1
|
Li J, Peng X, Zeng P, Shen L, Li M, Guo Y. Removal of sulfonamides by persulfate-based advanced oxidation: A mini review. CHEMOSPHERE 2025; 370:143874. [PMID: 39638125 DOI: 10.1016/j.chemosphere.2024.143874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Sulfonamides (SAs) are known for their persistence and have become one of the most frequently detected pharmaceuticals and personal care products (PPCPs) in the environments. The widespread presence of SAs in natural waters, wastewater, soil, and sediment has prompted growing concern due to their potential threats to both human health and ecological systems. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as a promising technology for effectively mitigating the presence of these pollutants in the environment. This review offers a comprehensive overview of the degradation of SAs by PS-AOPs. The various activation methods of persulfate for the purpose of removing SAs are elaborated upon in detail. The factors influencing the removal efficiency of SAs through PS-AOPs is thoroughly discussed. Additionally, the conceivable mechanisms and degradation pathways associated with various types of SAs are discussed. Lastly, existing challenges are identified, and future prospects pertaining to the utilization of PS-AOPs for efficient SA removal are presented.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiangtian Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Shenyang University of Technology, Shenyang, 110870, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Liang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; North China Electric Power University, Beijing, 102206, China
| | - Yanfei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Madej-Knysak D, Adamek E, Baran W. Biodegradation of Photocatalytic Degradation Products of Sulfonamides: Kinetics and Identification of Intermediates. Int J Mol Sci 2024; 25:6688. [PMID: 38928394 PMCID: PMC11203959 DOI: 10.3390/ijms25126688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Sulfonamides can be effectively removed from wastewater through a photocatalytic process. However, the mineralization achieved by this method is a long-term and expensive process. The effect of shortening the photocatalytic process is the partial degradation and formation of intermediates. The purpose of this study was to evaluate the sensitivity and transformation of photocatalytic reaction intermediates in aerobic biological processes. Sulfadiazine and sulfamethoxazole solutions were used in the study, which were irradiated in the presence of a TiO2-P25 catalyst. The resulting solutions were then aerated after the addition of river water or activated sludge suspension from a commercial wastewater treatment plant. The reaction kinetics were determined and fifteen products of photocatalytic degradation of sulfonamides were identified. Most of these products were further transformed in the presence of activated sludge suspension or in water taken from the river. They may have been decomposed into other organic and inorganic compounds. The formation of biologically inactive acyl derivatives was observed in the biological process. However, compounds that are more toxic to aquatic organisms than the initial drugs can also be formed. After 28 days, the sulfamethoxazole concentration in the presence of activated sludge was reduced by 66 ± 7%. Sulfadiazine was practically non-biodegradable under the conditions used. The presented results confirm the advisability of using photocatalysis as a process preceding biodegradation.
Collapse
Affiliation(s)
| | | | - Wojciech Baran
- Department of General and Analytical Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.M.-K.); (E.A.)
| |
Collapse
|
3
|
Liang X, Lei Y, Yang X. Quantitative structure-activity relationships for the reaction kinetics of trace organic contaminants with one-electron oxidants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:192-208. [PMID: 38050900 DOI: 10.1039/d3em00329a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Understanding the reactivity between trace organic contaminants (TrOCs) and radicals involved in advanced oxidation processes (AOPs) is necessary for a good process design, but the experimentally determined rate constants (k values) are not sufficient for numerous artificial TrOCs. Thus, the development of quantitative structure-activity relationships (QSARs) for predicting k values may be an effective way to address this limitation. In this work, we developed QSARs for the reactions of TrOCs with AOP-related one-electron oxidants. Specifically, 15 QSARs using Hammett constants and 8 cross-correlations were developed based on the k values of over 400 reactions between TrOCs (most contain electron-rich moieties, such as phenol, aniline, and alkoxy benzene) and 5 one-electron oxidants (SO4˙-, Br˙, Br2˙-, Cl2˙-, and CO3˙-). Overall, the developed QSARs show a good predictive performance with 94% (237/251, for Hammett constant-based QSARs) and 80% (218/274, for cross-correlations) of the k values predicted within a factor of 3. All the Hammett constant-based QSARs show negative slope values and all cross-correlations show positive relationships, suggesting all 5 one-electron oxidants mainly share similar electrophilic mechanisms with the TrOCs highlighted in this work. Previous QSAR studies on the k values of one-electron oxidants were compared and integrated into their model analysis. Furthermore, k values predicted herein from the QSARs were used to evaluate the degradation of TrOCs during UV/persulfate and UV/chlorine treatment in multiple wastewater matrices, which were demonstrated to be useful. Finally, remarks on the use of the developed QSARs were presented.
Collapse
Affiliation(s)
- Xi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
4
|
Sharma M, Rajput D, Kumar V, Jatain I, Aminabhavi TM, Mohanakrishna G, Kumar R, Dubey KK. Photocatalytic degradation of four emerging antibiotic contaminants and toxicity assessment in wastewater: A comprehensive study. ENVIRONMENTAL RESEARCH 2023; 231:116132. [PMID: 37207734 DOI: 10.1016/j.envres.2023.116132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Excessive usage and unrestricted discharge of antibiotics in the environment lead to their accumulation in the ecosystem due to their highly stable and non-biodegradation nature. Photodegradation of four most consumed antibiotics such as amoxicillin, azithromycin, cefixime, and ciprofloxacin were studied using Cu2O-TiO2 nanotubes. Cytotoxicity evaluation of the native and transformed products was conducted on the RAW 264.7 cell lines. Photocatalyst loading (0.1-2.0 g/L), pH (5, 7 and 9), initial antibiotic load (50-1000 μg/mL) and cuprous oxide percentage (5, 10 and 20) were optimized for efficient photodegradation of antibiotics. Quenching experiments to evaluate the mechanism of photodegradation with hydroxyl and superoxide radicals were found the most reactive species of the selected antibiotics. Complete degradation of selected antibiotics was achieved in 90 min with 1.5 g/L of 10% Cu2O-TiO2 nanotubes with initial antibiotic concentration (100 μg/mL) at neutral pH of water matrix. The photocatalyst showed high chemical stability and reusability up to five consecutive cycles. Zeta potential studies confirms the high stability and activity of 10% C-TAC (Cuprous oxide doped Titanium dioxide nanotubes for Applied Catalysis) in the tested pH conditions. Photoluminescence and Electrochemical Impedance Spectroscopy data speculates that 10% C-TAC photocatalyst have efficient photoexcitation in the visible light for photodegradation of antibiotics samples. Inhibitory concentration (IC50) interpretation from the toxicity analysis of native antibiotics concluded that ciprofloxacin was the most toxic antibiotic among the selected antibiotics. Cytotoxicity percentage of transformed products showed r: -0.985, p: 0.01 (negative correlation) with the degradation percentage revealing the efficient degradation of selected antibiotics with no toxic by-products.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Indu Jatain
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
5
|
Yao W, Yong J, Lv B, Guo S, You L, Cheung PCK, Kulikouskaya VI. Enhanced In Vitro Anti-Photoaging Effect of Degraded Seaweed Polysaccharides by UV/H 2O 2 Treatment. Mar Drugs 2023; 21:430. [PMID: 37623711 PMCID: PMC10455735 DOI: 10.3390/md21080430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2O2 treatment on the physicochemical properties and anti-photoaging activity of S. fusiforme polysaccharides were studied. UV/H2O2 treatment effectively degraded polysaccharides from S. fusiforme (DSFPs), reducing their molecular weight from 271 kDa to 26 kDa after 2 h treatment. The treatment did not affect the functional groups in DSFPs but changed their molar percentage of monosaccharide composition and morphology. The effects of the treatment on the anti-photoaging function of S. fusiforme polysaccharides were investigated using human epidermal HaCaT cells in vitro. DFSPs significantly improved the cell viability and hydroxyproline secretion of UVB-irradiated HaCaT cells. In particular, DSFP-45 obtained from UV/H2O2 treatment for 45 min showed the best anti-photoaging effect. Moreover, DSFP-45 significantly increased the content and expression of collagen I and decreased those of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. Thus, UV/H2O2 treatment could effectively improve the anti-photoaging activity of S. fusiforme polysaccharides. These results provide some insights for developing novel and efficient anti-photoaging drugs or functional foods from seaweed polysaccharides.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Jiayu Yong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Bingxue Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Siyu Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (J.Y.); (B.L.); (S.G.)
- Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Viktoryia I. Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 Skaryna Str., 220141 Minsk, Belarus;
| |
Collapse
|
6
|
Agarkoti C, Chaturvedi A, Gogate PR, Pandit AB. Degradation of sulfamerazine using ultrasonic horn and pilot scale US reactor in combination with different oxidation approaches. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Degradation of the Selected Antibiotic in an Aqueous Solution by the Fenton Process: Kinetics, Products and Ecotoxicity. Int J Mol Sci 2022; 23:ijms232415676. [PMID: 36555316 PMCID: PMC9779365 DOI: 10.3390/ijms232415676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sulfonamides used in veterinary medicine can be degraded via the Fenton processes. In the premise, the process should also remove the antimicrobial activity of wastewater containing antibiotics. The kinetics of sulfathiazole degradation and identification of the degradation products were investigated in the experiments. In addition, their toxicity against Vibrio fischeri, the MARA® assay, and unselected microorganisms from a wastewater treatment plant and the river was evaluated. It was found that in the Fenton process, the sulfathiazole degradation was described by the following kinetic equation: r0 = k CSTZ-1 or 0 CFe(II)3 CH2O20 or 1 CTOC-2, where r0 is the initial reaction rate, k is the reaction rate constant, C is the concentration of sulfathiazole, Fe(II) ions, hydrogen peroxide and total organic carbon, respectively. The reaction efficiency and the useful pH range (up to pH 5) could be increased by UVa irradiation of the reaction mixture. Eighteen organic degradation products of sulfathiazole were detected and identified, and a possible degradation mechanism was proposed. An increase in the H2O2 dose, to obtain a high degree of mineralization of sulfonamide, resulted in an increase in the ecotoxicity of the post-reaction mixture.
Collapse
|
8
|
Lu Z, Ling Y, Sun W, Liu C, Mao T, Ao X, Huang T. Antibiotics degradation by UV/chlor(am)ine advanced oxidation processes: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119673. [PMID: 35760199 DOI: 10.1016/j.envpol.2022.119673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are emerging contaminants in aquatic environments which pose serious risks to the ecological environment and human health. Advanced oxidation processes (AOPs) based on ultraviolet (UV) light have good application prospects for antibiotic degradation. As new and developing UV-AOPs, UV/chlorine and derived UV/chloramine processes have attracted increasing attention due to the production of highly reactive radicals (e.g., hydroxyl radical, reactive chlorine species, and reactive nitrogen species) and also because they can provide long-lasting disinfection. In this review, the main reaction pathways of radicals formed during the UV/chlor (am)ine process are proposed. The degradation efficiency, influencing factors, generation of disinfection by-products (DBPs), and changes in toxicity that occur during antibiotic degradation by UV/chlor (am)ine are reviewed. Based on the statistics and analysis of published results, the effects caused by energy consumption, defined as electrical energy per order (EE/O), increase in the following order: UV/chlorine < UV/peroxydisulfate (PDS)< UV/H2O2 < UV/persulfate (PS) < 265 nm and 285 nm UV-LED/chlorine (EE/O). Some inherent problems that affect the UV/chlor (am)ine processes and prospects for future research are proposed. The use of UV/chlor (am)ine AOPs is a rich field of research and has promising future applications, and this review provides a theoretical basis for that.
Collapse
Affiliation(s)
- Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanchen Ling
- School of Environment, Tsinghua University, Beijing, 100084, China; Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Chaoran Liu
- Beijing Waterworks Group Co., LTD, Beijing, 100031, China
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; MW Technologies, Inc., London, Ontario, Canada
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianyin Huang
- Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
9
|
Alegbeleye O, Daramola OB, Adetunji AT, Ore OT, Ayantunji YJ, Omole RK, Ajagbe D, Adekoya SO. Efficient removal of antibiotics from water resources is a public health priority: a critical assessment of the efficacy of some remediation strategies for antibiotics in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56948-57020. [PMID: 35716301 DOI: 10.1007/s11356-022-21252-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
This review discusses the fundamental principles and mechanism of antibiotic removal from water of some commonly applied treatment techniques including chlorination, ozonation, UV-irradiation, Fenton processes, photocatalysis, electrochemical-oxidation, plasma, biochar, anaerobicdigestion, activated carbon and nanomaterials. Some experimental shortfalls identified by researchers such as certain characteristics of degradation agent applied and the strategies explored to override the identified limitations are briefly discussed. Depending on interactions of a range of factors including the type of antibiotic compound, operational parameters applied such as pH, temperature and treatment time, among other factors, all reviewed techniques can eliminate or reduce the levels of antibiotic compounds in water to varying extents. Some of the reviewed techniques such as anaerobic digestion generally require longer treatment times (up to 360, 193 and 170 days, according to some studies), while others such as photocatalysis achieved degradation within short contact time (within a minimum of 30, but up to 60, 240, 300 and 1880 minutes, in some cases). For some treatment techniques such as ozonation and Fenton, it is apparent that subjecting compounds to longer treatment times may improve elimination efficiency, whereas for some other techniques such as nanotechnology, application of longer treatment time generally meant comparatively minimal elimination efficiency. Based on the findings of experimental studies summarized, it is apparent that operational parameters such as pH and treatment time, while critical, do not exert sole or primary influence on the elimination percentage(s) achieved. Elimination efficiency achieved rather seems to be due more to the force of a combination of several factors.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | | | - Adewole Tomiwa Adetunji
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington, Western Cape, 7654, South Africa
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, P.M.B. 022, Nigeria
| | - Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | - Damilare Ajagbe
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Oklahoma, USA
| | | |
Collapse
|
10
|
Depolymerized Fractions of Sulfated Galactans Extracted from Gracilaria fisheri and Their Antibacterial Activity against Vibrio parahaemolyticus and Vibrio harveyi. Mar Drugs 2022; 20:md20080469. [PMID: 35892937 PMCID: PMC9394303 DOI: 10.3390/md20080469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Various seaweed sulfated polysaccharides have been explored for antimicrobial application. This study aimed to evaluate the antibacterial activity of the native Gracilaria fisheri sulfated galactans (NSG) and depolymerized fractions against the marine pathogenic bacteria Vibrio parahaemolyticus and Vibrio harveyi. NSG was hydrolyzed in different concentrations of H2O2 to generate sulfated galactans degraded fractions (SGF). The molecular weight, structural characteristics, and physicochemical parameters of both NSG and SGF were determined. The results revealed that the high molecular weight NSG (228.33 kDa) was significantly degraded to SGFs of 115.76, 3.79, and 3.19 kDa by hydrolysis with 0.4, 2, and 10% H2O2, respectively. The Fourier transformed spectroscopy (FTIR) and 1H− and 13C−Nuclear magnetic resonance (NMR) analyses demonstrated that the polysaccharide chain structure of SGFs was not affected by H2O2 degradation, but alterations were detected at the peak positions of some functional groups. In vitro study showed that SGFs significantly exerted a stronger antibacterial activity against V. parahaemolyticus and V. harveyi than NSG, which might be due to the low molecular weight and higher sulfation properties of SGF. SGF disrupted the bacterial cell membrane, resulting in leakage of intracellular biological components, and subsequently, cell death. Taken together, this study provides a basis for the exploitation and utilization of low-molecular-weight sulfated galactans from G. fisheri to prevent and control the shrimp pathogens.
Collapse
|
11
|
Ye C, Ma X, Deng J, Li X, Li Q, Dietrich AM. Degradation of saccharin by UV/H 2O 2 and UV/PS processes: A comparative study. CHEMOSPHERE 2022; 288:132337. [PMID: 34592214 DOI: 10.1016/j.chemosphere.2021.132337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Artificial sweeteners have raised emerging concern due to their potential threats to human health, which were frequently detected in aquatic environment with median concentrations. Although current researches have widely reported that ultraviolet light-activated persulfate process (UV/PS) was superior to UV/H2O2 process for the degradation of refractory organic contaminants, UV/H2O2 process presented a more satisfactory saccharin (SAC) removal efficiency than UV/PS process, completely degraded 20 mg/L SAC within 45 min. Hence, quenching and probe experiments were employed to investigate the difference between hydroxyl radical (OH)- and sulfate radical (SO4-)-mediated oxidation mechanisms, which revealed the higher reactivity of OH (1.37-1.56 × 109 M-1 s-1) toward SAC than SO4- (3.84-4.13 × 108 M-1 s-1). A combination of density functional theory calculation and transformation products identification disclosed that OH preferred to attack the benzene ring of SAC via hydrogen atom transfer pathway, whereas SO4- oxidation was conducive to the cleavage of -C-NH2 bond. Increasing oxidant concentration significantly accelerated SAC degradation in both processes, while UV/H2O2 process consumed lower electrical energy with respect to UV/PS process. Additionally, UV/H2O2 system presented excellent adaptability and stability under various water matrices parameters (e.g. pH, anions and humic acid). While both UV/H2O2 and UV/PS processes promoted the generation of disinfection by-products (DBPs) during subsequent chlorination, and prolonging pretreatment time posed positive effect on reducing the formation of DBPs. Overall, the results clearly demonstrate the high efficiency, economy and practicality of UV/H2O2 process in the remediation of SAC-contaminated water.
Collapse
Affiliation(s)
- Cheng Ye
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China
| | - Andrea M Dietrich
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
12
|
Pai CW, Wang GS. Treatment of PPCPs and disinfection by-product formation in drinking water through advanced oxidation processes: Comparison of UV, UV/Chlorine, and UV/H 2O 2. CHEMOSPHERE 2022; 287:132171. [PMID: 34537457 DOI: 10.1016/j.chemosphere.2021.132171] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 05/20/2023]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in water is concerning because of their potential threat to ecosystems and human health. Studies have indicated that these emerging contaminants cannot be effectively removed through conventional water treatment. In this study, the efficacy of various treatments - chlorination, ultraviolet (UV), UV/Chlorine, and UV/H2O2 processes - in PPCP removal from water was compared. The effects of reaction time, oxidant concentration, pH, and water matrix and the generation of disinfection by-products (DBPs) were also assessed. The removal of PPCPs was discovered to be superior when the concentration of oxidants was higher. In addition, pH affected the reactivity of chlorine with some of the investigated chemicals. Chorine itself plays a minor role in the UV/Chlorine process because it serves as a reactant for the generation of free radicals rather than oxidants. Matrix had a weak effect on the removal of PPCPs in the various treatment processes (mostly within 10%). UV could not effectively remove acetylsalicylic acid, ibuprofen, benzophenone, oxybenzone, caffeine, N,N-diethyl-meta-toluamide, or most estrogens. When chlorine or hydrogen peroxide (H2O2) was used with UV, the efficiency of removal of all selected PPCPs was greatly improved (≥56.5% for UV/Chlorine and ≥27.6% for UV/H2O2) within 5 min. Although the PPCP removal efficiency of UV/Chlorine was higher than that of UV/H2O2, UV/H2O2 resulted in smaller amounts of DBP formation in the treated water. By contrast, UV/Chlorine resulted in higher concentrations of trihalomethanes (21.6%), haloacetonitriles (29.4%), and haloketones (147.2%).
Collapse
Affiliation(s)
- Chih-Wei Pai
- Institute of Environmental and Occupational Health Science, National Taiwan University, Taiwan
| | - Gen-Shuh Wang
- Institute of Environmental and Occupational Health Science, National Taiwan University, Taiwan; Institute of Food Safety and Health, National Taiwan University, Taiwan.
| |
Collapse
|
13
|
Zhao Q, Zhang X, Huang D, Chen L, Li S, Chovelon JM, Zhou L, Xiu G. Cu(II) assisted peroxymonosulfate oxidation of sulfonamide antibiotics: The involvement of Cu(III). CHEMOSPHERE 2021; 284:131329. [PMID: 34198061 DOI: 10.1016/j.chemosphere.2021.131329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Cu(II) is generally considered to be a poor activator for PMS decomposition, thus the potential impact of trace Cu(II) on PMS induced oxidation of typical pollutants is always overlooked. In this study, we reported that trace Cu(II) could significantly promote PMS induced degradation of four selected sulfonamide antibiotics (SAs), namely, sulfamehoxazole (SMX), sulfathiazole (STZ), sulfamerazine (SMZ), and sulfamonomethoxine (SMM). Different from conventional PMS-induced oxidation process, high-valent Cu(III) was ascertained as the primary reactive intermediate for SAs degradation, which was confirmed by raman tests and electron paramagnetic resonance (EPR). High concentrations of Cu(II) or PMS were beneficial to degradation of the selected contaminants. In PMS/Cu(II) oxidation system, all the selected SAs could undergo several different degradation pathways including continuous oxidation of aniline group, hydroxylation and S-N bond cleavage. In particular, for six-membered SAs, such as SMZ and SMM, a SO2 extrusion pathway was also detected. The potential mechanism for Cu(III) formation was also proposed, which was believed to be highly related to the nature of the SAs. Hydroxylamine-SAs (N4-OH-SAs), generated from direct PMS oxidation of SAs, was deduced as the "promoter" for the whole oxidation process. And the generation of Cu(III) was likely to proceed through the interaction between PMS and Cu(I), which possibly derived from the reduction of Cu(II) by N4-OH-SAs. The results obtained in this study validated the contribution of Cu(III) to the elimination of pollutants and expanded our understanding of the oxidation process of PMS in the presence of trace amounts of Cu(II).
Collapse
Affiliation(s)
- Qing Zhao
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiao Zhang
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dezhi Huang
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Long Chen
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuxin Li
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Lei Zhou
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
14
|
Li J, Zhao L, Feng M, Huang CH, Sun P. Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: A critical review. WATER RESEARCH 2021; 202:117463. [PMID: 34358906 DOI: 10.1016/j.watres.2021.117463] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Sulfonamides (SAs) are among the most widely used antibiotics to treat bacterial infections for humans and animals. They are also used in livestock agriculture to improve growth and feed efficiency in many countries. Recent years, there is a growing concern about the environmental fate and treatment technologies of SAs, in order to eliminate their potential impact on the ecosystem and human health. Additionally, SAs are frequently used as model compounds to evaluate the performance of newly developed advanced water treatment processes. Hence, understanding the chemical reaction features of SAs can provide valuable information for further technological development. In this review, the reaction kinetics, abiotic transformations and corresponding ecotoxicity changes of SAs in natural environments and water treatment processes were comprehensively analyzed to draw critical suggestion and new insights. The •OH-based AOP is proposed as an effective method for the elimination of SAs toxicity, although it is susceptible to water constituent due to low selectivity. The application of biochar or metal-based oxidants in AOPs is becoming a future trend for SA treatment. Overall, this review would provide useful information for the development of advanced water treatment technologies and the control of ecological risks related to SAs.
Collapse
Affiliation(s)
- Jingchen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Chen X, You L, Ma Y, Zhao Z, Kulikouskaya V. Influence of UV/H 2O 2 treatment on polysaccharides from Sargassum fusiforme: Physicochemical properties and RAW 264.7 cells responses. Food Chem Toxicol 2021; 153:112246. [PMID: 33940104 DOI: 10.1016/j.fct.2021.112246] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
There are few studies on seaweed polysaccharides with UV/H2O2 treatment, so the aim of this study was to evaluate the effects of UV/H2O2 treatment on physicochemical properties and RAW 264.7 cells responses of polysaccharides from Sargassum fusiforme (PSF). Results showed that the contents of reducing sugar and sulfate in PSF with UV/H2O2 treatment for 2 h increased by 202.86% and 31.77%, respectively, and the contents of total sugar, protein and uronic acid decreased by 14.29%, 57.11% and 43.18% compared with those of original polysaccharides. In addition, UV/H2O2 treatment did not change the monosaccharide types of original polysaccharides, but it could change its monosaccharide composition and surface morphology. Besides, polysaccharides after UV/H2O2 treatment for 0.5-2 h had lower toxicity than original polysaccharides in RAW 264.7 cells. Typically, PSF with UV/H2O2 treatment for 2 h (PSF-T2) could effectively inhibit pro-inflammatory molecules production (including NO, IL-1β, IL-6 and TNF-α), and down-regulate related genes expression (including Tlr4, Irak, Il-1β, Il-6, Il-12 and Tnf-α). Therefore, UV/H2O2 treatment is a potential way to prepare polysaccharide with better anti-inflammatory activity.
Collapse
Affiliation(s)
- Xiaoyong Chen
- School of Food Science and Engineering, South China University of Technology, Guang Zhou, 510640, China; Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guang Zhou, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guang Zhou, 510640, China; Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guang Zhou, China.
| | - Yongxuan Ma
- Guangzhou Liheng Clinical Nutrition Co. Ltd., Guangzhou, 510610, Guangdong, China
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guang Zhou, 510640, China; Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center), Guang Zhou, China
| | - Viktoryia Kulikouskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus. 36F. Skaryna str., Minsk, 220141, Belarus
| |
Collapse
|
16
|
Simultaneous Disinfection and Organic Microcontaminant Removal by UVC-LED-Driven Advanced Oxidation Processes. WATER 2021. [DOI: 10.3390/w13111507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work presents the comparison of four advanced oxidation processes driven by UVC-LED radiation (278 nm—2 W/m2) for simultaneous bacteria inactivation (Escherichia coli—106 CFU/mL) and microcontaminant removal (imidacloprid—50 µg/L) in simulated wastewater secondary effluent. To this end, the activation of H2O2 and S2O82− as precursors of HO• and SO4•−, respectively, by UVC-LED and UVC-LED/Fe3+–NTA (ferric nitrilotriacetate at 0.1 mM) has been studied at different oxidant concentrations. For the purpose of comparison, conventional chlorination was used as the baseline along with bacterial regrowth 24 h after treatment. Disinfection was achieved within the first 30 min in all of the processes, mainly due to the bactericidal effect of UVC-LED radiation. UVC-LED/H2O2 did not substantially affect imidacloprid removal due to the low HO• generation by UVC irradiation at 278 nm, while more than 80% imidacloprid removal was achieved by the UVC-LED/S2O82−, UVC-LED/Fe3+–NTA/S2O82−, and UVC-LED/Fe3+–NTA/H2O2 processes. The most efficient concentration of both oxidants for the simultaneous disinfection and microcontaminant removal was 1.47 mM. Chlorination was the most effective treatment for bacterial inactivation without imidacloprid removal. These findings are relevant for scaling up UVC-LED photoreactors for tertiary wastewater treatment aimed at removing bacteria and microcontaminants.
Collapse
|
17
|
Zhang C, Tian S, Qin F, Yu Y, Huang D, Duan A, Zhou C, Yang Y, Wang W, Zhou Y, Luo H. Catalyst-free activation of permanganate under visible light irradiation for sulfamethazine degradation: Experiments and theoretical calculation. WATER RESEARCH 2021; 194:116915. [PMID: 33607387 DOI: 10.1016/j.watres.2021.116915] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
In this study, visible light (VL) was adopted for permanganate (PM) activation without additional catalyst, where sulfamethazine (SMT) was selected as the probe compound. Experiment results showed that the VL/PM system can effectively degrade SMT through pseudo-first-order reaction kinetics. Influencing factors including PM dosage, solution pH, humid acid (HA) and coexisting anions (CO32-, SO42-, Cl- and NO3-) which affect SMT photo-degradation were also examined. Pyrophosphate (PP) had an inhibitory effect on SMT degradation due to the complexation of PP with Mn (III). Electron spin resonance (ESR) spectrometry and UV-Vis spectrophotometer proved that VL can activate PM to generate ·O2- and Mn (III) reactive species. Furthermore, based on the active site prediction, intermediates identification and Density Functional Theory (DFT) calculation, two main degradation pathways involving SMT molecular rearrangement and cleavage of S-N bond were proposed. Moreover, the energy barriers of the two degradation pathways were also calculated. This study offers a novel approach for aqueous SMT removal and deepens our understanding of the degradation mechanism of SMT through DFT calculation, which hopes to shed light on the future development of VL/PM treatment.
Collapse
Affiliation(s)
- Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China.
| | - Suhong Tian
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China
| | - Fanzhi Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China
| | - Yali Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China.
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China.
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
18
|
Li K, Tang J, He Y, Guo J, Li L. Theoretical study on the adsorption and catalytic degradation mechanism of sulfacetamide on anatase TiO 2(001) and (101) surfaces. NEW J CHEM 2021. [DOI: 10.1039/d0nj05460g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the adsorption of sulfacetamide on anatase titanium dioxide (001) and (101) was studied. The mechanism of six degradation pathways of sulfacetamide was discussed.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
| | - Jing Tang
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
- College of Pharmacy
- Southwestern Medical University
| | - Yang He
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
- College of Pharmacy
- Southwestern Medical University
| | - Jianmin Guo
- College of Basic Medical, Southwestern Medical University
- Luzhou
- China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University
- Chengdu
- China
| |
Collapse
|
19
|
El-Azazy M, El-Shafie AS, Al-Meer S, Al-Saad KA. Eco-structured Adsorptive Removal of Tigecycline from Wastewater: Date Pits' Biochar versus the Magnetic Biochar. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E30. [PMID: 33374367 PMCID: PMC7824686 DOI: 10.3390/nano11010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Non-magnetic and magnetic low-cost biochar (BC) from date pits (DP) were applied to remove tigecycline (TIGC) from TIGC-artificially contaminated water samples. Pristine biochar from DP (BCDP) and magnetite-decorated biochar (MBC-DP) were therefore prepared. Morphologies and surface chemistries of BCDP and MBC-DP were explored using FT-IR, Raman, SEM, EDX, TEM, and BET analyses. The obtained IR and Raman spectra confirmed the presence of magnetite on the surface of the MBC-DP. SEM results showed mesoporous surface for both adsorbents. BET analysis indicated higher amount of mesopores in MBC-DP. Box-Behnken (BB) design was utilized to optimize the treatment variables (pH, dose of the adsorbent (AD), concentration of TIGC [TIGC], and the contact time (CT)) and maximize the adsorptive power of both adsorbents. Higher % removal (%R), hitting 99.91%, was observed using MBC-DP compared to BCDP (77.31%). Maximum removal of TIGC (99.91%) was obtained using 120 mg/15 mL of MBC-DP for 10 min at pH 10. Equilibrium studies showed that Langmuir and Freundlich isotherms could best describe the adsorption of TIGC onto BCDP and MBC-DP, respectively, with a maximum adsorption capacity (qmax) of 57.14 mg/g using MBC-DP. Kinetics investigation showed that adsorption of TIGC onto both adsorbents could be best-fitted to a pseudo-second-order (PSO) model.
Collapse
Affiliation(s)
- Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; (A.S.E.-S.); (S.A.-M.); (K.A.A.-S.)
| | | | | | | |
Collapse
|
20
|
Wang AM, Wu CH, Huang EH. Removal of sulfamethizole from aqueous solution using advanced oxidation processes: effects of pH and salinity. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2425-2431. [PMID: 33339796 DOI: 10.2166/wst.2020.503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigates the removal of sulfamethizole (SFZ) in ozone (O3), O3/Na2S2O8 (sodium persulfate), UV/Na2S2O8, UV/O3, and UV/O3/Na2S2O8 systems. The effects of pH and salinity on SFZ mineralization were evaluated. The mineralization of SFZ followed pseudo-first-order kinetics. At pH 5, the rate constants of SFZ mineralization in O3, O3/Na2S2O8, UV/Na2S2O8, UV/O3, and UV/O3/Na2S2O8 systems were 0.576, 0.924, 0.702, 1.26, and 5.21 h-1, respectively. The SFZ mineralization rate followed the order pH 5 > pH 7 > pH 9 in all tested advanced oxidation processes. Salinity increased the rate of SFZ mineralization in O3 and O3/Na2S2O8 systems and decelerated it in UV/Na2S2O8, UV/O3, and UV/O3/Na2S2O8 systems. UV/O3/Na2S2O8 was the best system for mineralizing SFZ, and sulfate radicals were the predominant species in UV/O3/Na2S2O8.
Collapse
Affiliation(s)
- A M Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung, Taiwan E-mail:
| | - C H Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung, Taiwan E-mail:
| | - E H Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung, Taiwan E-mail:
| |
Collapse
|
21
|
Wu M, Tang Y, Liu Q, Tan Z, Wang M, Xu B, Xia S, Mao S, Gao N. Highly efficient chloramphenicol degradation by UV and UV/H 2 O 2 processes based on LED light source. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:2049-2059. [PMID: 32474955 DOI: 10.1002/wer.1365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, UV-LED was employed as a novel light source to investigate the degradation of a representative antibiotic compound, chloramphenicol (CAP), in the absence or presence of H2 O2 . The UV-LED irradiation showed a higher capability for degradation of CAP than conventional UV-Hg vapor lamps. Effects of the initial CAP concentration, UV wavelength, and light intensity on the degradation of CAP by UV-LED were evaluated. Introduction of H2 O2 evidently enhanced the degradation efficiency of CAP due to the production of reactive hydroxyl radicals. Results showed that the UV-LED/H2 O2 removed CAP by up to 95% within 60 min at pH 5.0, which was twice as that achieved by the UV-LED alone. The degradation products were identified to propose plausible degradation pathways. Moreover, the formation potentials of typical carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs) were assessed for the CAP polluted water treated by the UV-LED alone and UV-LED/H2 O2 processes. Results indicate unintended formation of certain DBPs, thereby highlighting the importance of health risk assessments before practical application. This study opens a new avenue for developing environment-friendly and high-performance UV-LED photocatalytic reactors for abatement of CAP pollution in water. PRACTITIONER POINTS: UV-LED bore higher capability to degrade CAP than low-pressure Hg lamp. The optimal performance to degrade CAP can be achieved at the UV wavelength of 280 nm. The degradation efficiency under UV-LED/H2 O2 process was double of that under UV-LED process. TCM, DCAN, and TCNM formation were higher under the existence of UV-LED radiation. The addition of H2 O2 had greater influence on the formation of DCAcAm than the introduction of UV-LED.
Collapse
Affiliation(s)
- Mengyi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
| | - Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qianhong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
| | - Zhenjiao Tan
- Wuxi Public Utilities Environment Testing Research Institute Co. Ltd., Wuxi, China
| | - Mu Wang
- Wuxi Public Utilities Environment Testing Research Institute Co. Ltd., Wuxi, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Liu Y, Zhu K, Zhu H, Zhao M, Huang L, Dong B, Liu Q. Photooxidation of atrazine and its influence on disinfection byproducts formation during post-chlorination: effect of solution pH and mechanism. Sci Rep 2020; 10:20355. [PMID: 33230215 PMCID: PMC7684306 DOI: 10.1038/s41598-020-77006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Partial photooxidation of micropollutants may lead to various degradation intermediates, obviously affecting disinfection byproducts (DBPs) formation during the post-chlorination process. The photooxidation of atrazine (ATZ) in aqueous solutions with low-pressure mercury UV lamps in UV, UV/H2O2 and UV/TiO2 treatment system and the formation of chlorinated disinfection byproducts (DBPs) during subsequent chlorination processes including dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), 1,1,1-trichloro-2-propanone (TCP), trichloromethane (TCM) and chloropicrin (CHP) were investigated in this study. The effect of solution pH on the oxidation pathway of ATZ in three UV photooxidation treatment process and the impact of photooxidation on the DBPs formations were assessed. Based on UPLC-ESI-MS/MS analyses, identification of main oxidation intermediates was performed and the plausible degradation pathways of ATZ in photooxidation system were proposed, indicating that photooxidation of ATZ in UV/H2O2 and UV/TiO2 process system was significantly pH-dependent processes. Dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), 1,1,1-trichloro-2-propanone (TCP), trichloromethane (TCM) and chloropicrin (CHP) were detected in photooxidized ATZ solutions. Compared to the other three DBPs, TCM and TCP were the main DBPs formed. The DBPs formations were greatly promoted in oxidized ATZ solutions. Solution pH and UV irradiation time exhibited obvious impact on the DBPs formation on the basis of DBP species. The variation tendency of DBPs observed relates to the combustion of ATZ in photooxidation system and the production oxidation intermediates.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Kai Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China.
| | - Huayu Zhu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
| | - Min Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China
| | - Lihua Huang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China
| | - Bin Dong
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China
| | - Qianjin Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276000, China.
| |
Collapse
|
23
|
Rodríguez-Blanco LAJ, Ocampo-Pérez R, Gómez-Durán CFA, Mojica-Sánchez JP, Razo-Hernández RS. Removal of sulfamethoxazole, sulfadiazine, and sulfamethazine by UV radiation and HO • and SO 4•- radicals using a response surface model and DFT calculations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41609-41622. [PMID: 32691321 DOI: 10.1007/s11356-020-10071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, the degradation of sulfamethazine (SMT), sulfadiazine (SMD), and sulfamethoxazole (SMX) by using UV light, UV/H2O2, and UV/S2O8-2 was analyzed. Direct photolysis was studied by varying the lamp power and the solution pH. DFT calculations were carried out to corroborate the efficiency of the degradation as a function of the solution pH. The variation of the apparent rate constant, kap, was determined in the indirect photolysis by employing an experimental Box-Behnken-type response surface design. The results evidenced that SMX can be efficiently degraded by applying UV radiation independent of the operating conditions. Nevertheless, the quantum yields for SMT and SMD were close to zero, indicating a low energy efficiency for their photochemical transformation. The effect of the solution pH showed that the photodegradation of sulfonamides depends both on the amount of radiation absorbed as the electronic density. Calculations based on density functional theory and supported by the quantum theory of atoms in molecules allowed to describe fragmentation patterns in the systems under study, proving the lability of S14-C2, N17-C18, and N22-O22 bonds, for SMT, SMD, and SMX, respectively. From response surface methodology, four statistically reliable equations were obtained to determine the kap value as a function of the system operating conditions. Finally, SO4•- radicals proved to have a higher reactivity to degrade SMT and SMD compared with HO• radicals regardless of the operating conditions of the system.
Collapse
Affiliation(s)
- Luis A J Rodríguez-Blanco
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico.
| | - Cesar F A Gómez-Durán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Juan P Mojica-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico José Mario Molina Pasquel y Henríquez Campus Tamazula de Gordiano, Carretera Tamazula-Santa Rosa No. 329, 49650, Tamazula de Gordiano, Jalisco, Mexico
| | - Rodrigo S Razo-Hernández
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209, Cuernavaca, Mexico
| |
Collapse
|
24
|
Han X, Jiang T, Chen X, Jiang D, Xie K, Jiang Y, Wang Y. Electrolyte additive induced fast-charge/slow-discharge process: Potassium ferricyanide and potassium persulfate for CoO-based supercapacitors. J Colloid Interface Sci 2020; 576:505-513. [PMID: 32512403 DOI: 10.1016/j.jcis.2020.05.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
Abstract
The electrolyte additives of potassium ferricyanide and potassium persulfate can ensure that CoO-supercapacitors achieve a fast charge/slow discharge and long cycling stability. The redox couple of Fe(CN)63-/Fe(CN)64- can induce S2O82- to produce the sulfate radical ( [Formula: see text] ). Strong oxidizing species, including S2O82-, Fe(CN)63- and [Formula: see text] , can accelerate oxidation of the CoO electrode surface from Co2+ to Co3+ in the charge process. The additives can achieve a good synergistic effect on accelerating CoO oxidation during the charge process. In a three-electrode cell, a CoO electrode with electrolyte additives achieves a fast-charge and slow-discharge time of 939 s and 1699 s at a current density of 1 A g-1, respectively. The capacitance retention can be maintained at 84.5% after 10,000 cycles at a current density of 5 A g-1. As a supercapacitor, the device can achieve a fast-charge and slow-discharge time of 156 s and 191 s at a current density of 1 A g-1, respectively. The capacitance retention can be maintained at 85.5% after 10,000 cycles at a current density of 5 A g-1.
Collapse
Affiliation(s)
- Xuanxuan Han
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tao Jiang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xing Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Demin Jiang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Kun Xie
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqiao Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
25
|
Abstract
Heterogeneous photocatalysts for water decontamination were obtained by the optimized synthesis of bismuth-functionalized reduced graphene oxide (rGO/Bi) using the Hummer method and microwave treatment. Sulfamethazine (SMZ) was used as model pollutant to evaluate the photocatalytic efficacy. Photocatalysts were characterized by VP-SEM, HRTEM, XDR, XPS, RAMAN, and FTIR analyses, which confirmed the effective reduction of GO to rGO and the presence of bismuth as a crystalline phase of Bi2O3 polydispersed on the surface. Their performance was influenced by the rGO/Bi ratio, microwave temperature, and treatment time. The as-obtained 5%rGO/Bi composite had the highest photocatalytic activity for SMZ degradation under visible light irradiation (λ > 400 nm), achieving 100% degradation after only 2 h of treatment. The degradation yield decreased with higher percentages of rGO. Accordingly, the rGO/Bi catalysts efficiently removed SMZ, showing a high photocatalytic activity, and remained unchanged after three treatment cycles; furthermore, cytotoxicity tests demonstrated the nontoxicity of the aqueous medium after SMZ degradation. These findings support the potential value of these novel composites as photocatalysts to selectively remove pollutants in water treatment plants.
Collapse
|
26
|
Sun S, Yao H, Fu W, Xue S, Zhang W. Enhanced degradation of antibiotics by photo-fenton reactive membrane filtration. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121955. [PMID: 31887563 DOI: 10.1016/j.jhazmat.2019.121955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/26/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Micropollution such as pharmaceutical residuals potentially compromises water quality and jeopardizes human health. This study evaluated the photo-Fenton ceramic membrane filtration toward the removal of sulfadiazine (SDZ) as a common antibiotic chemical. The batch experiments verified that the photo-Fenton reactions with as Goethite (α-FeOOH) as the photo-Fenton catalyst achieved the degradation rates of 100% within 60 min with an initial SDZ concentration of 12 mg·L-1. Meanwhile, a mineralization rate of over 80% was obtained. In continuous filtration, a negligible removal rate (e.g., 4%) of SDZ was obtained when only filtering the feed solution with uncoated or catalyst-coated membranes. However, under Ultraviolet (UV) irradiation, both the removal rates of SDZ were significantly increased to 70% (no H2O2) and 99% (with H2O2), respectively, confirming the active degradation by the photo-Fenton reactions. The highest apparent quantum yield (AQY) reached up to approximately 25% when the UV254 intensity was 100 μW·cm-2 and H2O2 was 10 mmol·L-1. Moreover, the photo-Fenton reaction was shown to effectively mitigate fouling and prevent flux decline. This study demonstrated synchronization of photo-Fenton reactions and membrane filtration to enhance micropollutant degradation. The findings are also important for rationale design and operation of photo-Fenton or photocatalytic membrane filtration systems.
Collapse
Affiliation(s)
- Shaobin Sun
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of municipal and environmental Engineering, School of civil engineering, Beijing Jiaotong University, Beijing, 100044, PR China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of municipal and environmental Engineering, School of civil engineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| | - Wanyi Fu
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 07102, the US
| | - Shan Xue
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 07102, the US
| | - Wen Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China; John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 07102, the US
| |
Collapse
|
27
|
Fernández-Perales M, Sánchez-Polo M, Rozalen M, López-Ramón MV, Mota AJ, Rivera-Utrilla J. Degradation of the diuretic hydrochlorothiazide by UV/Solar radiation assisted oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109973. [PMID: 31868639 DOI: 10.1016/j.jenvman.2019.109973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to analyse the effectiveness of advanced oxidation processes (AOPs) with Solar and UV radiation (UV/H2O2, UV/K2S2O8) for the degradation of hydrochlorothiazide (HCTZ), a widely used diuretic drug, in aqueous solution focusing on the influence of four experimental parameters: initial concentration of HCTZ, solution pH, nature of the water matrix, and initial concentration of radicals. The obtained results showed that using both kinds of direct photolysis (UV and Solar), the percentage of degraded HCTZ was low, but there was a decrease in the degradation rate favored by the increase of the initial concentration of this pollutant. In addition, the degradation rates were higher at acid pHs. With regard to the nature of water, the degradation rate varied in the order: ultrapure > superficial > tap water. This is due to the presence of organic and inorganic matter (bicarbonates, nitrates, and chlorides) in surface and tap water, that react with the radicals generated, which reduces the availability of radical species, generating competitive kinetics. The presence of radical-promoter species increased the degradation rate of the pollutant, reaching a degradation of 100% of HCTZ after 20 min of treatment. The results obtained point out that the degradation rate was higher in the presence of HO radicals. This behavior was attributed to the higher oxidation power of HO versus radicals. The determination of the degradation by-products led to structures very similar to the parent compound. For example, the corresponding hydroxylated dechlorinated derivative of HCTZ was found in all the systems used. The cytotoxicity test showed that these byproducts have a lower toxicity than the original product. Finally, the economic viability study confirmed that the UV/K2S2O8 system has the lowest cost.
Collapse
Affiliation(s)
- M Fernández-Perales
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - M Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain.
| | - M Rozalen
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - M V López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaén, 23071, Jaén, Spain.
| | - A J Mota
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - J Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain
| |
Collapse
|
28
|
Degradation of polysaccharides from Sargassum fusiforme using UV/H2O2 and its effects on structural characteristics. Carbohydr Polym 2020; 230:115647. [DOI: 10.1016/j.carbpol.2019.115647] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
|
29
|
Sun S, Yao H, Li X, Deng S, Zhao S, Zhang W. Enhanced Degradation of Sulfamethoxazole (SMX) in Toilet Wastewater by Photo-Fenton Reactive Membrane Filtration. NANOMATERIALS 2020; 10:nano10010180. [PMID: 31968619 PMCID: PMC7023487 DOI: 10.3390/nano10010180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 11/16/2022]
Abstract
Pharmaceutical residuals are increasingly detected in natural waters, which made great threat to the health of the public. This study evaluated the utility of the photo-Fenton ceramic membrane filtration toward the removal and degradation of sulfamethoxazole (SMX) as a model recalcitrant micropollutant. The photo-Fenton catalyst Goethite (α-FeOOH) was coated on planar ceramic membranes as we reported previously. The removal of SMX in both simulated and real toilet wastewater were assessed by filtering the feed solutions with/without H2O2 and UV irradiation. The SMX degradation rate reached 87% and 92% respectively in the presence of UV/H2O2 for the original toilet wastewater (0.8 ± 0.05 ppb) and toilet wastewater with a spiked SMX concentration of 100 ppb. The mineralization and degradation by-products were both assessed under different degradation conditions to achieve deeper insight into the degradation mechanisms during this photo-Fenton reactive membrane filtration. Results showed that a negligible removal rate (e.g., 3%) of SMX was obtained when only filtering the feed solution through uncoated or catalyst-coated membranes. However, the removal rates of SMX were significantly increased to 67% (no H2O2) and 90% (with H2O2) under UV irradiation, respectively, confirming that photo-Fenton reactions played the key role in the degradation/mineralization process. The highest apparent quantum yield (AQY) reached up to approximately 27% when the H2O2 was 10 mmol·L−1 and UV254 intensity was 100 μW·cm−2. This study lays the groundwork for reactive membrane filtration to tackle the issues from micropollution.
Collapse
Affiliation(s)
- Shaobin Sun
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; (S.S.); (X.L.); (S.D.); (S.Z.); (W.Z.)
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; (S.S.); (X.L.); (S.D.); (S.Z.); (W.Z.)
- Correspondence:
| | - Xinyang Li
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; (S.S.); (X.L.); (S.D.); (S.Z.); (W.Z.)
| | - Shihai Deng
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; (S.S.); (X.L.); (S.D.); (S.Z.); (W.Z.)
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Shenlong Zhao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; (S.S.); (X.L.); (S.D.); (S.Z.); (W.Z.)
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney 2006, Australia
| | - Wen Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; (S.S.); (X.L.); (S.D.); (S.Z.); (W.Z.)
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
30
|
Soares Rodrigues Costa B, Pontes do Nascimento L, Vítor de Paiva Amorim M, Barreto Gomes AP, Mafra Veríssimo L. Stability of extemporaneous sulfadiazine oral suspensions from commercially available tablets for treatment of congenital toxoplasmosis. Trop Med Int Health 2019; 25:364-372. [PMID: 31802579 DOI: 10.1111/tmi.13354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To determine the physicochemical and microbiological stability of sulfadiazine suspensions (100 mg/mL) in simple syrup (A) and sorbitol (B) formulations prepared from commercially available tablets. METHODS An ultra-performance liquid chromatographic assay was developed and validated to determine the chemical stability of sulfadiazine. Three samples were prepared and stored at 5 and 25 °C and assayed at 0, 7, 14 and 30 days. Physical parameters (appearance, pH, particle size and viscosity) were also monitored. Microbiological examination was performed through the suitable counting method. RESULTS The formulations presented a sulfadiazine concentration of around 95% at the beginning at both temperatures. There was some variation in pH, viscosity and particle size distribution over time. The samples met the pharmacopoeia criteria of microbiological quality over 30 days, but only sulfadiazine formulated in syrup stored at 25 °C was suitable for use after one week. CONCLUSION The sulfadiazine suspension in simple syrup was chosen as the most suitable formulation because it demonstrated stability for 14 days at room temperature, providing an alternative liquid dosage form of sulfadiazine for congenital toxoplasmosis treatment.
Collapse
Affiliation(s)
- Brunna Soares Rodrigues Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brasil.,Núcleo de Pesquisa em Alimentos e Medicamentos, Universidade Federal do Rio Grande do Norte, Natal, Brasil
| | | | | | - Ana Paula Barreto Gomes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, Brasil.,Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brasil
| | - Lourena Mafra Veríssimo
- Núcleo de Pesquisa em Alimentos e Medicamentos, Universidade Federal do Rio Grande do Norte, Natal, Brasil.,Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brasil
| |
Collapse
|