1
|
Velty A, Iborra S, Corma A. Synthetic Routes for Designing Furanic and Non Furanic Biobased Surfactants from 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200181. [PMID: 35325511 PMCID: PMC9401603 DOI: 10.1002/cssc.202200181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/21/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) is one of the most valuable biomass platform molecules, enabling the construction of a plethora of high value-added furanic compounds. In particular, in the last decade, HMF has been considered as a starting material for designing biobased surfactants, not only because of its renewability and carbon footprint, but also because of its enhanced biodegradability. This Review presents recent examples of the different approaches to link the hydrophilic and lipophilic moieties into the hydrophobic furan (and tetrahydrofuran) ring, giving a variety of biobased surfactants that have been classified here according to the charge of the head polar group. Moreover, strategies for the synthesis of different non-furanic structures surfactant molecules (such as levulinic acid, cyclopentanols, and aromatics) derived from HMF are described. The new HMF-based amphiphilic molecules presented here cover a wide range of hydrophilic-lipophilic balance values and have suitable surfactant properties such as surface tension activity and critical micelle concentration, to be an important alternative for the replacement of non-sustainable surfactants.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología QuímicaUniversitat Politècnica de ValènciaConsejo Superior de Investigaciones CientíficasAvenida de los Naranjos s/nValenciaE-46022Spain
| | - Sara Iborra
- Instituto de Tecnología QuímicaUniversitat Politècnica de ValènciaConsejo Superior de Investigaciones CientíficasAvenida de los Naranjos s/nValenciaE-46022Spain
| | - Avelino Corma
- Instituto de Tecnología QuímicaUniversitat Politècnica de ValènciaConsejo Superior de Investigaciones CientíficasAvenida de los Naranjos s/nValenciaE-46022Spain
| |
Collapse
|
2
|
Microbial Degradation of Hydrocarbons-Basic Principles for Bioremediation: A Review. Molecules 2020; 25:molecules25040856. [PMID: 32075198 PMCID: PMC7070569 DOI: 10.3390/molecules25040856] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/01/2022] Open
Abstract
Crude oil-derived hydrocarbons constitute the largest group of environmental pollutants worldwide. The number of reports concerning their toxicity and emphasizing the ultimate need to remove them from marine and soil environments confirms the unceasing interest of scientists in this field. Among the various techniques used for clean-up actions, bioremediation seems to be the most acceptable and economically justified. Analysis of recent reports regarding unsuccessful bioremediation attempts indicates that there is a need to highlight the fundamental aspects of hydrocarbon microbiology in a clear and concise manner. Therefore, in this review, we would like to elucidate some crucial, but often overlooked, factors. First, the formation of crude oil and abundance of naturally occurring hydrocarbons is presented and compared with bacterial ability to not only survive but also to utilize such compounds as an attractive energy source. Then, the significance of nutrient limitation on biomass growth is underlined on the example of a specially designed experiment and discussed in context of bioremediation efficiency. Next, the formation of aerobic and anaerobic conditions, as well as the role of surfactants for maintaining appropriate C:N:P ratio during initial stages of biodegradation is explained. Finally, a summary of recent scientific reports focused on the removal of hydrocarbon contaminants using bioaugmentation, biostimulation and introduction of surfactants, as well as biosurfactants, is presented. This review was designed to be a comprehensive source of knowledge regarding the unique aspects of hydrocarbon microbiology that may be useful for planning future biodegradation experiments. In addition, it is a starting point for wider debate regarding the limitations and possible improvements of currently employed bioremediation strategies.
Collapse
|
3
|
Czarny J, Staninska-Pięta J, Piotrowska-Cyplik A, Juzwa W, Wolniewicz A, Marecik R, Ławniczak Ł, Chrzanowski Ł. Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121168. [PMID: 31541964 DOI: 10.1016/j.jhazmat.2019.121168] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to verify the hypothesis that a hydrocarbon degrading community isolated from a site heavily polluted with polycyclic aromatic hydrocarbons (PAHs) and heavy metals should exhibit a high activity and biodegradation efficiency, despite decreased biodiversity resulting from the presence of such contaminants. Microbial community isolated from soil collected at an abandoned creosote railway wood-sleepers impregnation plant using diesel oil was used during the studies. Four parallel systems spiked with diesel oil, diesel oil + PAHs, diesel oil + heavy metals and diesel oil + PAHs + heavy metals were analysed in terms of relative abundance and biodiversity of the microbial community (Illumina), biodegradation efficiency (GCMS) and cellular metabolic activity (flow cytometry). Principal Component Analysis and biodiversity parameters indicated that the mixture of PAHs and heavy metals was the dominant factor which resulted in the enrichment of the Gammaproteobacteria class. This was associated with higher degradation of additional PAHs in the presence of heavy metals and an increase of metabolically active sub-populations during flow cytometry analysis. The increased abundance of the Acinetobacter genus in systems with both PAHs and heavy metals implies that it may play a crucial role in soil populations exposed to mixed contaminations.
Collapse
Affiliation(s)
- J Czarny
- Institute of Forensic Genetics, Bydgoszcz, Poland
| | - J Staninska-Pięta
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznan, Poland
| | - A Piotrowska-Cyplik
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznan, Poland
| | - W Juzwa
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznan, Poland
| | - A Wolniewicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznan, Poland; PROTE Technologies for our Environment Ltd., Poznan, Poland
| | - R Marecik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznan, Poland.
| | - Ł Ławniczak
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Ł Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
4
|
Cierniak D, Woźniak-Karczewska M, Parus A, Wyrwas B, Loibner AP, Heipieper HJ, Ławniczak Ł, Chrzanowski Ł. How to accurately assess surfactant biodegradation-impact of sorption on the validity of results. Appl Microbiol Biotechnol 2019; 104:1-12. [PMID: 31729532 PMCID: PMC6942571 DOI: 10.1007/s00253-019-10202-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 12/19/2022]
Abstract
Surfactants not only are widely used in biotechnological processes but also constitute significant contaminants of the modern world. Among many reports, there is a shortage of works which summarize the issue of surfactant sorption to biomass in a way that would elucidate the biological factors for analysts and analytical factors for microbiologists. The main factor, which is not as obvious as one would expect, is associated with the susceptibility of analytical approaches to errors resulting from incorrect handling of biomass. In case of several publications reviewed in the framework of this study, it was not possible to establish whether the decrease of the analytical signal observed by the authors actually resulted from biodegradation of the surfactant. This review emphasizes the necessity to consider the possibility of surfactant sorption to microbial cells, which may result in significant detection errors as well as conceptual inconsistency. In addition, a reference study regarding representative surfactants (cationic, anionic and non-ionic) as well as yeast, Gram-negative, Gram-positive bacteria, and activated sludge was provided to highlight the possible errors which may arise from disregarding sorption processes when determining degradation of surfactants. This particularly applies to systems which include ionic surfactants and activated sludge as sorption may account for 90% of the observed depletion of the surfactant. Therefore, a systematic approach was proposed in order to improve the credibility of the obtained results. Finally, the need to employ additional procedures was highlighted which may be required in order to verify that the decrease of surfactant concentration results from biodegradation processes.
Collapse
Affiliation(s)
- Dorota Cierniak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Bedrychowo 4, 60-965, Poznan, Poland
| | - Marta Woźniak-Karczewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965, Poznan, Poland
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965, Poznan, Poland
| | - Bogdan Wyrwas
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Bedrychowo 4, 60-965, Poznan, Poland
| | - Andreas P Loibner
- IFA-Tulln, BOKU-University of Natural Resources and Life Sciences, 3430, Vienna, Tulln, Austria
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965, Poznan, Poland.
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965, Poznan, Poland.,Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
5
|
Vyrides I, Rivett DW, Bruce KD, Lilley AK. Selection and assembly of indigenous bacteria and methanogens from spent metalworking fluids and their potential as a starting culture in a fluidized bed reactor. Microb Biotechnol 2019; 12:1302-1312. [PMID: 31328378 PMCID: PMC6801153 DOI: 10.1111/1751-7915.13448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022] Open
Abstract
Waste metalworking fluids (MWFs) are highly biocidal resulting in real difficulties in the, otherwise favoured, bioremediation of these high chemical oxygen deman (COD) wastes anaerobically in bioreactors. We have shown, as a proof of concept, that it is possible to establish an anaerobic starter culture using strains isolated from spent MWFs which are capable of reducing COD or, most significantly, methanogenesis in this biocidal waste stream. Bacterial strains (n = 99) and archaeal methanogens (n = 28) were isolated from spent MWFs. The most common bacterial strains were Clostridium species (n = 45). All methanogens were identified as Methanosarcina mazei. Using a random partitions design (RPD) mesocosm experiment, we found that bacterial diversity and species-species interactions had significant effects on COD reduction but that bacterial composition did not. The RPD study showed similar effects on methanogenesis, except that composition was also significant. We identified bacterial species with positive and negative effects on methane production. A consortium of 16 bacterial species and three methanogens was used to initiate a fluidized bed bioreactor (FBR), in batch mode. COD reduction and methane production were variable, and the reactor was oscillated between continuous and batch feeds. In both microcosm and FBR experiments, periodic inconsistencies in bacterial reduction in fermentative products to formic and acetic acids were identified as a key issue.
Collapse
Affiliation(s)
- Ioannis Vyrides
- Molecular Microbiology Research LaboratoryPharmaceutical Science Research DivisionKing's College London150 Stamford Street, Franklin‐Wilkins BuildingLondonSE1 9NHUK
- Present address:
Department of Environmental Science and TechnologyCyprus University of Technology30 Archbishop Kyprianos3036LemesosCyprus
| | - Damian W. Rivett
- Division of Biology and Conservation EcologySchool of Science and the EnvironmentManchester Metropolitan UniversityManchesterUK
| | - Kenneth D. Bruce
- Molecular Microbiology Research LaboratoryPharmaceutical Science Research DivisionKing's College London150 Stamford Street, Franklin‐Wilkins BuildingLondonSE1 9NHUK
| | - Andrew K. Lilley
- Molecular Microbiology Research LaboratoryPharmaceutical Science Research DivisionKing's College London150 Stamford Street, Franklin‐Wilkins BuildingLondonSE1 9NHUK
| |
Collapse
|