1
|
Qiu D, Wang X, Jiang K, Gong G, Bao F. Effect of microbial fertilizers on soil microbial community structure in rotating and continuous cropping Glycyrrhiza uralensis. FRONTIERS IN PLANT SCIENCE 2025; 15:1452090. [PMID: 39840359 PMCID: PMC11747908 DOI: 10.3389/fpls.2024.1452090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025]
Abstract
Introduction Glycyrrhiza uralensis is a perennial medicinal plant. It's generally cultivated for three years, and should avoid long-term continuous cultivation. However, unreasonable crop rotation and extensive fertilization are common in G. uralensis cultivation, which leads to the imbalance of soil microflora structure, and the obstacle of continuous cropping are becoming increasingly serious. Some microbial fertilizers such as Bacillus amyloliquefaciens, Bacillus subtilis, and complex microbial agent have the advantage of regulating soil microbial community structure and improving the soil environment. Therefore, these three kinds of microbial fertilizers were applied to G. uralensis and their effects on soil microorganisms of G. uralensis were studied. Methods Combine microbial fertilizers with conventional fertilization for continuous cropping and rotating G. uralensis. High-throughput sequencing technology was used to determine soil microbial richness, diversity and distribution of community structure in rotating and continuous cropping G. uralensis. Results and discussion Continuous cropping reduced G. uralensis soil bacterial diversity by 7.56% and increased fungal richness by 17.01% compared with crop rotation. However, after the application of microbial fertilizers, the fungal richness and diversity of continuous cropping G. uralensis were significantly reduced by 4.76%~20.96%, and the soil bacterial diversity of continuous cropping and rotating G. uralensis was significantly increased by 7.22%~12.03% and 6.75%~11.69% compared with the respective controls, respectively. Continuous cropping and rotating G. uralensis soil dominant bacteria mainly include Proteobacteria, Actinobacteria and Gemmatimonadota, and the dominant fungi include Ascomycota, Basidiomycota and Zygomycota. The activity process of these microbial communities was mainly through carbohydrate metabolism and amino acid synthesis pathway in metabolism. The complex microbial agent significantly increased the relative abundance of soil dominant bacteria communities of continuous cropping and rotating G. uralensis by 3.11~11.54 percentage points, and significantly reduced the relative abundance of soil dominant fungal communities of continuous cropping G. uralensis by 1.57~8.93 percentage points, compared with the control. Of the three microbial fertilizers, the complex microbial agent had the most significant effects on optimizing the soil microbial community structure of continuous cropping and rotating G. uralensis. Conclusion: the application effect of different microbial fertilizers in continuous cropping G. uralensis was better than crop rotation, and the application effect of complex microbial agent was the best, which has more application value and development prospect in the cultivation management of G. uralensis.
Collapse
Affiliation(s)
- Daiyu Qiu
- College of Agronomy, Gansu Agricultural University, Gansu, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Gansu Agricultural University, Gansu, China
| | - Xue Wang
- College of Agronomy, Gansu Agricultural University, Gansu, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Gansu Agricultural University, Gansu, China
| | - Kan Jiang
- College of Agronomy, Gansu Agricultural University, Gansu, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Gansu Agricultural University, Gansu, China
| | - Gaoxia Gong
- College of Agronomy, Gansu Agricultural University, Gansu, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Gansu Agricultural University, Gansu, China
| | - Fang Bao
- Science and Technology R&D Department, China Chinese Medicine Co., LTD, Beijing, China
| |
Collapse
|
2
|
Wei W, Ma M, Jiang X, Meng F, Cao F, Chen H, Guan D, Li L, Li J. Soil P-stimulating bacterial communities: response and effect assessment of long-term fertilizer and rhizobium inoculant application. ENVIRONMENTAL MICROBIOME 2024; 19:86. [PMID: 39511696 PMCID: PMC11545948 DOI: 10.1186/s40793-024-00633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Phosphorus (P) plays a vital role in plant growth. The pqqC and phoD genes serve as molecular markers for inorganic and organic P breakdown, respectively. However, the understanding of how P-mobilizing bacteria in soil respond to long-term fertilization and rhizobium application is limited. Herein, soil that had been treated with fertilizer and rhizobium for 10 years was collected to investigate the characteristics of P-mobilizing bacterial communities. Five treatments were included: no fertilization (CK), phosphorus fertilizer (P), urea + potassium fertilizer (NK), NPK, and PK + Bradyrhizobium japonicum 5821 (PK + R). RESULTS The soybean nodule dry weight was highest in the P treatment (1.93 g), while the soybean yield peaked in the PK + R treatment (3025.33 kg ha- 1). The abundance of the pqqC gene increased in the rhizosphere soil at the flowering-podding stage and in the bulk soil at the maturity stage under the P treatment, while its abundance increased in the bulk soil at the flowering-podding stage and in the rhizosphere soil at the maturity stage under the PK + R treatment. The abundance of the phoD gene was enhanced in the bulk soil at the flowering-podding stage under the PK + R treatment. The Shannon and Ace indexes of pqqC- and phoD-harboring bacteria were higher in the rhizosphere soil at maturity under the PK + R treatment compared to other treatments. Furthermore, a comprehensive analysis of the neutral community model and co-occurrence pattern demonstrated that the application of P fertilizer alone led to an increase in the distribution and dynamic movement of pqqC-harboring bacteria, but resulted in a decrease in complexity of network structure. On the other hand, rhizobium inoculation enhanced the distribution and dynamic movement of phoD-harboring bacteria, as well as the stability and complexity of the network structure. Pseudomonas and Nitrobacter, as well as Steptomyces, Stella, and Nonomuraea, may be crucial genera regulating the composition and function of pqqC- and phoD-harboring communities, respectively. CONCLUSIONS These findings affirm the crucial role of fertilization and rhizobium inoculation in regulating pqqC- and phoD-harboring bacterial communities, and highlight the significance of long-term phosphate-only fertilization and rhizobium inoculation in enhancing dissolved inorganic phosphorus and mineralized organophosphorus, respectively.
Collapse
Affiliation(s)
- Wanling Wei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Fangang Meng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Jilin, 132011, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Huijun Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, South Zhongguancun Street No.12, Beijing, 100081, China.
- Laboratory of Quality and Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
3
|
Nasar J, Ahmad M, Gitari H, Tang L, Chen Y, Zhou XB. Maize/soybean intercropping increases nutrient uptake, crop yield and modifies soil physio-chemical characteristics and enzymatic activities in the subtropical humid region based in Southwest China. BMC PLANT BIOLOGY 2024; 24:434. [PMID: 38773357 PMCID: PMC11106902 DOI: 10.1186/s12870-024-05061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.
Collapse
Affiliation(s)
- Jamal Nasar
- Guangxi Key Laboratory of Agro‑Environment and Agro‑Products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Munir Ahmad
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Harun Gitari
- Department of Agricultural Science and Technology, School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Li Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuan Chen
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Xun-Bo Zhou
- Guangxi Key Laboratory of Agro‑Environment and Agro‑Products Safety, Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Khan A, Zhang G, Li T, He B. Fertilization and cultivation management promotes soil phosphorus availability by enhancing soil P-cycling enzymes and the phosphatase encoding genes in bulk and rhizosphere soil of a maize crop in sloping cropland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115441. [PMID: 37677974 DOI: 10.1016/j.ecoenv.2023.115441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Fertilization and cultivation managements exert significant effects on crop growth and soil-associated nutrients in croplands. However, there is a lack of knowledge regarding how these practices affect soil phosphorus-cycling enzymes and functional genes involved in regulating global P-cycling, especially under intense agricultural management practices in sloping croplands. A long-term field (15-year) trial was conducted in a 15° sloping field based on five treatments: no fertilizer amendments + downslope cultivation (CK); mixed treatment of mineral fertilizer and organic manure + downslope cultivation (T1); mineral fertilizer alone + downslope cultivation (T2); 1.5-fold mineral fertilizer + downslope cultivation (T3); and mineral fertilizer + contour cultivation (T4). Bulk and rhizosphere soil samples were collected after the maize crop was harvested to determine the P fraction, P-cycling enzymes, and phosphatase-encoding genes. Results indicated that fertilization management significantly increased the inorganic (Pi) and organic soil (Po) P fractions compared to CK, except for NaOH-extractable Po in T1 and T3 in bulk and rhizosphere soils, respectively. For the cultivation treatments, the content of Pi pools in the downslope cultivation of T1 and T3 was significantly larger than that in the contour cultivation of T4 in bulk and rhizosphere soils. However, the content of NaOH-extractable Po in T1 and T3 was lower compared to T4 in bulk soil and vice versa for the NaHCO3-P and HCl-Po fractions in the rhizosphere. We also found that fertilization and cultivation managements significantly increased the activity of acid phosphatase (ACP), alkaline phosphatase (ALP), phytase, phosphodiesterases (PDE), and phoC and phoD gene abundance in bulk and rhizosphere soils, with a larger effect on the activity of ALP and the phosphatase encoding phoD gene, especially in T1 and T3 in the rhizosphere. Soil organic carbon (SOC) and microbial biomass C and P (MBC and MBP) were the main predictors for regulating P-cycling enzymes and phoC- and phoD gene abundance. A strong association of P-cycling enzymes, especially ALP and phytase, and the abundance of phoD genes with the P fraction indicated that the soil P cycle was mainly mediated by microbial-related processes. Together, our results demonstrated that an adequate amount of mineral fertilizer alone or combined with organic fertilizer plus downslope cultivation is more effective in promoting soil P availability by enhancing the activity of ALP, phytase, and phoD genes. This provides valuable information for sustaining soil microbial-regulated P management practices in similar agricultural lands worldwide.
Collapse
Affiliation(s)
- Asif Khan
- College of Resources and Environment, Southwest University, Beibei District, Chongqing 400715, China
| | - Gaoning Zhang
- College of Resources and Environment, Southwest University, Beibei District, Chongqing 400715, China
| | - Tianyang Li
- College of Resources and Environment, Southwest University, Beibei District, Chongqing 400715, China
| | - Binghui He
- College of Resources and Environment, Southwest University, Beibei District, Chongqing 400715, China.
| |
Collapse
|
5
|
Liu J, Li Y, Han C, Yang D, Yang J, Cade-Menun BJ, Chen Y, Sui P. Maize-soybean intercropping facilitates chemical and microbial transformations of phosphorus fractions in a calcareous soil. Front Microbiol 2022; 13:1028969. [PMID: 36466685 PMCID: PMC9709268 DOI: 10.3389/fmicb.2022.1028969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 05/09/2025] Open
Abstract
Intercropping often substantially increases phosphorus (P) availability to plants compared with monocropping, which could be an effective strategy for soil legacy P recovery and agricultural production. However, the biogeochemical interactions among plants, microbes, and soil that mobilize P remain largely unknown in intercropping systems. Pot experiments with maize-soybean intercropping in a calcareous soil were conducted to investigate the potential chemical and biological transformation mechanisms of inorganic P (Pi) and organic P (Po) using sequential extraction and Illumina MiSeq sequencing. Compared to monocropping of each crop, maize-soybean intercropping significantly enhanced total P uptake of the two crops by mobilizing Ca2-Pi [extracted by bicarbonate (NaHCO3)], Al-Pi/Po [extracted by ammonium fluoride (NH4F)] and Fe-Pi [extracted by sodium hydroxide and sodium carbonate (NaOH-Na2CO3)] fractions. Furthermore, there were significant increases in the organic carbon content and alkaline phosphomonoesterase (ALP) and phosphodiesterase (PDE) activities as well as the abundances of Microvirga, Lysobacter, Microlunatus and Sphingomonas under maize-soybean intercropping relative to monocropping. In contrast, compared to monocroppping, no significant change in the soil pH was observed under maize-soybean intercropping. Therefore, the enhanced P uptake of the maize-soybean intercropping probably resulted from a synergistic effect of rhizosphere organic carbon deposit, increased activities of ALP and PDE, together with the bacteria (Microvirga, Lysobacter, Microlunatus and Sphingomonas) which showed correlation with soil P forms, while the generally recognized rhizosphere acidification was excluded in this investigated calcareous soil. Moreover, the selected bacterial genera exhibited a closer network in the rhizosphere of soybean compared to maize, suggesting enhanced interactions among bacteria in the soybean rhizosphere. These results provide theoretical bases for the recovery of soil legacy P by maize-soybean intercropping.
Collapse
Affiliation(s)
- Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yang Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chaoqun Han
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Dongling Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yuanquan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Peng Sui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Li H, Zhang T, Shaheen SM, Abdelrahman H, Ali EF, Bolan NS, Li G, Rinklebe J. Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: Multivariate and multiscale investigations. BIORESOURCE TECHNOLOGY 2022; 351:126976. [PMID: 35278620 DOI: 10.1016/j.biortech.2022.126976] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The combined effects of microbial inoculants (MI) and magnesium ammonium phosphate (MAP; struvite) on organic matter (OM) biodegradation and nutrients stabilization during biowaste composting have not yet been investigated. Therefore, the effects of MI and MAP on OM stability and P species during swine manure composting were investigated using geochemical and spectroscopic techniques. MI promoted the degradation of carbohydrates and aliphatic compounds, which improved the degree of OM mineralization and humification. MI and MAP promoted the redistribution of P fractions and species during composting. After composting, the portion of water-soluble P decreased from 50.0% to 23.0%, while the portion of HCl-P increased from 18.5% to 33.5%, which mean that MI and MAP can stabilize P and mitigate its potential loss during composting. These findings indicate that MI can be recommended for enhancing OM biodegradation and stabilization of P during biowastes composting, as a novel trial for the biological waste treatment.
Collapse
Affiliation(s)
- Huanhuan Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Dept., Giza 12613, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
7
|
Yasmeen T, Arif MS, Shahzad SM, Riaz M, Tufail MA, Mubarik MS, Ahmad A, Ali S, Albasher G, Shakoor A. Abandoned agriculture soil can be recultivated by promoting biological phosphorus fertility when amended with nano-rock phosphate and suitable bacterial inoculant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113385. [PMID: 35278995 DOI: 10.1016/j.ecoenv.2022.113385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In semi-arid regions, post-restoration vegetation recovery on abandoned agricultural lands often fails due to inherently low organic matter content and poor soil fertility conditions, including phosphorus (P). As such, amending these soils with controlled release P fertilizer, especially with suitable P solubilizing bacteria (PSB) may promote plant growth and productivity by stimulating biological P fertility. To this aim, a pot study was performed to evaluate the agronomic potential of maize and soil biological P pools, using encapsulated (ENRP) and non-encapsulated (NRP) nano-rock phosphate as the P fertilizer source, on reclaimed agricultural soil in the presence and absence of PSB inoculant. The experiment was setup following a 3 × 2 factorial arrangement with four replicates. Without PSB, NRP treatment showed marginal positive effects on plant growth, P nutrition and P use efficiency (PUE) compared to control treatment. Although larger gains with NRP treatment were more noticeable under PSB inoculation, ENRP was the most convenient slow-release P fertilizer, increasing plant growth, P nutrition and grain yield compared to all treatments. Importantly, PSB inoculation with ENRP resulted in significantly higher increase in soil CaCl2-P (8.91 mg P kg soil-1), citrate-P (26.98 mg P kg soil-1), enzyme-P (18.98 mg P kg soil-1), resin-P (11.41 mg P kg soil-1), and microbial-P (18.94 mg P kg soil-1), when compared to all treatment combinations. Although a decrease in soil HCl-P content was observed with both types of P fertilizer, significant differences were found only with PSB inoculation. A significant increase in soil biological P pools could be due to the higher specific area and crystalline structure of nano materials, providing increased number of active sites for PSB activity in the presence of biobased encapsulated shell. Furthermore, the increase in PSB abundance, higher root carboxylate secretions, and decreased rhizosphere pH in response to nano-structured P fertilizer, implies greater extension of rhizosphere promoting greater P mobilization and/or solubilization, particularly under PSB inoculated conditions. We conclude that cropping potential of abandoned agricultural lands can be enhanced by the use of nano-rock phosphate in combination with PSB inoculant, establishing a favorable micro-environment for higher plant growth and biochemical P fertility.
Collapse
Affiliation(s)
- Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, University College of Agriculture, University of Sargodha, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | | | - Aqeel Ahmad
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Science, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
8
|
Peng Q, Zhang Z, Su R, Zhang X, Lambers H, He H. Phosphorus and selenium uptake, root morphology, and carboxylates in the rhizosheath of alfalfa (Medicago sativa) as affected by localised phosphate and selenite supply in a split-root system. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1161-1174. [PMID: 34582744 DOI: 10.1071/fp21031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/05/2021] [Indexed: 05/12/2023]
Abstract
Low availability of phosphorus (P) is a key limiting factor for the growth of many crops. Selenium (Se) is a nutrient for humans that is acquired predominantly from plants. Localised P and Se supply may affect P- and Se-uptake efficiency. Our aim was to examine the mechanisms of alfalfa (Medicago sativa L.) to acquire P and Se when the elements are heterogeneously or homogeneously distributed in soil, and how P and Se supply affect plant growth and uptake of P and Se. We conducted a split-root experiment growing alfalfa in a loess soil with two distribution patterns (i.e. heterogeneous and homogeneous) of P and Se. The application rates of P (KH2PO4) and Se (Na2SeO3) were 0 and 20mgPkg-1, and 0 and 1mgSekg-1, respectively. Our results showed that plants absorbed more Se when both P and Se were supplied homogeneously than when supplied heterogeneously. Supplying Se had a positive effect on plant P content. Localised P supply resulted in the exudation of more carboxylates by roots than homogeneous P supply did. Soil microbial biomass P was significantly greater when P was supplied homogeneously. Shoot-to-root translocation of Se had a positive effect on P-uptake efficiency. These results indicated that, compared with homogeneous P supply, localised P supply promoted P and Se uptake by increasing the amount of rhizosheath carboxylates and weakening the competition between roots and microbes. Translocation of Se within plant organs was promoted by the application of P, thus enhancing the P-uptake efficiency of alfalfa.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zekun Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingchang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; and College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia; and Department of Plant Nutrition, China Agricultural University, Beijing 100193, China
| | - Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; and College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; and School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, Rchiad Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol Res 2021; 252:126842. [PMID: 34438221 DOI: 10.1016/j.micres.2021.126842] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Although research on plant growth promoting bacteria began in the 1950s, basic and applied research on bacteria improving use of phosphorus (P) continues to be a priority among many agricultural research institutions. Ultimately, identifying agriculturally beneficial microbes, notably P solubilizing bacteria (PSB), that enhance the efficient use of P supports more sustainable cropping systems and the judicious use of mineral nutrients. In parallel, there is more attention on improving crop root P acquisition of existing soil P pools as well as by increasing the proportion of fertilizer P that is taken up by crops. Today, new lines of research are emerging to investigate the co-optimization of PSB-fertilizer-crop root processes for improved P efficiency and agricultural performance. In this review, we compile and summarize available findings on the beneficial effects of PSB on crop production with a focus on crop P acquisition via root system responses at the structural, functional and transcriptional levels. We discuss the current state of knowledge on the mechanisms of PSB-mediated P availability, both soil- and root-associated, as well as crop uptake via P solubilization, mineralization and mobilization, mainly through the production of organic acids and P-hydrolyzing enzymes, and effects on phytohormone signaling for crop root developement. The systematic changes caused by PSB on crop roots are discussed and contextualized within promising functional trait-based frameworks. We also detail agronomic profitability of P (mineral and organic) and PSB co-application, in amended soils and inoculated crops, establishing the connection between the influence of PSB on agroecosystem production and the impact of P fertilization on microbial diversity and crop functional traits for P acquisition.
Collapse
Affiliation(s)
- Adnane Bargaz
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco.
| | - Wissal Elhaissoufi
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco; Cadi Ayyad University, Faculty of Sciences and Techniques, Biology Dep., Marrakech, Morocco
| | - Said Khourchi
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco; University of Liège, Gembloux Agro-Bio Tech, Liège, Belgium
| | - Bouchra Benmrid
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco
| | - Kira A Borden
- University of British Columbia, Faculty of Land and Food Systems, Vancouver, V6T 1Z4, Canada
| | - Zineb Rchiad
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco
| |
Collapse
|
10
|
Farooq TH, Kumar U, Mo J, Shakoor A, Wang J, Rashid MHU, Tufail MA, Chen X, Yan W. Intercropping of Peanut-Tea Enhances Soil Enzymatic Activity and Soil Nutrient Status at Different Soil Profiles in Subtropical Southern China. PLANTS 2021; 10:plants10050881. [PMID: 33925476 PMCID: PMC8145338 DOI: 10.3390/plants10050881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 01/23/2023]
Abstract
Intercropping is one of the most widely used agroforestry techniques, reducing the harmful impacts of external inputs such as fertilizers. It also controls soil erosion, increases soil nutrients availability, and reduces weed growth. In this study, the intercropping of peanut (Arachishypogaea L.) was done with tea plants (Camellia oleifera), and it was compared with the mono-cropping of tea and peanut. Soil health and fertility were examined by analyzing the variability in soil enzymatic activity and soil nutrients availability at different soil depths (0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm). Results showed that the peanut-tea intercropping considerably impacted the soil organic carbon (SOC), soil nutrient availability, and soil enzymatic responses at different soil depths. The activity of protease, sucrase, and acid phosphatase was higher in intercropping, while the activity of urease and catalase was higher in peanut monoculture. In intercropping, total phosphorus (TP) was 14.2%, 34.2%, 77.7%, 61.9%; total potassium (TK) was 13.4%, 20%, 27.4%, 20%; available phosphorus (AP) was 52.9%, 26.56%, 61.1%; 146.15% and available potassium (AK) was 11.1%, 43.06%, 46.79% higher than the mono-cropping of tea in respective soil layers. Additionally, available nitrogen (AN) was 51.78%, 5.92%, and 15.32% lower in the 10-20 cm, 20-30 cm, and 30-40 cm layers of the intercropping system than in the mono-cropping system of peanut. Moreover, the soil enzymatic activity was significantly correlated with SOC and total nitrogen (TN) content across all soil depths and cropping systems. The depth and path analysis effect revealed that SOC directly affected sucrase, protease, urease, and catalase enzymes in an intercropping system. It was concluded that an increase in the soil enzymatic activity in the intercropping pattern improved the reaction rate at which organic matter decomposed and released nutrients into the soil environment. Enzyme activity in the decomposition process plays a vital role in forest soil morphology and function. For efficient land use in the cropping system, it is necessary to develop coherent agroforestry practices. The results in this study revealed that intercropping certainly enhance soil nutrients status and positively impacts soil conservation.
Collapse
Affiliation(s)
- Taimoor Hassan Farooq
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Uttam Kumar
- Institute of Applied Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jing Mo
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198 Lleida, Spain;
| | - Jun Wang
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | | | - Muhammad Aammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy;
| | - Xiaoyong Chen
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
- Correspondence: (X.C.); (W.Y.)
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China; (T.H.F.); (J.M.); (J.W.)
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (X.C.); (W.Y.)
| |
Collapse
|