas. The enzyme production was quantified every 3d for a month at 30°C, and three fungal strains and two particle sizes of waste were compared. Of the main outcomes, Pleurotus eryngii produced the highest laccase enzyme activity compared with Pleurotus ostreatus and Trametes versicolor. Furthermore, this activity was improved by 16% when copper was used as an enzyme inducer. On the other hand, most of the conditions studied showed a decrease in maximum biogas production compared with untreated waste, the addition of copper decreased biogas production by 20%. Despite the above, Pleurotus eryngii showed promising results allowing a 19% increase of biogas production and high enzyme production values.
Collapse
Affiliation(s)
- Valentina Wyman
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. Vicuña Mackenna 3939, Santiago, Chile
| | - Josefa Henríquez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. Vicuña Mackenna 3939, Santiago, Chile
| | - Carolyn Palma
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. Vicuña Mackenna 3939, Santiago, Chile
| | - Andrea Carvajal
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. Vicuña Mackenna 3939, Santiago, Chile.
| |
Collapse
|