1
|
Zhao Y, Zhu Y, Huang J, Song Z, Tang W. Influence of in situ biochar capping on microbial dynamics and ammonia nitrogen release in sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123524. [PMID: 39644550 DOI: 10.1016/j.jenvman.2024.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
To study the influence of in situ biochar (BC) capping technique on the release of ammonia nitrogen (NH4+-N) from sediments, a field mesocosm experiment was conducted in Baiyangdian Lake (BYDL), a critical water body often referred to as the "kidney of North China" where sediment pollution poses a significant threat to water quality. This study also assessed the impact of BC on sediment microorganisms. The results showed that the NH4+-N concentration in the overlying water of the BC-treated mesocosms was the lowest among four treatments, decreasing to 0.051 mg L-1 by the 60th day. More importantly, the BC treatment showed the least increase in NH4+-N concentrations in sediments compared to other treatments. For sediments capped with a 4 cm layer of BC, the potential release flux of NH4+-N was reduced from 1.84 mg m-2 d-1 to -0.76 mg m-2 d-1. This reduction is likely due to the negatively charged surfaces of biochar, which enhance NH4+-N adsorption through electrostatic interactions. Additionally, BC modified the physical and chemical properties of the surface sediment, improving pH and increasing both organic content and the carbon/nitrogen (C/N) ratio. These changes influenced the microbial community structure within the sediments, enhancing NH4+-N removal. After 60 days, a significant alteration in the microbial community was observed in the BC-treated surface sediments. The addition of BC significantly increased the abundance of Proteobacteria and Firmicutes of the phyla in the sediments. Furthermore, BC enhanced the expression of functional genes including amoA, amoB, nirK, nirS, hzsB, nrfA and ureC, which are likely the primary microbial mechanisms promoting NH4+-N conversion in sediments for final removal.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaoyao Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Enterprises Water Group Limited, Beijing, 100102, China
| | - Jianyin Huang
- Sustainable Infrastructure and Resource Management (SIRM), STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| | - Zhixin Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China.
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Zhang J, Wang L, Li H, Yu J, Wang H. Effect of elemental sulfur on anaerobic ammonia oxidation: Performance and mechanism. ENVIRONMENTAL RESEARCH 2024; 262:119778. [PMID: 39155040 DOI: 10.1016/j.envres.2024.119778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
Biological nitrogen removal processes provide effective means to mitigate nitrogen-related issues in wastewater treatment. Previous studies have highlighted the collaborative efficiency between sulfur autotrophic denitrification and Anammox processes. However, the trigger point induced the combination of nitrogen and sulfur metabolism is unclear. In this study, elemental sulfur (S0) was introduced to Anammox system to figure out the performance and mechanism of S0-mediated autotrophic denitrification and Anammox (S0SAD-A) systems. The results showed that the nitrogen removal performance of the Anammox reactor decreased with the increasing concentrations of NH4+-N and NO2--N in influent, denitrification occurred when NH4+-N concentration reached 100 mg/L. At stage ⅳ (150 mg/L NH4+-N), the total nitrogen removal efficiency in S0SAD-A system (95.99%) was significantly higher than that in the Anammox system (77.22%). Throughout a hydraulic retention time, the consumption rate of NH4+-N in S0SAD-A was faster than that in Anammox reactor. And there existed a nitrate-concentration peak in S0SAD-A system. Metagenomic sequencing was performed to reveal functional microbes as well as key genes involved in sulfur and nitrogen metabolism. The results showed that the introduction of S0 elevated the abundance of Ca. Brocadia. Moreover, the relative abundance of Anammox genes, such as hao, hzsA and hzsC were also stimulated by sulfur. Notably, unclassified members in Rhodocyclaceae acted as the primary contributor to key genes involved in the sulfur metabolism. Overall, the interactions between Anammox and denitrification were stimulated by sulfur metabolism. Our study shed light on the potential significance of Rhodocyclaceae members in the S0SAD-A process and disclosed the relationship between anammox and denitrification.
Collapse
Affiliation(s)
- Jing Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Biology institute, Hebei academy of science, Shijiazhuang, 050081, PR China
| | - Lurong Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Haitao Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, PR China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, PR China.
| |
Collapse
|
3
|
Liao X, Deng R, Yang L, Ni BJ, Chen X. Revisit the role of hydroxylamine in sulfur-driven autotrophic denitrification. WATER RESEARCH 2024; 268:122596. [PMID: 39418805 DOI: 10.1016/j.watres.2024.122596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Through dedicated batch tests using the enriched sludge dominated by sulfur-oxidizing bacteria (SOB), the potential transformation of hydroxylamine (NH2OH) by SOB and the effects of NH2OH on the rate-limiting sequential reduction processes of sulfur-driven autotrophic denitrification (SDAD) were systematically explored in this study. The results indicated that NH2OH might be first converted to NO by SOB and then participate in the SDAD process, thus accelerating the utilization of S2- and contributing to the formation of N2O. Up to 3.5 mg-N/L NH2OH didn't affect the NO3- or NO2- reduction of SDAD, during which no significant changes were observed for the NH2OH concentration. Comparatively, even though NH2OH had no direct impact on the N2O reduction of SDAD, it could be consumed and therefore affect the depletion of N2O indirectly by regulating the toxic effect and electron supply of S2-. These findings provide novel implications for applying NH2OH to SDAD-based integrated processes for biological nitrogen removal.
Collapse
Affiliation(s)
- Xiaxue Liao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Ronghua Deng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
4
|
Bai Y, Ren M, Su J, Huang T, Wang Y, Zhang Y, Feng J, Liu J. Microbial enhanced manganese-autotrophic denitrification in reactor: performance, microbial diversity, potential functions. BIORESOURCE TECHNOLOGY 2024; 409:131256. [PMID: 39127357 DOI: 10.1016/j.biortech.2024.131256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Autotrophic denitrification technology has gained increasing attention in recent years owing to its effectiveness, economical, and environmentally friendly nature. However, the sluggish reaction rate has emerged as the primary impediment to its widespread application. Herein, a bio-enhanced autotrophic denitrification reactor with modified loofah sponge (LS) immobilized microorganisms was established to achieve efficient denitrification. Under autotrophic conditions, a nitrate removal efficiency of 59.55 % (0.642 mg/L/h) and a manganese removal efficiency of 86.48 % were achieved after bio-enhance, which increased by 20.92 % and 36.34 %. The bioreactor achieved optimal performance with denitrification and manganese removal efficiencies of 99.84 % (1.09 mg/L/h) and 91.88 %. ETSA and 3D-EEM analysis reveled manganese promoting electron transfer and metabolic activity of microorganisms. High-throughput sequencing results revealed as the increase of Mn(II) concentration, Cupriavidus became one of the dominant strains in the reactor. Prediction of metabolic functions results proved the great potential for Mn(II)-autotrophic denitrification of LS bioreactor.
Collapse
Affiliation(s)
- Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ying Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jian Liu
- Shaanxi Institute of Geological Survey, Xi'an 710004, PR China
| |
Collapse
|
5
|
Zhao C, Chen N, Liu T, Liu W, Dipama WE, Feng C. The mechanism of microbial sulfate reduction in high concentration sulfate wastewater enhanced by maifanite. WATER RESEARCH 2024; 258:121775. [PMID: 38761596 DOI: 10.1016/j.watres.2024.121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Excessive sulfate levels in water bodies pose a dual threat to the ecological environment and human health. The microbial removal of sulfate encounters challenges, particularly in environments with high sulfate concentrations, where the gradual accumulation of sulfide hampers microbial activity. This study focuses on elucidating the mechanisms underlying the enhancement of microbial sulfate reduction in high-concentration sulfate wastewater through a comparative analysis of maifanite and zeolite biostimulants. The investigation reveals that zeolite primarily facilitates microbial growth by providing attachment sites, while maifanite augments sulfate-reducing bacteria (SRB) activity through the release of active substances such as Mo, Ca, and Cu. The addition of maifanite proves instrumental in enhancing microbial activity, manifesting as increased microbial load and protein production, augmented extracellular polymer generation, accelerated electron transfer, and facilitated microbial growth and biofilm formation. Noteworthy is the observation that the combined application of maifanite and zeolite exhibited a synergistic effect, resulting in a 167 % and 68 % increase in sulfate reduction rate compared to the utilization of maifanite (0.12 d-1) or zeolite (0.19 d-1) in isolation. Within this synergistic context, the relative abundance of Desulfobacteraceae reaches a peak of 15.4 %. The outcomes of this study corroborate the distinct promotion mechanisms of maifanite and zeolite in microbial sulfate reduction, offering novel insights into the application of maifanite in the context of high-concentration sulfate removal.
Collapse
Affiliation(s)
- Chaorui Zhao
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tong Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Wenjun Liu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wesmanegda Elisee Dipama
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
6
|
Shao B, Niu L, Xie YG, Zhang R, Wang W, Xu X, Sun J, Xing D, Lee DJ, Ren N, Hua ZS, Chen C. Overlooked in-situ sulfur disproportionation fuels dissimilatory nitrate reduction to ammonium in sulfur-based system: Novel insight of nitrogen recovery. WATER RESEARCH 2024; 257:121700. [PMID: 38705068 DOI: 10.1016/j.watres.2024.121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Sulfur-based denitrification is a promising technology in treatments of nitrate-contaminated wastewaters. However, due to weak bioavailability and electron-donating capability of elemental sulfur, its sulfur-to-nitrate ratio has long been low, limiting the support for dissimilatory nitrate reduction to ammonium (DNRA) process. Using a long-term sulfur-packed reactor, we demonstrate here for the first time that DNRA in sulfur-based system is not negligible, but rather contributes a remarkable 40.5 %-61.1 % of the total nitrate biotransformation for ammonium production. Through combination of kinetic experiments, electron flow analysis, 16S rRNA amplicon, and microbial network succession, we unveil a cryptic in-situ sulfur disproportionation (SDP) process which significantly facilitates DNRA via enhancing mass transfer and multiplying 86.7-210.9 % of bioavailable electrons. Metagenome assembly and single-copy gene phylogenetic analysis elucidate the abundant genomes, including uc_VadinHA17, PHOS-HE36, JALNZU01, Thiobacillus, and Rubrivivax, harboring complete genes for ammonification. Notably, a unique group of self-SDP-coupled DNRA microorganism was identified. This study unravels a previously concealed fate of DNRA, which highlights the tremendous potential for ammonium recovery and greenhouse gas mitigation. Discovery of a new coupling between nitrogen and sulfur cycles underscores great revision needs of sulfur-driven denitrification technology.
Collapse
Affiliation(s)
- Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Li Niu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuan-Guo Xie
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, PR China
| | - Ruochen Zhang
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jianxing Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, PR China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
7
|
Zhang D, Liu F, Al MA, Yang Y, Yu H, Li M, Wu K, Niu M, Wang C, He Z, Yan Q. Nitrogen and sulfur cycling and their coupling mechanisms in eutrophic lake sediment microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172518. [PMID: 38631637 DOI: 10.1016/j.scitotenv.2024.172518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mamun Abdullah Al
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuchun Yang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Yu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Kun Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyang Niu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Zhang Y, Sang P, Wang K, Gao J, Liu Q, Wang J, Qian F, Shu Y, Hong P. Enhanced chromium and nitrogen removal by constructing a biofilm reaction system based on denitrifying bacteria preferential colonization theory. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116156. [PMID: 38412631 DOI: 10.1016/j.ecoenv.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Understanding the developmental characteristics of microbial communities in biofilms is crucial for designing targeted functional microbial enhancements for the remediation of complex contamination scenarios. The strong prioritization effect of microorganisms confers the ability to colonize strains that arrive first dominantly. In this study, the auto-aggregating denitrifying bacterial Pseudomonas stutzeri strain YC-34, which has both nitrogen and chromium removal characteristics, was used as a biological material to form a stable biofilm system based on the principle of dominant colonization and biofortification. The effect of the biofilm system on nitrogen and chromium removal was characterized by measuring the changes in the quality of influent and effluent water. The pattern of biofilm changes was analyzed by measuring biofilm content and thickness and characterizing extracellular polymer substances (EPS). Further analysis of the biofilm microbiota characteristics and potential functions revealed the mechanism of strain YC-34 biofortified biofilm. The results revealed that the biofilm system formed could achieve 90.56% nitrate-nitrogen removal with an average initial nitrate-nitrogen concentration of 51.9 mg/L and 40% chromium removal with an average initial hexavalent chromium Cr(VI) concentration of 7.12 mg/L. The biofilm properties of the system were comparatively analyzed during the biofilm formation period, the fluctuation period of Cr(VI)-stressed water quality, and the stabilization period of Cr(VI)-stressed water quality. The biofilm system may be able to increase the structure of hydrogen bonds, the type of protein secondary structure, and the abundance of amino acid-like components in the EPS, which may confer biofilm tolerance to Cr(VI) stress and allow the system to maintain a stable biofilm structure. Furthermore, microbial characterization indicated an increase in microbial diversity in the face of chromium stress, with an increase in the abundance of nitrogen removal-associated functional microbiota and an increasing trend in the abundance of nitrogen transfer pathways. These results demonstrate that the biofilm system is stable in nitrogen and chromium removal. This bioaugmentation method may provide a new way for the remediation of heavy metal-polluted water bodies and also provides theoretical and application parameters for the popularization and application of biofilm systems.
Collapse
Affiliation(s)
- Yancheng Zhang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Pengcheng Sang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Kuan Wang
- Wuhu Three Gorges Water Co., Ltd., Wuhu 241000, China
| | - Jingyi Gao
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Qiang Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jihong Wang
- Wuhu Three Gorges Water Co., Ltd., Wuhu 241000, China
| | - Fangping Qian
- China National Chemical Communication Construction Group Co., Ltd., Jinan 250102, China
| | - Yilin Shu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
9
|
Shao L, Wang D, Chen G, Zhao X, Fan L. Advance in the sulfur-based electron donor autotrophic denitrification for nitrate nitrogen removal from wastewater. World J Microbiol Biotechnol 2023; 40:7. [PMID: 37938419 DOI: 10.1007/s11274-023-03802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
In the field of wastewater treatment, nitrate nitrogen (NO3--N) is one of the significant contaminants of concern. Sulfur autotrophic denitrification technology, which uses a variety of sulfur-based electron donors to reduce NO3--N to nitrogen (N2) through sulfur autotrophic denitrification bacteria, has emerged as a novel nitrogen removal technology to replace heterotrophic denitrification in the field of wastewater treatment due to its low cost, environmental friendliness, and high nitrogen removal efficiency. This paper reviews the advance of reduced sulfur compounds (such as elemental sulfur, sulfide, and thiosulfate) and iron sulfides (such as ferrous sulfide, pyrrhotite, and pyrite) electron donors for treating NO3--N in wastewater by sulfur autotrophic denitrification technology, including the dominant bacteria types and the sulfur autotrophic denitrification process based on various electron donors are introduced in detail, and their operating costs, nitrogen removal performance and impacts on the ecological environment are analyzed and compared. Moreover, the engineering applications of sulfur-based electron donor autotrophic denitrification technology were comprehensively summarized. According to the literature review, the focus of future industry research were discussed from several aspects as well, which would provide ideas for the application and optimization of the sulfur autotrophic denitrification process for deep and efficient removal of NO3--N in wastewater.
Collapse
Affiliation(s)
- Lixin Shao
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Dexi Wang
- School of Mechanical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Gong Chen
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China
| | - Xibo Zhao
- Weihai Baike Environmental Protection Engineering Co., Ltd., Weihai, 264200, China
| | - Lihua Fan
- School of Chemical Equipment, Shenyang University of Technology, Liaoyang, 111000, China.
| |
Collapse
|
10
|
Sun Q, Fang YK, Liu WZ, Xie N, Dong H, Guadie A, Liu Y, Cheng HY, Wang AJ. Synergistic between autotrophic and heterotrophic microorganisms for denitrification using bio-S as electron donor. ENVIRONMENTAL RESEARCH 2023; 231:116047. [PMID: 37149031 DOI: 10.1016/j.envres.2023.116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ying-Ke Fang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450002, PR China
| | - Wen-Zong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nan Xie
- Norendar International Ltd., Shijiazhuang, 050011, PR China
| | - Heng Dong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Ying Liu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, PR China
| | - Hao-Yi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
11
|
Yılmaz T, Sahinkaya E. Performance of sulfur-based autotrophic denitrification process for nitrate removal from permeate of an MBR treating textile wastewater and concentrate of a real scale reverse osmosis process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116827. [PMID: 36442334 DOI: 10.1016/j.jenvman.2022.116827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Textile is one of the industrial sectors generating the highest amount of wastewater with various polluting substances. Lately, water reuse in textile industries, especially, with the reverse osmosis (RO) process following membrane bioreactor (MBR) treatment has been applied more commonly. In this study, an autotrophic sulfur-based denitrifying column performance was evaluated, for the first time, for nitrate reduction from permeate of a lab-scale MBR receiving real textile wastewater and from the concentrate stream of a real scale-RO plant used for recovering water from textile wastewater. Nitrate concentration in the MBR effluent and RO concentrate averaged 35 ± 3 and 12 ± 2 mg-N/L, respectively. With the sulfur-based column bioreactor, quite high (≥90%) denitrification performances were attained both for MBR effluent and RO concentrate up to nitrate loadings of 0.432 and 0.12 g-N/(L.d), respectively. COD present in wastewater was not utilized in the column bioreactor, which illustrates no or minimal contribution of heterotrophic denitrification. Alkalinity concentration in the wastewater was enough to buffer the acid formation during autotrophic denitrification. Sulfate was generated accompanied by nitrate reduction and sulfide was formed at low nitrate loadings. In the batch tests, the denitrification rates for the MBR effluent and RO concentrate were 0.31 and 0.28 g-N/(g-VSS.d), respectively, which were relatively higher than the ones observed for the synthetic nitrate-contaminated groundwater. Autotrophic sulfur-based denitrification is a promising and robust process alternative even for textile RO concentrate with high concentrations of salinity, non-biodegradable COD, and color.
Collapse
Affiliation(s)
- Tülay Yılmaz
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Science and Advanced Technologies Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Erkan Sahinkaya
- Science and Advanced Technologies Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
| |
Collapse
|
12
|
Zhang N, Sun YL, Yao BM, Zhang B, Cheng HY. Insight into the shaping of microbial communities in element sulfur-based denitrification at different temperatures. ENVIRONMENTAL RESEARCH 2022; 215:114348. [PMID: 36155154 DOI: 10.1016/j.envres.2022.114348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nitrate pollution is an important cause of eutrophication and ecological disruption. Recently, element sulfur-based denitrification (ESDeN) has attracted increasing attention because of its non-carbon source dependence, low sludge yield, and cost-effectiveness. Although the denitrification performance of sulfur autotrophic denitrifying bacteria at different temperatures has been widely studied, there are still many unknown factors about the adaptability and the shaping of microbial community. In this study, we comprehensively understood the shaping of ESDeN microbial communities under different temperature conditions. Results revealed that microbial communities cultivated at temperatures ranging from 10 °C to 35 °C could be classified as high-temperature (35 °C), middle-temperature (30, 25 and 20 °C), and low-temperature (15 and 10 °C) communities. Dissolved oxygen in water was an important factor that, in combination with temperature, shaped microbial community structure. According to network analysis, the composition of keystone taxa was different for the three groups of communities. Some bacteria that did not have sulfur compound oxidation function were identified as the "keystone species". The abundances of carbon, nitrogen, and sulfur metabolism of the three microbial communities were significantly changed, which was reflected in that the high-temperature and middle-temperature communities were dominated by dark oxidation of sulfur compounds and dark sulfide oxidation, while the low-temperature community was dominated by chemoheterotrophy and aerobic chemoheterotrophy. The fact that the number of microorganisms with dark oxidation of sulfur compounds capacity was quite higher than that of microorganisms with dark sulfur oxidation capacity suggested that the sulfur bioavailability at different temperatures, especially low temperature, was the main challenge for the development of efficient ESDeN process. This study provided a biological basis for developing a high-efficiency ESDeN process to cope with temperature changes in different seasons or regions.
Collapse
Affiliation(s)
- Na Zhang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yi-Lu Sun
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao-Min Yao
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao-Yi Cheng
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Sempere F, Sánchez C, Baeza-Serrano Á, Montoya T. Anoxic desulphurisation of biogas from full-scale anaerobic digesters in suspended biomass bioreactors valorising previously nitrified digestate centrate. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129641. [PMID: 35882172 DOI: 10.1016/j.jhazmat.2022.129641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Nitrification of centrate from anaerobic sewage sludge digestion presents a major opportunity as an electron acceptor in anoxic biogas biodesulphurisation. Nitritation and nitrification inhibition by free ammonia was detected at laboratory scale, but was avoided during the scale-up operation in a 4 m3 reactor treating ammonium loads up to 19 gN m-3 h-1. This nitrate-rich stream was fed to two pilot-scale suspended biomass bioreactors (SBBs) treating real biogas for 220 days. After an adaptation period of 21 days, nitrate and alkalinity concentrations in the liquid medium below 10 mgN L-1 and 100 mgCaCO3 L-1 were found to limit hydrogen sulphide (H2S) oxidation. Once controlled, 95% of the H2S was removed in SBB1 and 90% in SBB2, at a gas residence time (GRT) of 5.9 min, treating average values of 321 ± 205 ppmv and 457 ± 205 ppmv, respectively. Outlet H2S concentrations of 16 ± 24 ppmv in SBB1 and 46 ± 39 ppmv in SBB2 were obtained, which are below the requirements of biogas combustion heat and power engines. Unlike H2S, siloxanes were not removed with these GRTs. The results demonstrate the feasibility of the combined process for H2S treatment, potential valorisation of precipitated elemental sulphur and a reduction in the reagents currently used to control H2S.
Collapse
Affiliation(s)
- Feliu Sempere
- Global Omnium Medioambiente, S.L., Gran Via Marqués del Túria 19, 46005 València, Spain.
| | - Camino Sánchez
- Global Omnium Medioambiente, S.L., Gran Via Marqués del Túria 19, 46005 València, Spain
| | - Ángela Baeza-Serrano
- Global Omnium Medioambiente, S.L., Gran Via Marqués del Túria 19, 46005 València, Spain
| | - Tatiana Montoya
- Global Omnium Medioambiente, S.L., Gran Via Marqués del Túria 19, 46005 València, Spain
| |
Collapse
|
14
|
Yang Y, Perez Calleja P, Liu Y, Nerenberg R, Chai H. Assessing Intermediate Formation and Electron Competition during Thiosulfate-Driven Denitrification: An Experimental and Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11760-11770. [PMID: 35921133 DOI: 10.1021/acs.est.2c03937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is increasing interest in thiosulfate-driven denitrification for low C/N wastewater treatment, but the denitrification performance varies with the thiosulfate oxidation pathways. Models have been developed to predict the products of denitrification, but few consider thiosulfate reduction to elemental sulfur (S0), an undesirable reaction that can intensify electron competition with denitrifying enzymes. In this study, the model using indirect coupling of electrons (ICE) was developed to predict S0 formation and electron competition during thiosulfate-driven denitrification. Kinetic data were obtained from sulfur-oxidizing bacteria (SOB) dominated by the branched pathway and were used to calibrate and validate the model. Electron competition was investigated under different operating conditions. Modeling results reveal that electrons produced in the first step of thiosulfate oxidation typically prioritize thiosulfate reduction, then nitrate reduction, and finally nitrite reduction. However, the electron consumption rate for S0 formation decreases sharply with the decline of thiosulfate concentration. Thus, a continuous feeding strategy was effective in alleviating the competition between thiosulfate reduction and denitrifying enzymes. Electron competition leads to nitrite accumulation, which could be a reliable substrate for anammox. The model was further evaluated with anammox integration. Results suggested that the branched pathway and continuous supply of thiosulfate are favorable to create a symbiotic relationship between SOB and anammox.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patricia Perez Calleja
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
15
|
Huo D, Dang Y, Sun D, Holmes DE. Efficient nitrogen removal from leachate by coupling Anammox and sulfur-siderite-driven denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154683. [PMID: 35314225 DOI: 10.1016/j.scitotenv.2022.154683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
High concentrations of nitrate can be generated during anaerobic ammonium oxidation (Anammox) wastewater treatment processes. Addition of sulfur to Anammox reactors stimulates the growth of sulfur-driven denitrifying (SADN) bacteria that can reduce nitrate to nitrogen gas. However, protons released during the SADN process lower the pH of the system and inhibit Anammox activity. The system will keep stable when pH is in the range of 7.5-8.5. This study showed that addition of siderite stabilized the reactor system and significantly improved the nitrogen removal process. In fact, even when concentrations of total nitrogen were 477.15 ± 16.84 mg/L, the sulfur/siderite reactor maintained nitrogen removal efficiencies >90%, while efficiencies in the sulfur reactor were < 80%. Anammox accounted for 31% of the bacterial sequences in the sulfur/siderite reactor compared to only 14% in the sulfur reactor with the majority of sequences clustering with Ca. Brocadia. An abundance of c-type cytochromes in anammox aggregates in the sulfur-siderite reactor also indicated that anammox activity was higher in this system.
Collapse
Affiliation(s)
- Da Huo
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, USA
| |
Collapse
|
16
|
Woo YC, Lee JJ, Kim HS. Removal of nitrogen from municipal wastewater by denitrification using a sulfur-based carrier: A pilot-scale study. CHEMOSPHERE 2022; 296:133969. [PMID: 35181436 DOI: 10.1016/j.chemosphere.2022.133969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In the present study, to improve nitrate removal rate, a sulfur-based carrier was applied for autotrophic denitrification, and the removal rate was evaluated for advanced wastewater treatment without adding any external organic carbon source. Based on the results, an increased PAC concentration affected the removal efficiency of NO3--N, and the optimal concentration of PAC was at 15 wt%. During the 60 d operation of a pilot process with a capacity of 1 m3/d, the removal of T-N was 81.2% and 50.2% in reactors with and without sulfur-based carrier, respectively. The removal efficiency of NO3--N exhibited a similar trend to that of T-N. According to the results, the removal of T-N and NO3--N was noticeably enhanced to approximately 30% by adding a sulfur-based carrier to the A2O pilot system. In addition, microbial community in both reactors was dominated by Thiobacillus, which is an autotrophic microorganism, displaying a dominant denitrification status. The present study compared the relative efficiencies of nitrate removal in A2O pilot reactors with and without sulfur-based carriers for its successful application in real-scale autotrophic denitrification.
Collapse
Affiliation(s)
- Yun Chul Woo
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| | - Jeong Jun Lee
- BKT Inc., 25 Yuseong-Daero, 1184 Beon-gil, Yuseong-Gu, Daejeon, 34109, Republic of Korea
| | - Han-Seung Kim
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-Ro, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, 17058, Republic of Korea.
| |
Collapse
|
17
|
Guerriero G, Mattei MR, Papirio S, Esposito G, Frunzo L. Modelling the effect of SMP production and external carbon addition on S-driven autotrophic denitrification. Sci Rep 2022; 12:7008. [PMID: 35487960 PMCID: PMC9054823 DOI: 10.1038/s41598-022-10944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to develop a mathematical model to assess the effect of soluble microbial products production and external carbon source addition on the performance of a sulfur-driven autotrophic denitrification (SdAD) process. During SdAD, the growth of autotrophic biomass (AUT) was accompanied by the proliferation of heterotrophic biomass mainly consisting of heterotrophic denitrifiers (HD) and sulfate-reducing bacteria (SRB), which are able to grow on both the SMP derived from the microbial activities and on an external carbon source. The process was supposed to occur in a sequencing batch reactor to investigate the effects of the COD injection on both heterotrophic species and to enhance the production and consumption of SMP. The mathematical model was built on mass balance considerations and consists of a system of nonlinear impulsive differential equations, which have been solved numerically. Different simulation scenarios have been investigated by varying the main operational parameters: cycle duration, day of COD injection and quantity of COD injected. For cycle durations of more than 15 days and a COD injection after the half-cycle duration, SdAD represents the prevailing process and the SRB represent the main heterotrophic family. For shorter cycle duration and COD injections earlier than the middle of the cycle, the same performance can be achieved increasing the quantity of COD added, which results in an increased activity of HD. In all the performed simulation even in the case of COD addition, AUT remain the prevailing microbial family in the reactor.
Collapse
Affiliation(s)
- Grazia Guerriero
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy.
| | - Maria Rosaria Mattei
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy
| |
Collapse
|
18
|
Guo G, Li Z, Chen L, Ling Q, Zan F, Isawi H, Hao T, Ma J, Wang Z, Chen G, Lu H. Advances in elemental sulfur-driven bioprocesses for wastewater treatment: From metabolic study to application. WATER RESEARCH 2022; 213:118143. [PMID: 35149365 DOI: 10.1016/j.watres.2022.118143] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Elemental sulfur (S0) is known to be an abundant, non-toxic material with a wide range of redox states (-2 to +6) and may serve as an excellent electron carrier in wastewater treatment. In turn, S0-driven bioprocesses, which employ S0 as electron donor or acceptor, have recently established themselves as cost-effective therefore attractive solutions for wastewater treatment. Numerous related processes have, to date, been developed from laboratory experiments into full-scale applications, including S0-driven autotrophic denitrification for nitrate removal and S0-reducing organic removal. Compared to the conventional activated sludge process, these bioprocesses require only a small amount of organic matter and produce very little sludge. There have been great efforts to characterize chemical and biogenic S0 and related functional microorganisms in order to identify the biochemical pathways, upgrade the bioprocesses, and assess the impact of the operating factors on process performance, ultimately aiming to better understand and to optimize the processes. This paper is therefore a comprehensive overview of emerging S0-driven biotechnologies, including the development of S0-driven autotrophic denitrification and S0-based sulfidogenesis, as well as the associated microbiology and biochemistry. Also reviewed here are the physicochemical characteristics of S0 and the effects that environmental factors such as pH, influent sulfur/nitrate ratio, temperature, S0 particle size and reactor configurations have on the process. Research gaps, challenges of process applications and potential areas for future research are further proposed and discussed.
Collapse
Affiliation(s)
- Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhaoling Li
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lei Chen
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qingshan Ling
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Heba Isawi
- Desert Research Center, Water Resources and Desert Soils Division, Egyptian Desalination Research Center of Excellence (EDRC), Cairo, Egypt
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| | - Jie Ma
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Bao HX, Li ZR, Song ZB, Wang AJ, Zhang XN, Qian ZM, Sun YL, Cheng HY. Mitigating nitrite accumulation during S 0-based autotrophic denitrification: Balancing nitrate-nitrite reduction rate with thiosulfate as external electron donor. ENVIRONMENTAL RESEARCH 2022; 204:112016. [PMID: 34509485 DOI: 10.1016/j.envres.2021.112016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
This study was carried out to determine the effect of influent nitrate loading on nitrite accumulation during elemental-sulfur based denitrification process, and proposed to enhance the nitrogen removal efficiency by mitigating nitrite accumulation with thiosulfate as external electron donor. Along with increasing the nitrate influent loading (from 0.09 kg N/m3/d to 1.73 kg N/m3/d) by shortening the empty bed contact time (EBCT) (from 5 h to 0.25 h), the nitrate removal loading increased from 0.08 to 0.83 kg N/m3/d. Meanwhile, the raise of the nitrate influent loading obviously aggravated the nitrite accumulation. Herein, nitrite began to accumulate since the nitrate influent loading was over 0.86 kg N/m3/d, and a maximum nitrite accumulation of 2.39 mg/L was observed under the 0.25 h of EBCT and 15 mg/L of nitrate influent concentration condition. Thiosulfate was used as the external electron donor to accelerate the nitrite reduction rate in order to mitigate the nitrite accumulation. As a result, the nitrite accumulation significantly decreased from 2.39 mg/L to 0.17 mg/L with the thiosulfate dosage of 13.36 mg/L. However, the nitrite accumulation bounced with the on-going increase of the thiosulfate dosage, indicating that the nitrate reduction rate and nitrite reduction rate were accelerated alternatively. After dosing thiosulfate, the relative abundances of sulfurimonas and ferritrophicum grew up significantly.
Collapse
Affiliation(s)
- Hong-Xu Bao
- College of the Environment, Liaoning University, Shenyang, 110036, China
| | - Zhuo-Ran Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ze-Bin Song
- College of the Environment, Liaoning University, Shenyang, 110036, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhi-Min Qian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
20
|
Wu L, Wang LK, Wei W, Ni BJ. Autotrophic denitrification of NO for effectively recovering N 2O through using thiosulfate as sole electron donor. BIORESOURCE TECHNOLOGY 2022; 347:126681. [PMID: 34999195 DOI: 10.1016/j.biortech.2022.126681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
To reclaim nitrous oxide (N2O) as an energy resource economically, this study developed an autotrophic denitrification-based system with thiosulfate (S2O32-) and nitric oxide (NO) as electron donor and acceptor, respectively. NO from flue gases is absorbed on Fe(II)EDTA to overcome its low solubility in liquid phase by forming Fe(II)EDTA-NO. Short-term batch tests and long-term continuous experiments were conducted to investigate the N2O production profile and NO conversion efficiency from thiosulfate-based denitrification under varied Fe (II)EDTA-NO conditions (5-20 mM). Up to 39% of NO was converted to gaseous N2O at 20 mM Fe(II)EDTA-NO amid batch test due to the inhibition of key enzymatic activities by NO and the acidic conditions following thiosulfate oxidation. Higher Fe(II)EDTA-NO levels induced lower enzymatic activities with N2OR being suppressed harder than NOR. Microbial diversity was reduced in the continuous thiosulfate-driven Fe(II)EDTA-NO-based denitrification system. NO-resistant bacteria and sulfide-tolerant denitrifiers were enriched, facilitating NO conversion to N2O thereafter.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
21
|
Zhao F, Xin J, Yuan M, Wang L, Wang X. A critical review of existing mechanisms and strategies to enhance N 2 selectivity in groundwater nitrate reduction. WATER RESEARCH 2022; 209:117889. [PMID: 34936974 DOI: 10.1016/j.watres.2021.117889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The pollution of nitrate (NO3-) in groundwater has become an environmental problem of general concern and requires immediate remediation because of adverse human and ecological impacts. NO3- removal from groundwater is conducted mainly by chemical, biological, and coupled methods, with the removal efficiency of NO3- considered the sole performance indicator. However, in addition to the harmless form of N2, the reduced NO3- could be transformed into other intermediates, such as nitrite (NO2-), nitrous oxide (N2O), and ammonia (NH4+), which may have direct or indirect negative impacts on the environment. Therefore, increasing N2 selectivity is a significant challenge in reducing NO3- in groundwater, which seriously impedes the large-scale implementation of available remediation technologies. In this work, we comprehensively overview the most recent advances in N2 selectivity regarding the understanding of emerging groundwater NO3- removal technologies. Mechanisms of by-product production and strategies to enhance the selective reduction of NO3- to N2 are discussed in detail. Furthermore, we proposed topics for further research and hope that the total environmental impacts of remediation schemes should be evaluated comprehensively by quantifying all potential intermediate products, and promising strategies should be further developed to enhance N2 selectivity, to improve the feasibility of related technologies in actual remediation.
Collapse
Affiliation(s)
- Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
22
|
Liu C, Li Y, Gai J, Niu H, Zhao D, Wang A, Lee DJ. Cultivation of sulfide-driven partial denitrification granules for efficient nitrite generation from nitrate-sulfide-laden wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150143. [PMID: 34798727 DOI: 10.1016/j.scitotenv.2021.150143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Sulfide partial denitrification (SPD) is an alternative pathway for nitrite production accompanied with elemental sulfur (S0) production for nitrate removal from wastewater with anammox. In this study, the SPD granular sludge was cultivated for the first time in an upflow anaerobic sludge bed (UASB) reactor to reach the efficacy of maximum nitrate-to-nitrite transformation ratio of 92% and an in-situ maximum NO3--N reduction rate of 2.46 kg-N/m3-d, both much higher than literature results. Mature granules had an average particle size of 2.52 mm and hold smooth surface with excess rod bacteria. The elements Ca and S, and proteins in extracellular polymeric substances contributed to granule structure's stability. Enriched Thiobacillus genus was proposed to accumulate nitrite at moderate HRT (2-6 h). The immobilized functional strains assist efficient partial nitrification reactions to be realized with formed S0 as byproduct.
Collapse
Affiliation(s)
- Chunshuang Liu
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Yanzhe Li
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Jianing Gai
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Hongzhe Niu
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Dongfeng Zhao
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Aijie Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong; College of Engineering, Tunghai University, Taichung 40770, Taiwan.
| |
Collapse
|
23
|
Kostrytsia A, Papirio S, Khodzhaev M, Morrison L, Collins G, Lens PNL, Ijaz UZ, Esposito G. Biofilm carrier type affects biogenic sulfur-driven denitrification performance and microbial community dynamics in moving-bed biofilm reactors. CHEMOSPHERE 2022; 287:131975. [PMID: 34454228 DOI: 10.1016/j.chemosphere.2021.131975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Autotrophic denitrification with biosulfur (ADBIOS) provides a sustainable technological solution for biological nitrogen removal from wastewater driven by biogenic S0, derived from biogas desulfurization. In this study, the effect of different biofilm carriers (conventional AnoxK™ 1 and Z-200 with a pre-defined maximum biofilm thickness) on ADBIOS performance and microbiomics was investigated in duplicate moving bed-biofilm reactors (MBBRs). The MBBRs were operated parallelly in continuous mode for 309 days, whilst gradually decreasing the hydraulic retention time (HRT) from 72 to 21 h, and biosulfur was either pumped in suspension (days 92-223) or supplied in powder form. Highest nitrate removal rates were approximately 225 (±11) mg/L·d and 180 (±7) mg NO3--N/L·d in the MBBRs operated with K1 and Z-200 carriers, respectively. Despite having the same protected surface area for biofilm development in each MBBR, the biomass attached onto the K1 carrier was 4.8-fold more than that on the Z-200 carrier, with part of the biogenic S0 kept in the biofilm. The microbial communities of K1 and Z-200 biofilms could also be considered similar at cDNA level in terms of abundance (R = 0.953 with p = 0.042). A relatively stable microbial community was formed on K1 carriers, while the active portion of the microbial community varied significantly over time in the MBBRs using Z-200 carriers.
Collapse
Affiliation(s)
- Anastasiia Kostrytsia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043, Cassino (FR), Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80138, Naples, Italy
| | - Murod Khodzhaev
- IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands
| | - Umer Zeeshan Ijaz
- School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, United Kingdom.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
24
|
Yánez D, Guerrero L, Borja R, Huiliñir C. Sulfur-based mixotrophic denitrification with the stoichiometric S 0/N ratio and methanol supplementation: effect of the C/N ratio on the process. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1420-1427. [PMID: 34851232 DOI: 10.1080/10934529.2021.2004839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The impact of the organic carbon to nitrate ratio (C/N ratio) on mixotrophic denitrification rate has been scarcely studied. Thus, this work aims to investigate the effect of the C/N ratio on the mixotrophic denitrification when methanol is used as a source of organic matter and elemental sulfur as an electron donor for autotrophic denitrification. For this, two initial concentrations of NO3--N (50 and 25 mg/L) at a stoichiometric ratio of S0/N, and four initial C/N ratios (0, 0.6, 1.2, and 1.9 mg CH3OH/mg NO3- -N) were used at 25 (±2) °C. The results showed that when using a C/N ratio of 0.6, the highest total nitrogen removal was obtained and the accumulation of nitrites was reduced, compared to an autotrophic system. The most significant contribution to nitrate consumption was through autotrophic denitrification (AuDeN) for a C/N ratio of 0.6 and 1.2, while for C/N = 1.9 the most significant contribution of nitrate consumption was through heterotrophic denitrification (HD). Finally, organic supplementation (methanol) served to increase the specific nitrate removal rate at high and low initial concentrations of substrate. Therefore, the best C/N ratio was 0.6 since it allowed for increasing the removal efficiency and the denitrification rate.
Collapse
Affiliation(s)
- Diana Yánez
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago, Chile
| | - Lorna Guerrero
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Rafael Borja
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Sevilla, Spain
| | - César Huiliñir
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
25
|
Wu L, Wang LK, Wei W, Song L, Ni BJ. Sulfur-driven autotrophic denitrification of nitric oxide for efficient nitrous oxide recovery. Biotechnol Bioeng 2021; 119:257-267. [PMID: 34693996 DOI: 10.1002/bit.27970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022]
Abstract
Nitrous oxide (N2 O) was previously deemed as a potent greenhouse gas but is actually an untapped energy source, which can accumulate during the microbial denitrification of nitric oxide (NO). Compared with the organic electron donor required in heterotrophic denitrification, elemental sulfur (S0 ) is a promising electron donor alternative due to its cheap cost and low biomass yield in sulfur-driven autotrophic denitrification. However, no effort has been made to test N2 O recovery from sulfur-driven denitrification of NO so far. Therefore, in this study, batch and continuous experiments were carried out to investigate the NO removal performance and N2 O recovery potential via sulfur-driven NO-based denitrification under various Fe(II)EDTA-NO concentrations. Efficient energy recovery was achieved, as up to 35.5%-40.9% of NO was converted to N2 O under various NO concentrations. N2 O recovery from Fe(II)EDTA-NO could be enhanced by the low bioavailability of sulfur and the acid environment caused by sulfur oxidation. The NO reductase (NOR) and N2 O reductase (N2 OR) were inhibited distinctively at relatively low NO levels, leading to efficient N2 O accumulation, but were suppressed irreversibly at NO level beyond 15 mM in continuous experiments. Such results indicated that the regulation of NO at a relatively low level would benefit the system stability and NO removal capacity during long-term system operation. The continuous operation of the sulfur-driven Fe(II)EDTA-NO-based denitrification reduced the overall microbial diversity but enriched several key microbial community. Thauera, Thermomonas, and Arenimonas that are able to carry out sulfur-driven autotrophic denitrification became the dominant organisms with their relative abundance increased from 25.8% to 68.3%, collectively.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Ma J, Wei J, Kong Q, Li Z, Pan J, Chen B, Qiu G, Wu H, Zhu S, Wei C. Synergy between autotrophic denitrification and Anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal. CHEMOSPHERE 2021; 280:130726. [PMID: 33964745 DOI: 10.1016/j.chemosphere.2021.130726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
On the basis of the metabolic synergy between autotrophic denitrification (AuDen) and anaerobic ammonium oxidation (Anammox), the feasibility of a novel ferrous sulfide (FeS)-driven AuDen and Anammox coupled system (FS-DADAS) was investigated. The nitrogen removal performance of FS-DADAS was investigated in a lab-scale fluidized bed bioreactor fed with synthetic wastewater containing NH4+-N and NO3--N. The results of long-term operation (120 days) demonstrated the promising performance of the system with 100% NO3--N removal and NH4+-N concentrations lower than 8.11 mg L-1 in the effluent at a nitrogen loading rate of 0.20 g-N·(L·d)-1. Sufficient NO2--N was provided by the AuDen for Anammox where a high removal rate of total nitrogen (TN) was achieved. The contribution of Anammox to TN removal was at >80%. The reactor could maintain a stable pH with less SO42- production owing to the fact that Fe(II) and S acted as electron donors. FeS gradually transformed into a sheet-like secondary mineral, FeOOH. AuDen (Thiobacillus) and Anammox bacteria (Candidatus Kuenenia) were successfully retained in the bioreactor, with relative abundance values of 18.82%-23.64% and 3.52%-8.67%, respectively. FS-DADAS is a promising technology for the complete removal of TN from wastewaters with low C/N ratios at low energy consumption.
Collapse
Affiliation(s)
- Jingde Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Jingyue Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Jianxin Pan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ben Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Shuang Zhu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
27
|
Zhang L, Qiu YY, Zhou Y, Chen GH, van Loosdrecht MCM, Jiang F. Elemental sulfur as electron donor and/or acceptor: Mechanisms, applications and perspectives for biological water and wastewater treatment. WATER RESEARCH 2021; 202:117373. [PMID: 34243051 DOI: 10.1016/j.watres.2021.117373] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Biochemical oxidation and reduction are the principle of biological water and wastewater treatment, in which electron donor and/or acceptor shall be provided. Elemental sulfur (S0) as a non-toxic and easily available material with low price, possesses both reductive and oxidative characteristics, suggesting that it is a suitable material for water and wastewater treatment. Recent advanced understanding of S0-respiring microorganisms and their metabolism further stimulated the development of S0-based technologies. As such, S0-based biotechnologies have emerged as cost-effective and attractive alternatives to conventional biological methods for water and wastewater treatment. For instance, S0-driven autotrophic denitrification substantially lower the operational cost for nitrogen removal from water and wastewater, compared to the conventional process with exogenous carbon source supplementation. The introduction of S0 can also avoid secondary pollution commonly caused by overdose of organic carbon. S0 reduction processes cost-effectively mineralize organic matter with low sludge production. Biological sulfide production using S0 as electron acceptor is also an attractive technology for metal-laden wastewater treatment, e.g. acid mine drainage. This paper outlines an overview of the fundamentals, characteristics and advances of the S0-based biotechnologies and highlights the functional S0-related microorganisms. In particular, the mechanisms of microorganisms accessing insoluble S0 and feasibility to improve S0 bio-utilization efficiency are critically discussed. Additionally, the research knowledge gaps, current process limitations, and required further developments are identified and discussed.
Collapse
Affiliation(s)
- Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Yan-Ying Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
28
|
Feng S, Jiang Z, Chen Y, Gong L, Tong Y, Zhang H, Huang X, Yang H. Simultaneous denitrification and desulfurization-S 0 recovery of wastewater in trickling filters by bioaugmentation intervention based on avoiding collapse critical points. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112834. [PMID: 34049056 DOI: 10.1016/j.jenvman.2021.112834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
In order to better achieve efficiently simultaneous desulfurization and denitrification/S0 recovery of wastewater, the intervention of sulfur oxidizing bacteria (SOB) and denitrifying bacteria (DNB) was employed to avoid the collapse critical points (the dramatically decrease of S/N removal efficiency) under the fluctuated load. With the assistance of DNB and SOB, collapse critical point of trickling filter (TF) was delayed from the P8 (105-114 d) to P10 stage (129-138 d). The treatment efficiency of nitrogen and sulfur was the highest with the S/N ratio of 3:1. The bioaugmentation of DNB and SOB at collapse critical point could effectively regulated collapse situation, which further increased the maximum system utilization/elimination capacity to 4.50 kg S m-3·h-1 and 0.90 kg N m-3·h-1 (increased by 56.89% and 65.56% in comparison to control). High-throughput sequencing analysis indicated that Proteobacteria (average 78.59%) and Bacteroidetes (average 9.30%) were dominant bacteria in the reactor at all stages. As the reaction proceeds, the microbial community was gradually dominated by some functional genera such as Chryseobacterium (average 2.97%), Halothiobacillus (average 22.71%), Rhodanobacter (average 14.02%), Thiobacillus (average 9.01%), Thiomonas (average 16.70%) and Metallibacterium (average 21.63%), which could remove nitrate or sulfide. Both of Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) demonstrated the important role of DNB/SOB during the long-term run in the trickling filters (TFs).
Collapse
Affiliation(s)
- Shoushuai Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China
| | - Zhenming Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China
| | - Yuqing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China
| | - Liangqi Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China
| | - Yanjun Tong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China.
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong, 408100, China
| | - Xing Huang
- WUXI City Environmental Technology Co., Ltd, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education. School of Biotechnology, Jiangnan University, Wuxi, 1800, Lihu Road, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, China.
| |
Collapse
|
29
|
Deng YF, Tang WT, Huang H, Qian J, Wu D, Chen GH. Development of a kinetic model to evaluate thiosulfate-driven denitrification and anammox (TDDA) process. WATER RESEARCH 2021; 198:117155. [PMID: 33915406 DOI: 10.1016/j.watres.2021.117155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Recently, the integration of sulfur-driven denitrification and anammox process has been extensively studied as a promising alternative nitrogen removal technology. Most of these studies investigated the process feasibility and monitored the community dynamics. However, an in-depth understanding of this new sulfur-nitrogen cycle bioprocess based on mathematical modeling and elucidation of complex interactions among different microorganisms has not yet been achieved. To fill this gap, we developed a kinetic model (with 7 bioprocesses, 12 variables, and 19 parameters) to assess the sulfur(thiosulfate)-driven denitrification and anammox (TDDA) process in a single reactor. The parameters used in this process were separately estimated by fitting the data obtained from the experiments. Then, the model was further validated under different conditions, and the results demonstrated that the developed model could describe the dynamic behaviors of nitrogen and sulfur conversions in the TDDA system. The newly developed branched thiosulfate oxidation model was also verified by conducting a metagenomics analysis. Using the developed model, we i) examined the interactions between sulfur-oxidizing bacteria and anammox bacteria at steady-state conditions with varying substrates to demonstrate the reliability of TDDA, and ii) evaluated the feasibility and operation of the TDDA process in terms of practical implementation. Our results will benefit further exploration of the significance of this novel S-N cycle bioprocess and guide its future applications.
Collapse
Affiliation(s)
- Yang-Fan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Wen-Tao Tang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
30
|
Carboni MF, Florentino AP, Costa RB, Zhan X, Lens PNL. Enrichment of Autotrophic Denitrifiers From Anaerobic Sludge Using Sulfurous Electron Donors. Front Microbiol 2021; 12:678323. [PMID: 34163455 PMCID: PMC8215349 DOI: 10.3389/fmicb.2021.678323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
This study compared the rates and microbial community development in batch bioassays on autotrophic denitrification using elemental sulfur (S0), pyrite (FeS2), thiosulfate (S2O3 2-), and sulfide (S2-) as electron donor. The performance of two inocula was compared: digested sludge (DS) from a wastewater treatment plant of a dairy industry and anaerobic granular sludge (GS) from a UASB reactor treating dairy wastewater. All electron donors supported the development of a microbial community with predominance of autotrophic denitrifiers during the enrichments, except for sulfide. For the first time, pyrite revealed to be a suitable substrate for the growth of autotrophic denitrifiers developing a microbial community with predominance of the genera Thiobacillus, Thioprofundum, and Ignavibacterium. Thiosulfate gave the highest denitrification rates removing 10.94 mM NO3 - day-1 and 8.98 mM NO3 - day-1 by DS and GS, respectively. This was 1.5 and 6 times faster than elemental sulfur and pyrite, respectively. Despite the highest denitrification rates observed in thiosulfate-fed enrichments, an evaluation of the most relevant parameters for a technological application revealed elemental sulfur as the best electron donor for autotrophic denitrification with a total cost of 0.38 € per m3 of wastewater treated.
Collapse
Affiliation(s)
- M. F. Carboni
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - A. P. Florentino
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - R. B. Costa
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | - X. Zhan
- Department of Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - P. N. L. Lens
- Department of Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
31
|
Qian J, Bai L, Zhang M, Chen L, Yan X, Sun R, Zhang M, Chen GH, Wu D. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system. WATER RESEARCH 2021; 190:116716. [PMID: 33290906 DOI: 10.1016/j.watres.2020.116716] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Sulfur-oxidizing bacteria (SOB) can drive a high level of autotrophic denitrification (AD) activity with thiosulfate (S2O32-) as the electron donor. However, the slow growth of SOB results in a low biomass concentration in the AD reactor and unsatisfactory biological nitrogen removal (BNR). In this study, our goal was to establish a high-rate thiosulfate-driven denitrification (TDD) system via sludge granulation. Granular sludge was successfully cultivated by increasing the nitrogen loading rate stepwise in thiosulfate-oxidizing/nitrate-reducing conditions in an upflow anaerobic blanket reactor. In the mature-granular-sludge reactor, a nitrate removal rate of 280 mg N/L/h was achieved with a nitrate removal efficiency of 97.7%±1.0% at a hydraulic retention time of only 15 minutes, with no nitrite detected in the effluent. Extracellular polymeric substance (EPS) analysis indicated that the proteins in loosely bound and tightly bound EPS were responsible for maintaining the compact structure of the TDD granular sludge. The dynamics of the microbial-community shift were identified by 16S rRNA high-throughput pyrosequencing analysis. The Sulfurimonas genus was found to be enriched at 74.1% of total community and may play the most critical role in the high-rate BNR. The batch assay results reveal that no nitrite accumulation occurred during nitrate reduction because the nitrate reduction rate (75.90±0.67 mg N/g MLVSS/h) was almost equal to the nitrite reduction rate (66.06±1.28 mg N/g MLVSS/h) in the thiosulfate-driven granular sludge reactor. The results of this study provide support for the establishment of a high-rate BNR system that maintains its stability with a low sludge yield.
Collapse
Affiliation(s)
- Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Linqin Bai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Mingkuan Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xueqian Yan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Meiting Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
32
|
Namburath M, Papirio S, Moscariello C, Di Costanzo N, Pirozzi F, Alappat BJ, Sreekrishnan TR. Effect of nickel on the comparative performance of inverse fluidized bed and continuously stirred tank reactors for biogenic sulphur-driven autotrophic denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111301. [PMID: 32866922 DOI: 10.1016/j.jenvman.2020.111301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The comparative performance of an inverse fluidized bed reactor (IFBR) having high density polyethylene beads as carrier materials for biofilm formation and a continuous stirred tank reactor (CSTR), both maintaining autotrophic denitrification using biogenic sulphur (ADBIOS) in the absence and presence of nickel (Ni2+), was studied. The reactors were compared in terms of NO3--N and NO2--N removal and SO42--S production throughout the study. A simulated wastewater with an inlet NO3--N concentration of 225 mg/L and a decreasing concentration of biogenic sulphur (bio-S) from 1.5 to 0.375 g/L was used. Both reactors were operated at a hydraulic retention time (HRT) of 48 h for 140 days and at an HRT of 42 h for the following 68 days. A more efficient ADBIOS was observed in the CSTR than IFBR throughout the study due to a better mixing of the feed wastewater in the bulk liquid and a higher availability of bio-S to the suspended cells. The NO3--N removal efficiency in the IFBR decreased by approximately 41% when the feed bio-S was reduced to 0.375 g/L, while it remained unaffected in the CSTR. Conversely, the presence of Ni2+ did not significantly affect NO3--N removal in both reactors even at a feed Ni2+ concentration of 120 mg/L. The highest NO3--N removal rates achieved were 86 and 108 mg NO3--N/(L·day) in the IFBR and CSTR, respectively, in the presence of 120 mg/L of feed Ni2+ at an HRT of 42 h. Batch studies conducted with acclimatized biomass showed that the continuous-flow operation mode in both reactors played a major role in helping the autotrophic denitrifiers to tolerate Ni2+ toxicity.
Collapse
Affiliation(s)
- Maneesh Namburath
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy; Department of Civil Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Carlo Moscariello
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Nicola Di Costanzo
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Babu J Alappat
- Department of Civil Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, 110016, New Delhi, India
| |
Collapse
|
33
|
Ma Y, Zheng X, Fang Y, Xu K, He S, Zhao M. Autotrophic denitrification in constructed wetlands: Achievements and challenges. BIORESOURCE TECHNOLOGY 2020; 318:123778. [PMID: 32736968 DOI: 10.1016/j.biortech.2020.123778] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The use of constructed wetlands for wastewater treatment is rapidly increasing worldwide due to their advantages of low operating and maintenance costs. Denitrification in constructed wetlands is dependent on the presence of organic carbon sources, and the shortage of organic carbon is the primary hurdle for nitrate removal. Therefore, the use of inorganic electronic donors has emerged as an alternative. This paper provides a comprehensive review of nitrate removal pathways using various inorganic electron donors and the performance and development of autotrophic denitrification in constructed wetlands. The main environmental parameters and operating conditions for nitrate removal in wetlands are discussed, and the challenges currently faced in the application of enhanced autotrophic denitrification wetlands are emphasized. Overall, this review illustrates the need for a deep understanding of the complex interrelationships among environmental and operational parameters and wetland substrates for improving the wastewater treatment performance of constructed wetlands.
Collapse
Affiliation(s)
- Yuhui Ma
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325600, China
| | - Yunqing Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiqin Xu
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325600, China.
| |
Collapse
|
34
|
Wu C, Qin Y, Yang L, Liu Z, Chen B, Chen L. Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and Anammox coupling system. BIORESOURCE TECHNOLOGY 2020; 316:123969. [PMID: 32795874 DOI: 10.1016/j.biortech.2020.123969] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the shock resistance and the stability of a novel sulfide-dependent autotrophic denitrification (SDAD) and anaerobic ammonium oxidation (Anammox) coupling process for simultaneous removal of sulfide and nitrogen-containing wastewater in a single reactor. Results show that the total nitrogen (TN) removal efficiency reached 86.7% at a nitrogen loading rate (NLR) of 1.52 kgN m-3 d-1. Sulfide was fully oxidized, achieving the removal efficiency of 100% throughout the whole process. Batch tests suggest that Anammox remained dominant with the cooperation of partial SDAD (PSDAD) and could always compete over short-cut SDAD (SSDAD) for nitrite. High-throughput sequencing analysis revealed that Anammox bacteria remained active despite a relatively lower abundance and diversity than denitrifying bacteria. Candidatus Kuenenia might be the main contributor to Anammox, while Thiobacillus and Sulfurimonas were closely related to SDAD.
Collapse
Affiliation(s)
- Chenglong Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Lan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhiju Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Buqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Linyi Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
35
|
Zhang W, Huang F, Hu W. Performance and mechanism of synchronous nitrate and phosphorus removal in constructed pyrite-based mixotrophic denitrification system from secondary effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36816-36825. [PMID: 32572742 DOI: 10.1007/s11356-020-09780-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The performance and process of the constructed pyrite-based mixotrophic denitrification (POMD) system using pyrite and residual organic matters as the co-electron donors were investigated for simultaneous removal of N and P from secondary effluent. After the batch experiments, 61.80 ± 3.26% of phosphate and 99.99 ± 0.01% of nitrate were removed, and the obtained nitrate removal rate constant can reach 2.09 days-1 in POMD system, which was significantly superior to that reported (0.95 day-1) in pyrite-based autotrophic denitrification (PAD) system. PO43--P removal was mainly achieved via chemical precipitation as FePO4 with iron, and it was irrelevant with the initial nitrate and ammonium concentrations. High-throughput 16S rRNA gene sequencing analysis showed the coexistence of heterotrophic and autotrophic denitrifiers in the mixotrophic environment. The denitrification process could be divided into two stages according to the carbon balance and calculation of sulfate accumulation: (a) nitrate was mainly reduced heterotrophically during 12-36 h and (b) nitrate was reduced autotrophically after 36 h. The calculated proportion of heterotrophic denitrification was 58.17 ± 3.78%, which was promoted by a higher ammonium concentration. These findings are likely to be useful in understanding the mixotrophic denitrification process and developing a cost-effective technology to simultaneously remove N and P from secondary effluent. Graphical abstract.
Collapse
Affiliation(s)
- Wen Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Fuyang Huang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Weiwu Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
- The Journal Center, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
36
|
Li J, Lou J, Lv J. The effect of sulfate on nitrite-denitrifying anaerobic methane oxidation (nitrite-DAMO) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139160. [PMID: 32417480 DOI: 10.1016/j.scitotenv.2020.139160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Sulfate is generally found in natural water and wastewater. Nitrite-DAMO bacteria live in natural water or wastewater containing different sulfates. To determine the effect of sulfate on the nitrite-DAMO process, we conducted batch tests and continuous tests to investigate the performance and microbial structure of the nitrite-DAMO system at different sulfate concentrations. The results indicated that the nitrogen removal performance of the nitrite-DAMO system was initially promoted and then inhibited at 0-200 mg SO42-/L, and the denitrification rate was highest at 80 mg SO42-/L which was 1.26 mgN/(L·d). When stimulated by sulfate, protein stabilized nitrite-DAMO bacteria. The denitrification kinetics conformed to the Edward equation, and the initial inhibitory concentration of the nitrite-DAMO system was 189.70 mg SO42-/L. Changes in the proportion of unclassfied_c_ABY1 of the phylum Patescibacteria and norank_f_LD-RB-34 of the phylum Bacteroidetes were the main factors influencing how the nitrogen removal rate of the nitrite-DAMO system responded to sulfate.
Collapse
Affiliation(s)
- Jiaping Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No. 149, Jiaogong Road, Hangzhou 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No. 149, Jiaogong Road, Hangzhou 310012, China.
| | - Jiao Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No. 149, Jiaogong Road, Hangzhou 310012, China
| |
Collapse
|
37
|
Huiliñir C, Acosta L, Yanez D, Montalvo S, Esposito G, Retamales G, Levicán G, Guerrero L. Elemental sulfur-based autotrophic denitrification in stoichiometric S 0/N ratio: Calibration and validation of a kinetic model. BIORESOURCE TECHNOLOGY 2020; 307:123229. [PMID: 32247270 DOI: 10.1016/j.biortech.2020.123229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The inclusion of S0 hydrolysis in a kinetic model of autotrophic denitrification has been recently proposed; however the model has not been calibrated or validated yet. Thus, a new methodology was developed and applied to calibrate and validate this kinetic model for the first time. An inoculum adapted from a poultry wastewater treatment plant at stoichiometric S0/NO3- ratio was used. The model was calibrated with batch data (initial nitrate concentrations of 50 and 6.25 mg NO3--N/L) at an S0/N ratio = 2.29 mg S/mg N and validated with seven different batch data. The sensitivity analysis showed that the most sensitive parameters are related to S0 hydrolysis. The kinetic model was successfully calibrated with the new methodology and validated, with Theil inequality coefficient values lower than 0.21. Thus, the proposed model and methodology were proved to be well suited for the simulation of elemental sulfur-based autotrophic denitrification in batch systems.
Collapse
Affiliation(s)
- C Huiliñir
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile.
| | - L Acosta
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - D Yanez
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - S Montalvo
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - G Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - G Retamales
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - G Levicán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - L Guerrero
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| |
Collapse
|
38
|
Xu X, Zhang R, Jiang H, Yang F. Sulphur-based autotrophic denitrification of wastewater obtained following graphite production: Long-term performance, microbial communities involved, and functional gene analysis. BIORESOURCE TECHNOLOGY 2020; 306:123117. [PMID: 32169509 DOI: 10.1016/j.biortech.2020.123117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Sulphur-based autotrophic denitrification is an energy-efficient NO3--N removal process; it does not require carbon and may potentially replace traditional denitrification processes. This process was used to treat graphite production-derived wastewater and achieved almost complete removal of NO3--N (concentration in effluent: 5.2 mg/L; concentration in influent: 606 mg/L) at a salinity of 15 g/L with a 30 h hydraulic retention time. A unique microbial community was established, in which the abundance of Thiobacillus increased with the increase of the NO3--N concentration and salinity. Metagenomic analysis revealed that the denitrification metabolic pathway in the bioreactor was active. It also revealed the increased activation of nhaH, a gene encoding Na+/H+ antiporters; proA, proB, and proC, genes encoding proline; and Trk and Kdp systems during the treatment of graphite production-derived wastewater to maintain cell function, providing valuable information about utilizing the sulphur-based autotrophic denitrification process to treat graphite production-derived wastewater.
Collapse
Affiliation(s)
- Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Rao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hongbin Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
39
|
Ucar D, Yilmaz T, Di Capua F, Esposito G, Sahinkaya E. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor (SMBR). BIORESOURCE TECHNOLOGY 2020; 299:122574. [PMID: 31865157 DOI: 10.1016/j.biortech.2019.122574] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Two sulfur-oxidizing membrane bioreactors (SMBRs) performing autotrophic denitrification at different HRTs (6-26 h), one supplemented with biogenic elemental sulfur (S0bio) and the other with chemically-synthesized elemental sulfur (S0chem), were compared in terms of nitrate reduction rates, impact on membrane filtration and microbial community composition. Complete denitrification with higher rates (up to 286 mg N-NO3-/L d) was observed in the SMBR supplemented with S0bio (SMBRbio), while nitrate was never completely reduced in the SMBR fed with S0chem (SMBRchem). Trans membrane pressure was higher for SMBRbio due to smaller particle size and colloidal properties of S0bio. Microbial communities in the two SMBRs were similar and dominated by Proteobacteria, with Pleomorphomonas and Thermomonas being the most abundant genera in both bioreactors. This study reveals that S0bio can be effectively used for nitrate removal in autotrophic denitrifying MBRs and results in higher nitrate reduction rates compared to S0chem.
Collapse
Affiliation(s)
- Deniz Ucar
- Environmental Engineering Department, Harran University, Osmanbey Campus, 63000 Sanliurfa, Turkey.
| | - Tulay Yilmaz
- Environmental Engineering Department, Harran University, Osmanbey Campus, 63000 Sanliurfa, Turkey
| | - Francesco Di Capua
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Erkan Sahinkaya
- Bioengineering Department, Istanbul Medeniyet University, Uskudar, Istanbul, Turkey
| |
Collapse
|
40
|
Wang T, Guo J, Song Y, Lian J, Li H, Lu C, Han Y, Hou Y. Efficient nitrogen removal in separate coupled-system of anammox and sulfur autotrophic denitrification with a nitrification side-branch under substrate fluctuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133929. [PMID: 31442718 DOI: 10.1016/j.scitotenv.2019.133929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
In order to achieve efficient nitrogen removal, a separate coupled-system of anaerobic ammonia oxidation (anammox) and sulfur autotrophic denitrification (S0-SADN) was established. In this study, the operational feasibility and stability of the coupled-system under substrate fluctuations were investigated. Results showed that the coupled-system improved the total nitrogen removal efficiency (TNRE) to 99.15 ± 0.68%. The tryptophan-like substances in anammox effluent positively impacted the growth of the S0-SADN biofilm. This positive cooperativity boosted the S0-SADN to achieve rapid 12-day startup and stable operation thereafter. The TNRE was determined at 95.27 ± 1.51% and 93.44 ± 0.96% under excessive nitrite and ammonium, respectively. The coupled-system recovered quickly after 21 days of starvation deterioration. To further treat the excessive ammonium, the nitrification side-branch of the coupled-system improved the TNRE to 99.08 ± 0.68%. Extracellular polymeric substances analysis revealed that the anammox and S0-SADN bacteria secreted protein-like substances to resist substrate fluctuation. Microbial community analysis indicated that the stability of bacterial community supported the stability of the coupled-system. These results collectively suggested that the separate coupled-system exhibited excellent performance and provided a platform for practical wastewater treatment in future.
Collapse
Affiliation(s)
- Tuo Wang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jianbo Guo
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China.
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Jing Lian
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang 050018, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Caicai Lu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
41
|
Abstract
A mathematical model able to simulate the physical, chemical and biological interactions prevailing in multispecies biofilms in the presence of a toxic heavy metal is presented. The free boundary value problem related to biofilm growth and evolution is governed by a nonlinear ordinary differential equation. The problem requires the integration of a system of nonlinear hyperbolic partial differential equations describing the biofilm components evolution, and a systems of semilinear parabolic partial differential equations accounting for substrates diffusion and reaction within the biofilm. In addition, a semilinear parabolic partial differential equation is introduced to describe heavy metal diffusion and sorption. The biosoption process modeling is completed by the definition and integration of other two systems of nonlinear hyperbolic partial differential equations describing the free and occupied binding sites evolution, respectively. Numerical simulations of the heterotrophic-autotrophic interaction occurring in biofilm reactors devoted to wastewater treatment are presented. The high biosorption ability of bacteria living in a mature biofilm is highlighted, as well as the toxicity effect of heavy metals on autotrophic bacteria, whose growth directly affects the nitrification performance of bioreactors.
Collapse
|
42
|
Wang Y, Sabba F, Bott C, Nerenberg R. Using kinetics and modeling to predict denitrification fluxes in elemental‐sulfur‐based biofilms. Biotechnol Bioeng 2019; 116:2698-2709. [DOI: 10.1002/bit.27094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Wang
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre Dame Notre Dame Indiana
| | - Fabrizio Sabba
- Department of Civil and Environmental EngineeringNorthwestern University Evanston Illinois
| | - Charles Bott
- Hampton Roads Sanitation District Virginia Beach Virginia
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre Dame Notre Dame Indiana
| |
Collapse
|
43
|
Chen F, Li X, Yuan Y, Huang Y. An efficient way to enhance the total nitrogen removal efficiency of the Anammox process by S 0-based short-cut autotrophic denitrification. J Environ Sci (China) 2019; 81:214-224. [PMID: 30975324 DOI: 10.1016/j.jes.2019.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
In order to reduce the amount of NO3--N generated by the Anammox process, and alleviate the competition between denitrification and Anammox for NO2--N in a single reactor, the preference of S0 for reacting with coexisting NO2--N and NO3--N in the sulfur autotrophic denitrifying (SADN) process and the coupling effect of short-cut SADN and the Anammox process were studied. The results showed that S0 preferentially reacted with NO3- to produce NO2--N, and then reacted with NO2--N when NO3--N was insufficient, which could effectively alleviate the competition between SADN bacteria (SADNB) and Anammox bacteria (AnAOB) for NO2--N. After 170 days of operation, coupling between short-cut S0-SADN and the Anammox process was first successfully achieved. SADNB converted the NO3--N generated by the Anammox process into NO2--N, which was once again available to AnAOB. The total nitrogen removal efficiency eventually stabilized at over 95%, and the effluent NO3--N was controlled within 10 mg/L, when high NH4+-N wastewater was treated by the Anammox process. Microbial community analysis further showed that Candidatus Brocadia and Thiobacillus were the functional microorganisms for AnAOB and SADNB.
Collapse
Affiliation(s)
- Fangmin Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
44
|
Li X, Yuan Y, Huang Y, Bi Z. Simultaneous removal of ammonia and nitrate by coupled S 0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:235-242. [PMID: 30677671 DOI: 10.1016/j.scitotenv.2019.01.164] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/12/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
To achieve the simultaneous removal of NH4+-N and NO3--N in F--containing semiconductor wastewater by coupled S0-driven autotrophic denitrification and Anammox process, the effect of variable F- concentration on the Anammox process was investigated by batch experiments. The denitrifying ammonium oxidation (Deamox) reactor was then started-up to explore the feasibility of the coupling of Anammox and sulfur autotrophic denitrification (SADN) for the treatment of semiconductor wastewater. Short-term variation of F- concentration has an obviously effect on the activity of Anammox sludge, but didn't affect the nitrogen conversion rate. The activity of Anammox obviously decreased after long-term operation of the Deamox reactor when influent F- concentrations reached 552 mg/L. The sensitivity of Anammox bacteria to F- concentration is stronger than that of SADN bacteria. Total nitrogen removal efficiency of 98% and total nitrogen removal rate of 4.11 kg/(m3·d) were achieved in the Deamox reactor, when the F- was pre-treated by calcium ions. Moreover, the high-throughput 16S rRNA gene sequence analysis indicated that variation in F- concentrations could influence the structure and functional of microbial communities in the Deamox process. Candidatus Kuenenia, Thiobacillus and Sulfurimonas were main functional bacteria that achieved symbiotic.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
45
|
Dreschke G, Papirio S, Sisinni DMG, Lens PNL, Esposito G. Effect of feed glucose and acetic acid on continuous biohydrogen production by Thermotoga neapolitana. BIORESOURCE TECHNOLOGY 2019; 273:416-424. [PMID: 30463055 DOI: 10.1016/j.biortech.2018.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
This study focused on the effect of feed glucose and acetic acid on biohydrogen production by Thermotoga neapolitana under continuous-flow conditions. Increasing the feed glucose concentration from 11.1 to 41.6 mM decreased the hydrogen yield from 3.6 (±0.1) to 1.4 (±0.1) mol H2/mol glucose. The hydrogen production rate concomitantly increased until 27.8 mM of feed glucose but remained unaffected when feed glucose was further raised to 41.6 mM. Increasing the acetic acid concentration from 0 to 240 mM hampered dark fermentation in batch bioassays, diminishing the cumulative hydrogen production by 45% and the hydrogen production rate by 57%, but induced no negative effect during continuous operation. Indeed, throughout the continuous flow operation the process performance improved considerably, as indicated by the 47% increase of hydrogen yield up to 3.1 (±0.1) mol H2/mol glucose on day 110 at 27.8 mM feed glucose.
Collapse
Affiliation(s)
- Gilbert Dreschke
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Désirée M G Sisinni
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy
| | - Piet N L Lens
- UNESCO - IHE Institute for Water Education, Westvest 7, 2611-AX Delft, the Netherlands
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| |
Collapse
|
46
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
47
|
Kostrytsia A, Papirio S, Morrison L, Ijaz UZ, Collins G, Lens PNL, Esposito G. Biokinetics of microbial consortia using biogenic sulfur as a novel electron donor for sustainable denitrification. BIORESOURCE TECHNOLOGY 2018; 270:359-367. [PMID: 30243243 DOI: 10.1016/j.biortech.2018.09.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
In this study, the biokinetics of autotrophic denitrification with biogenic S0 (ADBIOS) for the treatment of nitrogen pollution in wastewaters were investigated. The used biogenic S0, a by-product of gas desulfurization, was an elemental microcrystalline orthorhombic sulfur with a median size of 4.69 µm and a specific surface area of 3.38 m2/g, which made S0 particularly reactive and bioavailable. During denitritation, the biomass enriched on nitrite (NO2-) was capable of degrading up to 240 mg/l NO2--N with a denitritation activity of 339.5 mg NO2--N/g VSS·d. The use of biogenic S0 induced a low NO2--N accumulation, hindering the NO2--N negative impact on the denitrifying consortia and resulting in a specific denitrification activity of 223.0 mg NO3--N/g VSS·d. Besides Thiobacillus being the most abundant genus, Moheibacter and Thermomonas were predominantly selected for denitrification and denitritation, respectively.
Collapse
Affiliation(s)
- Anastasiia Kostrytsia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Umer Zeeshan Ijaz
- School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Piet N L Lens
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy
| |
Collapse
|
48
|
Kostrytsia A, Papirio S, Mattei MR, Frunzo L, Lens PNL, Esposito G. Sensitivity analysis for an elemental sulfur-based two-step denitrification model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1296-1303. [PMID: 30388086 DOI: 10.2166/wst.2018.398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A local sensitivity analysis was performed for a chemically synthesized elemental sulfur (S0)-based two-step denitrification model, accounting for nitrite (NO2 -) accumulation, biomass growth and S0 hydrolysis. The sensitivity analysis was aimed at verifying the model stability, understanding the model structure and individuating the model parameters to be further optimized. The mass specific area of the sulfur particles (a*) and hydrolysis kinetic constant (k1) were identified as the dominant parameters on the model outputs, i.e. nitrate (NO3 -), NO2 - and sulfate (SO4 2-) concentrations, confirming that the microbially catalyzed S0 hydrolysis is the rate-limiting step during S0-driven denitrification. Additionally, the maximum growth rates of the denitrifying biomass on NO3 - and NO2 - were detected as the most sensitive kinetic parameters.
Collapse
Affiliation(s)
- A Kostrytsia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino, FR, Italy E-mail:
| | - S Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - M R Mattei
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, 1-80126 Naples, Italy
| | - L Frunzo
- Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, 1-80126 Naples, Italy
| | - P N L Lens
- UNESCO-IHE, Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - G Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino, FR, Italy E-mail:
| |
Collapse
|