1
|
Haubrock PJ, Soto I, Tarkan AS, Macêdo RL, Kouba A, Cuthbert RN, Briski E, Everts T, Kurtul I. Socioeconomic prerequisites determine national long-term biomonitoring efforts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122431. [PMID: 39243635 DOI: 10.1016/j.jenvman.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
In the current anthropogenic era characterised by human-induced environmental changes, long-term biomonitoring has become a crucial component for understanding ecological patterns and detecting shifts in biodiversity. However, spatiotemporal inconsistencies in biomonitoring efforts hinder transboundary progress in understanding and mitigating global environmental change effectively. The International Long-Term Ecosystem Research (ILTER) network is one of the largest standardised biomonitoring initiatives worldwide, encompassing 44 countries globally, including 26 European countries that are part of the European Long-Term Ecosystem Research network (eLTER). To better understand the establishment and development of such long-term biomonitoring efforts, we analysed spatial and temporal trends within the eLTER network. Additionally, we evaluated the environmental, social, and economic factors influencing engagement in biomonitoring activities within this European network. Our findings reveal a spatial imbalance, with biomonitoring efforts concentrated in Central and Western European countries, where monitoring initiatives have typically been established for a longer duration. Furthermore, our analyses underscore the complex interplay of economic, geographic, and cultural factors in the development of long-term ecological research infrastructures. Countries with greater geographic connectivity, slower economic growth, and higher research activity are more likely to be involved in the eLTER network. The intensity of biomonitoring significantly increased with greater research investments, economic growth, and elevated levels of tourism. In contrast, it decreased in countries that are more inward-facing and exhibit a belief in their ability to control environmental outcomes independently. Addressing spatial gaps in monitoring necessitates enhanced support and funding to ensure comprehensive ecological monitoring over extended time periods. This is essential for achieving transboundary sustainability and effective biodiversity conservation in the face of global change drivers.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, 73F2+GV4, Kuwait.
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000, Muğla, Türkiye
| | - Rafael L Macêdo
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Berlin, Germany; Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL, Belfast, United Kingdom
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24148, Kiel, Germany
| | - Teun Everts
- Research Institute for Nature and Forest (INBO), Genetic Diversity, 9500, Geraardsbergen, Belgium; KU Leuven, Department of Biology, Plant Conservation and Population Biology, 3000, Leuven, Belgium
| | - Irmak Kurtul
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, 35050, Bornova, İzmir, Türkiye; Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, BH12 5BB, Poole, Dorset, United Kingdom.
| |
Collapse
|
2
|
David J, Cabral P, Campos FS. Humans versus models: a comparative assessment of ecosystem services models and stakeholders' perceptions. Sci Rep 2024; 14:25995. [PMID: 39472640 PMCID: PMC11522275 DOI: 10.1038/s41598-024-76600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Mapping the production of Ecosystem Services (ES) is imperative for sustainable ecosystem management. Likewise, incorporating expert knowledge enhances ES research. Here, we calculate eight multi-temporal ES indicators for mainland Portugal using a spatial modelling approach. These indicators are then integrated into the novel ASEBIO index-Assessment of Ecosystem Services and Biodiversity-which depicts a combined ES potential based on CORINE Land Cover, using a multi-criteria evaluation method with weights defined by stakeholders through an Analytical Hierarchy Process (AHP). Outputs from the modelling show how ES have changed in Portugal in relation to land use changes, including trade-offs between 1990 and 2018. The composed ASEBIO index is compared against the stakeholders' valuation of ES potential for the year 2018. The results reveal a significant mismatch between the ES potential perceived by stakeholders and the models, with stakeholder estimates being 32.8% higher on average. All the selected ES were overestimated by the stakeholders. Drought regulation and erosion prevention have the highest contrasts, while water purification, food production and recreation are the most closely aligned among both approaches. Providing the first national overview about the status of multiple ES over a 28 year-period, our findings highlight potential disparities between data-driven and stakeholder-based evaluations. Therefore, we suggest the need for integrative strategies that consider scientific models with expert knowledge for more effective ES assessments and land-use planning. This approach could help bridge the gap between data-driven models and human perspectives, resulting in more balanced and inclusive decision-making.
Collapse
Affiliation(s)
- João David
- Humboldt-Universität zu Berlin, Geography Department, Landscape Ecology Lab, Rudower Chaussee 16, 12489, Berlin, Germany.
| | - Pedro Cabral
- School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisboa, Portugal.
| | - Felipe S Campos
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisboa, Portugal.
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalunya, Spain.
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Cerdanyola del Vallès, Catalunya, Spain.
| |
Collapse
|
3
|
Zweifel R, Pappas C, Peters RL, Babst F, Balanzategui D, Basler D, Bastos A, Beloiu M, Buchmann N, Bose AK, Braun S, Damm A, D'Odorico P, Eitel JUH, Etzold S, Fonti P, Rouholahnejad Freund E, Gessler A, Haeni M, Hoch G, Kahmen A, Körner C, Krejza J, Krumm F, Leuchner M, Leuschner C, Lukovic M, Martínez-Vilalta J, Matula R, Meesenburg H, Meir P, Plichta R, Poyatos R, Rohner B, Ruehr N, Salomón RL, Scharnweber T, Schaub M, Steger DN, Steppe K, Still C, Stojanović M, Trotsiuk V, Vitasse Y, von Arx G, Wilmking M, Zahnd C, Sterck F. Networking the forest infrastructure towards near real-time monitoring - A white paper. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162167. [PMID: 36775147 DOI: 10.1016/j.scitotenv.2023.162167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.
Collapse
Affiliation(s)
- Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Christoforos Pappas
- Department of Civil Engineering, University of Patras, Rio, Patras 26504, Greece.
| | - Richard L Peters
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, 1064 E Lowell St, Tucson, AZ 85721, USA; Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ 85721, USA.
| | - Daniel Balanzategui
- GFZ German Research Centre for Geosciences, Wissenschaftpark "Albert Einstein", Telegrafenberg, Potsdam, Germany; Geography Department, Humboldt University of Berlin, Rudower Ch 16, 12489 Berlin, DE, USA.
| | - David Basler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Dept. of Biogeochemical Integration, Hans Knöll Str. 10, 07745 Jena, Germany.
| | - Mirela Beloiu
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland.
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Universitätstr. 2, LFW C56, 8092 Zurich, Switzerland.
| | - Arun K Bose
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh.
| | - Sabine Braun
- Institute for Applied Plant Biology, Benkenstrasse 254A, 4108 Witterswil, Switzerland.
| | - Alexander Damm
- Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science & Technology, Surface Waters - Research and Management, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Jan U H Eitel
- Department of Natural Resource and Society, University of Idaho, 1800 University Lane, 83638 McCall, ID, USA.
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | | | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Matthias Haeni
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Günter Hoch
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Ansgar Kahmen
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Christian Körner
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Jan Krejza
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - Frank Krumm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Michael Leuchner
- Department of Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, 52056 Aachen, Germany.
| | - Christoph Leuschner
- Plant Ecology, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| | - Mirko Lukovic
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland.
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain.
| | - Radim Matula
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, Suchdol 16521, Czech Republic.
| | - Henning Meesenburg
- Northwest German Forest Research Institute, Grätzelstr. 2, D-37079 Göttingen, Germany.
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH93FF, UK.
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic.
| | - Rafael Poyatos
- CREAF, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Valles), Catalonia E08193, Spain.
| | - Brigitte Rohner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology KIT, Garmisch-Partenkirchen 82467, Germany.
| | - Roberto L Salomón
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Tobias Scharnweber
- DendroGreif, University Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany.
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - David N Steger
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Christopher Still
- Forest Ecosystems and Society Department, Oregon State University, Corvallis, OR 97331, USA.
| | - Marko Stojanović
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic.
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland.
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland.
| | - Martin Wilmking
- DendroGreif, University Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany.
| | - Cedric Zahnd
- Department of Environmental Sciences, Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|