1
|
Park J, Lee C, Kim Y, Lee D, Choe JK, Choi Y. Direct solid-phase nitrogenous fertilizer recovery from wastewater: The hybrid system of membrane contactor and solvent-driven fractional crystallization. WATER RESEARCH 2025; 278:123372. [PMID: 40022804 DOI: 10.1016/j.watres.2025.123372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/24/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
We propose a novel configuration that integrates a membrane contactor with solvent-driven fractional crystallization (SDFC) to recover ammonia from wastewater and produce it as solid-phase nitrogenous fertilizers. A liquid-gas membrane contactor strips ammonia from wastewater in a gaseous form, which enters a strip tank containing a binary mixture of an aqueous anion solution and an organic solvent. There, the ammonia reacts with anions, instantly protonating and forming solid-phase fertilizers. Batch SDFC experiments identified phosphate and sulfate as viable options for producing solid-phase fertilizers from the ammonia gas entering the strip tank. The hybrid system utilizing these acids produced high-grade fertilizers free from soil acidification concerns: a mixture of monoammonium phosphate and diammonium phosphate, and pure ammonium sulfate. Ammonium sulfate crystals in the strip tank grew epitaxially, representing a unique ammonium sulfate crystallization pattern when ammonium concentration gradually increased to supersaturation. A single system run produced solid fertilizers that amounted to 81.54 and 83.84% of the initially added phosphoric and sulfuric acid, respectively. Organic solvents in the strip tank could be recycled for at least five cycles while maintaining crystallization efficiencies of ≥82.63%. These results highlight the potential for semi-permanent operation of the system without the need for solvent replenishment.
Collapse
Affiliation(s)
- Jaebeom Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changmin Lee
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younghun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongju Choi
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Bolujoko N, Duling A, Shashvatt U, Mangalgiri K. The fate of antibiotics during phosphate recovery processes - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178829. [PMID: 39970556 DOI: 10.1016/j.scitotenv.2025.178829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The principles of circular economy encourage the recovery of phosphorus from nutrient-rich waste streams such as animal manure, domestic wastewater, and urine to supplement existing sources of raw phosphorus. However, these waste streams also contain a wide variety of contaminants of emerging concern including antibiotics, and the recovery of phosphorus from these waste streams results in the co-occurrence of antibiotics with the recovered phosphorus products. This paper provides a comprehensive overview of the fate of environmentally relevant antibiotics in three major existing and upcoming phosphorus recovery processes: precipitation-, membrane-, and adsorption-based treatment. In general, the co-occurrence of antibiotics in recovered phosphorus increases with the presence of dissolved organic matter (DOM) and cations due to π-π interaction and cationic bridge formation, respectively. Additionally, antibiotics display pH-based speciation resulting in electrostatic interactions with recovered phosphorus at pH > 7.0. Furthermore, this critical review establishes a new metric, the relative antibiotic-to‑phosphorus (RAP), defined as the ratio of the concentration of antibiotics to phosphorus in recovered phosphorus to that of the phosphorus-rich waste. Precipitation-based methods, particularly struvite, demonstrated the lowest RAP, while the RAP in carbon-based adsorbents was 1.8 × 108 times higher than in membrane-based processes. In reviewing literature on the fate of antibiotics in phosphorus recovery processes, several research needs are also highlighted: the fate of non-tetracycline antibiotics, simultaneous investigation of phosphorus and antibiotic fate in membrane- and adsorption-based methods, treatment methods to mitigate the co-occurrence of antibiotics in recovered phosphorus product, and the release of antibiotics from recovered phosphate products.
Collapse
Affiliation(s)
- Nathaniel Bolujoko
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA
| | - Addison Duling
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA
| | - Utsav Shashvatt
- Department of Civil and Environmental Engineering, University of California, Berkeley, 760 Davis Hall, Berkeley, CA 94720, USA
| | - Kiranmayi Mangalgiri
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA; Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA.
| |
Collapse
|
3
|
Koulouri ME, Templeton MR, Fowler GD. Enhancing the nitrogen and phosphorus content of faecal-derived biochar via adsorption and precipitation from human urine. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119981. [PMID: 38198837 DOI: 10.1016/j.jenvman.2023.119981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Urine diversion in toilets is a promising strategy to maximise nutrient recovery and produce low-cost urine-derived fertilisers. There are various methods for nutrient recovery from urine, including precipitation and adsorption onto porous media, such as biochars. This study uses faecal-derived biochars to produce and, for the first time, comprehensively characterise enriched biochar fertilisers with the addition of fully hydrolysed undiluted human urine. The evolution of urea hydrolysis and nutrient content during urine storage was initially investigated over a 6-month storage period and NH4+ adsorption mechanisms studied under varying biochar doses and NH4-N concentrations. The process was further optimised by adding MgO to induce precipitation reactions, enabling the combined recovery of NH4+ and P. For NH4+ adsorption, experimental data exhibited a good fit to both the Freundlich (R2 = 0.989) and Langmuir (R2 = 0.974) isotherm models and the rate of the reaction was well described by a pseudo 2nd order kinetics model (R2 = 0.988). The NH4+ uptake was rapid during the initial 2 h of the reaction and the adsorption process reached completion after 24 h. The NH4-N adsorption capacity of the faecal-derived biochar was 19.8 mg/g and the main adsorption mechanism identified was ion exchange (K+ ↔ NH4+), as confirmed by XRD and ICP-OES. The effect of different biochar doses (0, 25, 50, 100 g/L) and MgO addition scenarios (Mg:P = 0, 1.5, 4) on N and P recovery showed that the combination of MgO (Mg:P = 1.5) with the lower biochar dose (25 g/L) produced the most NP-rich fertiliser product which was easily separated from the urine. Faecal-derived biochar had a limited adsorption capacity for P, with precipitation being the main mechanism for P recovery. When MgO was added to urine, >98% of total P was recovered via precipitation of struvite/struvite-K and substituted hydroxyapatite, as identified via SEM-EDX. Faecal-derived biochar was a successful carrier to recover the P-containing precipitates and facilitate liquid-solid separation after treatment. The findings of this study provide proof-of concept for the systemic management of source separated human excreta and pave the way for the production of marketable waste-derived fertilisers from on-site sanitation systems.
Collapse
Affiliation(s)
- Maria E Koulouri
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK.
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK.
| | - Geoffrey D Fowler
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Luqmani B, Brookes A, Moore A, Vale P, Pidou M, McAdam EJ. Transitioning through the vapour-liquid equilibrium for low energy thermal stripping of ammonia from wastewater: Enabling transformation of NH 3 into a zero-carbon fuel. WATER RESEARCH 2024; 248:120856. [PMID: 37979564 DOI: 10.1016/j.watres.2023.120856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vacuum thermal stripping permits the recovery of ammonia from wastewater in a concentrated form, which is key to its exploitation in the circular economy, but the latent heat demand for thermal separation remains a critical barrier to exploitation. In this study, we investigate the vapor-liquid equilibrium (VLE) for ammonia-water as a mechanism to enhance recovered ammonia quality and minimise the thermal energy required for ammonia separation. Below the dew point (65 °C at 0.25 bar) a two-phase region of the VLE exists where 48 %wt gas-phase ammonia could be produced (61 °C) compared to only 2 %wt within the stripping region adopted widely in the literature. This was complemented by a 98 % reduction in thermal separation energy, since limited water vaporization can occur when the feed is maintained below the activation energy threshold for bulk evaporation. Operation within this practically unexplored region of the ammonia-water VLE fosters a gas-phase product suitable for energy generation in gas turbines or solid oxide fuel cells. Comparable product quality was achieved using concentrated wastewater, which validated the VLE for design in the presence of a broad range of dissolved gases and volatile inorganic compounds. Rapid desorption of CO2 occurred during vacuum stripping, subsequently increasing pH >9 without the requirement for alkali addition to shift the ammonia-ammonium equilibrium in favor of gaseous ammonia. Consequently, the two-phase region of the VLE defined for vacuum thermal stripping provides a synergistic strategy to mitigate chemical demand, minimise separation energy and recover gas-phase ammonia for zero carbon energy generation, constituting a significant advancement toward the net zero ambitions of the water sector.
Collapse
Affiliation(s)
- B Luqmani
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, UK
| | - A Brookes
- Anglian Water, Block C-Western House, Peterborough Business Park, Peterborough PE2 6FZ, UK
| | - A Moore
- Northumbrian Water, Boldon House, Wheatlands Way, Durham DH1 5FA, UK
| | - P Vale
- Severn Trent Water, 2 St. Johns Street, Coventry CV1 2LZ, UK
| | - M Pidou
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, UK
| | - E J McAdam
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
5
|
Simbeye C, Courtney C, Simha P, Fischer N, Randall DG. Human urine: A novel source of phosphorus for vivianite production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164517. [PMID: 37268124 DOI: 10.1016/j.scitotenv.2023.164517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Human urine contributes up to 50 % of the phosphorus load in domestic wastewater. Decentralized sanitation systems that separately collect urine provide an opportunity to recover this phosphorus. In this study, we leveraged the unique and complex chemistry of urine in favor of recovering phosphorus as vivianite. We found that the type of urine affected the yield and purity of vivianite, but the kind of iron salt used, and reaction temperature, did not affect the yield and purity. Ultimately, it was the urine pH that affected the solubility of vivianite and other co-precipitates, with the highest yield (93 ± 2 %) and purity (79 ± 3 %) of vivianite obtained at pH 6.0. Yield and purity of vivianite were both maximized when Fe:P molar ratio was >1.5:1, but <2.2:1. This molar ratio provided sufficient iron to react with all available phosphorus, while exerting a competitive effect that suppressed the precipitation of other precipitates. Vivianite produced from fresh urine was less pure than vivianite produced from synthetic urine, because of the presence of organics in real urine, but washing the solids with deionized water improved the purity by 15.5 % at pH 6.0. Overall, this novel work adds to the growing body of literature on phosphorus recovery as vivianite from wastewater.
Collapse
Affiliation(s)
- Chibambila Simbeye
- Civil Engineering Department & Future Water Institute, University of Cape Town, 7700 Cape Town, South Africa
| | - Caitlin Courtney
- Civil Engineering Department & Future Water Institute, University of Cape Town, 7700 Cape Town, South Africa
| | - Prithvi Simha
- Department of Energy and Technology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Nico Fischer
- Catalysis Institute and DSI-NRF Centre of Excellence in Catalysis c∗Change, Department of Chemical Engineering, University of Cape Town, 7700 Cape Town, South Africa
| | - Dyllon G Randall
- Civil Engineering Department & Future Water Institute, University of Cape Town, 7700 Cape Town, South Africa.
| |
Collapse
|
6
|
Wu H, Foster X, Kazemian H, Vaneeckhaute C. N, P, K recovery from hydrolysed urine by Na-chabazite adsorption integrated with ammonia stripping and (K-)struvite precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159277. [PMID: 36216069 DOI: 10.1016/j.scitotenv.2022.159277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the recovery of K+ along with NH4+-N and PO43--P from hydrolyzed urine by technical integration. The K adsorption capacities of biochar, clinoptilolite, artificial zeolite and chabazite were firstly compared. Due to the high K recovery efficiency and additional P recovery capacity, Na-chabazite was selected as the adsorbent in this study. Its kinetics and isotherm analysis indicated that the high molarity of NH4+-N seriously hindered the K adsorption onto Na-chabazite in synthetic hydrolyzed urine (SHU). However, this competition between NH4+ and K+ got diminished when their molarity is the same, i.e. in the SHU after ammonia stripping (ASSHU). Based on this key finding, Na-chabazite adsorption was integrated with ammonia stripping and struvite precipitation under different configurations. Simultaneous ammonia stripping was inadequate to diminish the competitive effect of NH4+ on K+ adsorption. Depending on the demand for fertilizer, two sequential configurations were recommended, respectively.
Collapse
Affiliation(s)
- Haotian Wu
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| | - Xavier Foster
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| | - Hossein Kazemian
- Northern Analytical Lab Services, University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Canada.
| | - Céline Vaneeckhaute
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Asiain-Mira R, Smith C, Zamora P, Monsalvo VM, Torrente-Murciano L. Hydrogen production from urea in human urine using segregated systems. WATER RESEARCH 2022; 222:118931. [PMID: 35970006 DOI: 10.1016/j.watres.2022.118931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Removal of nitrogen compounds through biological processes represents the highest energy consumption in conventional centralised wastewater treatment facilities. Alternatively, segregated systems, where wastewater is treated at its source, present the potential to provide value to nitrogen-rich compounds contained in wastewater like urea. This paper demonstrates the feasibility of a novel process to recover energy from human urine based on the pre-isolation of urea to decrease the energy requirements for its thermal decomposition compared to the conventional thermal treatment when in solution, followed by its decomposition into hydrogen. Herein, urea is separated from an aqueous solution by adsorption onto activated carbon. Thermal urea desorption and decomposition into ammonia and CO2 at 250 °C leads to full regeneration of the carbon, showing a constant adsorption capacity for at least 5 consecutive adsorption/desorption cycles. Finally, when the regeneration and urea decomposition step is coupled to an ammonia decomposition catalyst, hydrogen is produced to be used as an energy fuel. This process opens the door to a new way of circular economy by energy recovery from hydrogen-rich components in segregated wastewater streams. Preliminary energy balances show that the adoption of this energy recovery system in a city of 160,000 inhabitants would lead to a daily hydrogen production of 430 kg, with a net energy production of 2,500 kWh/day. In addition, such waste-to-energy process would lead to energy savings of 4,600 kWh/day in a conventional wastewater treatment plant reducing its energy consumption by around 35%.
Collapse
Affiliation(s)
- Ruben Asiain-Mira
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, UK; FCC Aqualia, Department of Innovation and Technology, Avda. del Camino de Santiago 40, 28050, Madrid, Spain
| | - Collin Smith
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, UK
| | - Patricia Zamora
- FCC Aqualia, Department of Innovation and Technology, Avda. del Camino de Santiago 40, 28050, Madrid, Spain
| | - Victor M Monsalvo
- FCC Aqualia, Department of Innovation and Technology, Avda. del Camino de Santiago 40, 28050, Madrid, Spain
| | - Laura Torrente-Murciano
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, UK.
| |
Collapse
|
8
|
Impact of Magnesium Sources for Phosphate Recovery and/or Removal from Waste. ENERGIES 2022. [DOI: 10.3390/en15134585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As the population continues to rise, the demand for resources and environmentally friendly management of produced wastes has shown a significant increase in concern. To decrease the impact of these wastes on the environment, it is important to utilize the wastes in producing and/or recovering usable products to provide for the sustainable management of resources. One non-renewable and rapidly diminishing resource is phosphorus, which is used in several products, the most important being its use in manufacturing chemical fertilizer. With the increase in demand but reduction in availability of naturally occurring mineral phosphorus, it is important to investigate other sources of phosphorus. Phosphorus is most commonly recovered through struvite (magnesium ammonium phosphate) precipitation. The recovery of phosphorus from various wastewater has been well established and documented with recovery rates mostly above 90%. However, one of the major drawbacks of the recovery is the high cost of chemicals needed to precipitate the phosphorus. Since the external magnesium needed to achieve struvite precipitation accounts for around 75% of the total chemical cost, applicability of low-cost magnesium sources, such as bittern or seawater, can help reduce the operational cost significantly. This paper investigates the different magnesium sources that have been used for the recovery of phosphorus, highlighting the different approaches and operating conditions investigated, and their corresponding phosphorus recovery rates. An investigation of the economic aspects of the magnesium sources used for removal/recovery show that costs are dependent on the raw waste treated, the source of magnesium and the location of treatment. A review of published articles on the economics of phosphorus removal/recovery also indicates that there is a lack of studies on the economics of the treatment processes, and there is a need for a comprehensive study on life cycle assessment of such processes that go beyond the technical and economical aspects of treatment processes.
Collapse
|
9
|
Han Y, Agyeman F, Green H, Tao W. Stable, high-rate anaerobic digestion through vacuum stripping of digestate. BIORESOURCE TECHNOLOGY 2022; 343:126133. [PMID: 34655785 DOI: 10.1016/j.biortech.2021.126133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This study coupled anaerobic digestion with vacuum stripping to achieve stable digestion at higher organic loading rates. Besides mitigation of ammonia inhibition, vacuum stripping of digestate improves solids solubilization and dewaterability due to vacuum-enhanced low-temperature thermal and mild-alkaline treatment under the vacuum stripping conditions (65 °C, 25-27 kPa, and pH 9). Batch vacuum stripping for 8 h removed 97.4-99.4% of ammonia, increased the dissolved fraction of volatile solids (VS) by 72.5%, and improved dewaterability with 30% decreases in time-to-filter and viscosity. The digesters having 2.9% of digestate replaced daily by vacuum stripped digestate were stable up to organic loading rate of 4.3 g-VS/Lreactor/d with biogas production at 3.15 L/Lreactor/d, while the digesters without stripping attained biogas production of 1.90 L/Lreactor/d at its highest stable organic loading rate of 2.5 g-VS/Lreactor/d. Acetoclastic Methanosaeta were the dominant methanogens, which became more resistant to ammonia stress in the digesters with vacuum stripping.
Collapse
Affiliation(s)
- Youl Han
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Fred Agyeman
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Hyatt Green
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Wendong Tao
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA.
| |
Collapse
|
10
|
Yudhana A, Mukhopadhyay S, Prima ODA, Akbar SA, Nuraisyah F, Mufandi I, Fauzi KH, Nasyah NA. Multi sensor application-based for measuring the quality of human urine on first-void urine. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
11
|
Larsen TA, Riechmann ME, Udert KM. State of the art of urine treatment technologies: A critical review. WATER RESEARCH X 2021; 13:100114. [PMID: 34693239 PMCID: PMC8517923 DOI: 10.1016/j.wroa.2021.100114] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/15/2021] [Accepted: 08/14/2021] [Indexed: 05/26/2023]
Abstract
Over the last 15 years, urine treatment technologies have developed from lab studies of a few pioneers to an interesting innovation, attracting attention from a growing number of process engineers. In this broad review, we present literature from more than a decade on biological, physical-chemical and electrochemical urine treatment processes. Like in the first review on urine treatment from 2006, we categorize the technologies according to the following objectives: stabilization, volume reduction, targeted N-recovery, targeted P-recovery, nutrient removal, sanitization, and handling of organic micropollutants. We add energy recovery as a new objective, because extensive work has been done on electrochemical energy harvesting, especially with bio-electrochemical systems. Our review reveals that biological processes are a good choice for urine stabilization. They have the advantage of little demand for chemicals and energy. Due to instabilities, however, they are not suited for bathroom applications and they cannot provide the desired volume reduction on their own. A number of physical-chemical treatment technologies are applicable at bathroom scale and can provide the necessary volume reduction, but only with a steady supply of chemicals and often with high demand for energy and maintenance. Electrochemical processes is a recent, but rapidly growing field, which could give rise to exciting technologies at bathroom scale, although energy production might only be interesting for niche applications. The review includes a qualitative assessment of all unit processes. A quantitative comparison of treatment performance was not the goal of the study and could anyway only be done for complete treatment trains. An important next step in urine technology research and development will be the combination of unit processes to set up and test robust treatment trains. We hope that the present review will help guide these efforts to accelerate the development towards a mature technology with pilot scale and eventually full-scale implementations.
Collapse
Affiliation(s)
- Tove A. Larsen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Michel E. Riechmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kai M. Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Jiang S, Xing X, Wang L, Yang S, Xiao J, Zhang Q, Xu X, Peng M, Wang X. Insight into the effect of pH-adjusted acid on thermodynamic properties and crystallization sequence during evaporative-crystallization process of hydrolyzed urine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28507-28517. [PMID: 33538969 DOI: 10.1007/s11356-021-12598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The evaporative-crystallization process (ECP) is a frequently used approach for complete nutrient recovery from human urine, and crystallization sequence is related to the selection of seed and the optimization of crystallization process. In this study, three hydrolyzed urine (HU) samples, which were acidified to an initial pH of 4 with HCl, H2SO4, and H3PO4, were used to recover crystallized products by ECP, their crystallization process and thermodynamic properties during ECP were compared, and the detailed crystallization sequence was analyzed using the PHREEQC-2 simulation. The results showed that the pH-adjusted acid has a significant effect on crystal precipitation, and the new crystal in HCl-4-HU, H2SO4-4-HU, and H3PO4-4-HU first appeared at volume concentration factors (CFV) of 19.61, 9.90, and 9.96, respectively. Furthermore, the simulated crystallization process characteristics of HU by PHREEQC-2 have a good fit with the actual experimental data, and crystallization sequence of HCl-4-HU, H2SO4-4-HU, H3PO4-4-HU during ECP were NH4Cl (CFV from 10.25 to 100) / NaCl (CFV from 71.43 to 100), NH4NaSO4 (CFV from 10.25 to 55.56) / NH4Cl (CFV from 20 to 100) / (NH4)2SO4 (CFV from 40.45 to 100), NH4H2PO4 (CFV from 10.25 to 100) / NaH2PO4 (CFV from38.46 to 55.5) / NaCl (CFV from 45.46 to 100), respectively. The present study clearly reveals the crystallization sequence and thermodynamic properties of nutrient elements in acidified HU, which provides an important theoretical basis for the optimization of crystallized products obtained from HU for future study.
Collapse
Affiliation(s)
- Shanqing Jiang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xiang Xing
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Liping Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingwen Xiao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiuya Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xia Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingguo Peng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaochang Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
13
|
An Appraisal of Urine Derivatives Integrated in the Nitrogen and Phosphorus Inputs of a Lettuce Soilless Cultivation System. SUSTAINABILITY 2021. [DOI: 10.3390/su13084218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reinforcing and optimizing sustainable food production is an urgent contemporary issue. The depletion of natural mineral resources is a key problem that is addressed by recycling mined potassium and phosphorus, and nitrogen, whose production depends on very high energy input. A closed-loop approach of fertilizer use asserts the necessity for efficient management and practices of organic waste rich in minerals. Human-derived urine is an underutilized yet excellent source for nitrogen fertilizer, and, in this study, processed urine fertilizer was applied to greenhouse soilless cultivation of lettuce (Lactuca sativa L.) cv. Grand Rapids. Biomass increase, biometric parameters, soil plant analysis development (SPAD) index, minerals, and organic acids content of lettuce were analyzed. From eight different urine fertilizer products generated, K-struvite, urine precipitate-CaO, and the liquid electrodialysis (ED) concentrate supported the growth of lettuce similar to that of commercial mineral fertilizer. ED concentrate application led to the accumulation of potassium (+17.2%), calcium (+82.9%), malate (+185.3%), citrate (+114.4%), and isocitrate (+185.7%); K-struvite augmented the accumulation of magnesium (+44.9%); and urine precipitate-CaO induced the highest accumulation of calcium (+100.5%) when compared to the control, which is an added value when supplemented in daily diet. The results underlined the potential of nitrogen- and phosphate-rich human urine as a sustainable source for the fertilization of lettuce in soilless systems.
Collapse
|
14
|
Development of a Self-Sustaining Wastewater Treatment with Phosphorus Recovery for Small Rural Settlements. SUSTAINABILITY 2021. [DOI: 10.3390/su13031363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global trends such as climate change and the scarcity of sustainable raw materials require adaptive, more flexible and resource-saving wastewater infrastructures for rural areas. Since 2018, in the community Reinighof, an isolated site in the countryside of Rhineland Palatinate (Germany), an autarkic, decentralized wastewater treatment and phosphorus recovery concept has been developed, implemented and tested. While feces are composted, an easy-to-operate system for producing struvite as a mineral fertilizer was developed and installed to recover phosphorus from urine. The nitrogen-containing supernatant of this process stage is treated in a special soil filter and afterwards discharged to a constructed wetland for grey water treatment, followed by an evaporation pond. To recover more than 90% of the phosphorus contained in the urine, the influence of the magnesium source, the dosing strategy, the molar ratio of Mg:P and the reaction and sedimentation time were investigated. The results show that, with a long reaction time of 1.5 h and a molar ratio of Mg:P above 1.3, constraints concerning magnesium source can be overcome and a stable process can be achieved even under varying boundary conditions. Within the special soil filter, the high ammonium nitrogen concentrations of over 3000 mg/L in the supernatant of the struvite reactor were considerably reduced. In the effluent of the following constructed wetland for grey water treatment, the ammonium-nitrogen concentrations were below 1 mg/L. This resource efficient decentralized wastewater treatment is self-sufficient, produces valuable fertilizer and does not need a centralized wastewater system as back up. It has high potential to be transferred to other rural communities.
Collapse
|
15
|
Silva LRG, Dos Santos GFS, Vasconcellos MLS, Ferreira RDQ. Development of electroanalytical procedure for monitoring of metamizole in organic fertilizers (human urine and struvite) associated with portable equipment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 266:110587. [PMID: 32392140 DOI: 10.1016/j.jenvman.2020.110587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Urine and struvite are promising organic fertilizers that can replace conventional fertilizers. However, these fertilizers can have some emerging contaminants, such as dipyrone. This drug is one of the main painkillers consumed in the world and its continuous and indiscriminate intake can promote the camouflage of symptoms of other diseases, anaphylactic shock and even death. Thus, a fast, sensitive, inexpensive and portable method for metamizole (dipyrone) determination in several matrices, applied as organic fertilizers, has been successfully developed using portable equipment and bare carbon screen-printed electrodes in conjunction with square wave voltammetry (SWV). The main SWV operating parameters were optimized (equilibrium time (60 s), step potential (6 mV), modulation amplitude (50 mV) and frequency (10 Hz)) using univariate experiments. The proposed method presented a limit of detection of 0.097 ± 0.002 μmol L-1 (RSD = 2.72%, n = 3) for dipyrone in 0.1 mol L-1 HCl and R2 equal to 0.993. The determination in the struvite sample presented a concentration of 0.47 μmol L-1 of dipyrone. Urine sample used in the production of struvite and urine collected from an individual 10h after ingestion of 500 mg dipyrone tablet showed concentrations of 15.2 and 590 μmol L-1 of dipyrone, respectively. The recovery test in fortified struvite sample showed values between 91 and 102% (RSD = 3.1%, n = 3) and of 102% (SD = 3.7%, n = 3) in human urine, indicating that there is no matrix effect. These results reinforce the possibility of applying the proposed method on-site in a practical and fast way, without the need of significant amounts of sample promoting a more sustainable chemistry.
Collapse
Affiliation(s)
- Luiz R G Silva
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brasil
| | - Gabriel F S Dos Santos
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brasil
| | - Maria L S Vasconcellos
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brasil
| | - Rafael de Q Ferreira
- Departamento de Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brasil.
| |
Collapse
|
16
|
Hosseinzadeh A, Baziar M, Alidadi H, Zhou JL, Altaee A, Najafpoor AA, Jafarpour S. Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions. BIORESOURCE TECHNOLOGY 2020; 303:122926. [PMID: 32035386 DOI: 10.1016/j.biortech.2020.122926] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Vermicomposting is one of the best technologies for nutrient recovery from solid waste. This study aims to assess the efficiency of Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) models in predicting nutrient recovery from solid waste under different vermicompost treatments. Seven chemical and biological indices were studied as input variables to predict total nitrogen (TN) and total phosphorus (TP) recovery. The developed ANN and MLR models were compared by statistical analysis including R-squared (R2), Adjusted-R2, Root Mean Square Error and Absolute Average Deviation. The results showed that vermicomposting increased TN and TP proportions in final products by 1.5 and 16 times. The ANN models provided better prediction for TN and TP with R2 of 0.9983 and 0.9991 respectively, compared with MLR models with R2 of 0.834 and 0.729. TN and C/N ratio were key factors for TP and TN prediction by ANN with percentages of 17.76 and 18.33.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Mansour Baziar
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Alidadi
- Social Determinants of Health Research Center, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ali Asghar Najafpoor
- Social Determinants of Health Research Center, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Salman Jafarpour
- Social Determinants of Health Research Center, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: Effects of temperature, current and pH adjusting. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116485] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|