1
|
Fadhila AN, Pramono BA, Muniroh M. Mercury and cadmium-induced inflammatory cytokines activation and its effect on the risk of preeclampsia: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:1-10. [PMID: 37978836 DOI: 10.1515/reveh-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
During the last decade, there has been an increase in exposure to heavy metals that can affect human health and the environment, especially mercury (Hg) and cadmium (Cd). These exposures can pollute the rivers or oceans, then contaminating marine organisms. Humans as the last consumer of this food chain cycle can be a place for the bioaccumulation of Hg and Cd, especially for people living in coastal areas, including pregnant women. Exposure to heavy metals Hg and Cd can have a high risk of triggering blood vessel disorders, penetrating the blood-brain barrier (BBB) and the placental barrier, one of which can increase the risk of preeclampsia. Several immunological biomarkers such as some cytokines associated with Hg and Cd exposure are also involved in the pathophysiology of preeclampsia, which are the placental implantation process and endothelial dysfunction in pregnant women. Therefore, countries that have a high incidence of preeclampsia should be aware of the environmental factors, especially heavy metal pollution such as Hg and Cd.
Collapse
Affiliation(s)
- Alya N Fadhila
- Master Program of Biomedical Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Besari A Pramono
- Department of Obstetrics and Gynecology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
2
|
Agarwal S, Kaushik S, Saha H, Paramanick D, Mazhar M, Basist P, Khan R, Alhalmi A. Therapeutic potential of traditional herbal plants and their polyphenols in alleviation of mercury toxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03807-7. [PMID: 39912903 DOI: 10.1007/s00210-025-03807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Mercury (Hg) is a major environmental contaminant significantly impacting human health. As a naturally occurring element, mercury has been extensively mobilized into aquatic and terrestrial ecosystems over thousands of years, largely due to anthropogenic activities such as mining and metal extraction. Acute mercury toxicity causes extensive physiological damage, affecting vital organs including the kidneys, heart, liver, brain, and skin. Phytochemicals, known for their diverse pharmacological properties, have shown promise in mitigating metal-induced toxicities, including mercury. These compounds exhibit protective effects against mercury-induced multi-organ damage through mechanisms such as reactive oxygen species (ROS) scavenging, cyclooxygenase (COX) inhibition, and anti-inflammatory activity. This review explores the therapeutic potential of traditional herbal plants and their phytoconstituents in alleviating mercury-induced toxicity. Key findings highlight several plants with hepatoprotective effects, mitigating necrosis and anatomical distortion in liver cells. Phytochemicals such as quercetin, rutin, salicylic acid, ferulic acid, 6-gingerol, and 6-shogaol play pivotal roles in downregulating molecular pathways activated by mercury exposure. Other bioactive compounds, including acetogenin and gallic acid, exhibit potent antioxidant properties, with mechanisms such as ROS scavenging and inhibition of lipid peroxidation. This review also highlights certain compounds, such as aloe-emodin and gentisic acid, which exhibit potential for mitigating mercury toxicity through mechanisms like inhibiting oxidative stress and enhancing cellular defense pathways. However, these compounds remain underexplored, with no significant studies conducted to evaluate their efficacy against mercury-induced toxicity, presenting a critical area for future research. These findings underscore the potential of phytochemicals as effective agents in combating mercury toxicity through antioxidant mechanisms, cellular signalling regulation, and heavy metal chelation.
Collapse
Affiliation(s)
- Saloni Agarwal
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Swati Kaushik
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Hiranmoy Saha
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Debashish Paramanick
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Mohd Mazhar
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Parakh Basist
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Aden, 00967, Aden, Yemen.
| |
Collapse
|
3
|
Zhang W, Chen W, Lu D, Nie J, Hu Z, Xian C. Interactive association of metals and Life's Essential 8 with mortality in U.S. adults: a prospective cohort study from the NHANES dataset. BMC Public Health 2024; 24:3073. [PMID: 39506744 PMCID: PMC11542460 DOI: 10.1186/s12889-024-20580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Life's Essential 8 (LE8) is a novel assessment of cardiovascular health (CVH) by evaluating lifestyle, and reports of the associations between LE8 and urinary metals on mortality have been very limited. This study aimed to conduct a prospective cohort study and investigate the combined effects of metals and LE8 on mortality in U.S. adults. METHODS This study enrolled participants with complete information on urinary metals, LE8, mortality status, and confounders from the National Health and Nutrition Examination Survey (2005-2018). The Cox regression model, adaptive lasso penalized regression, and restricted cubic spline were used to analyze the individual effects of metals and LE8 on all-cause mortality. The additive and multiplicative interaction scales and quantile g-computation were used to evaluate the interaction and combined effects. Stratified analyses were performed to clarify whether metals and LE8 interacted with other variables to influence all-cause mortality. RESULTS A total of 8017 participants were included in this study. The concentrations of cadmium, cobalt, lead, antimony, and thorium were greater in the low CVH group than in the high CVH group [median (µg/L): 0.29 vs. 0.19, 0.36 vs. 0.35, 0.48 vs. 0.39, 0.05 vs. 0.04, and 0.07 vs. 0.06]. The interaction between cadmium and LE8 was statistically significant, with a synergy index of 1.169 (95% CI: 1.004, 1.361). The stratified analyses showed that the interaction between age and LE8 had an impact on all-cause mortality (P for interaction = 0.004). CONCLUSIONS In this representative sample of the U.S. population, we found that the combined effect of cadmium, lead, thallium, and LE8 was positively associated with all-cause mortality. Furthermore, the interaction between cadmium and LE8 influenced all-cause mortality. So people should adopt healthy behaviors and reduce heavy metal exposure to minimize the risk of adverse health outcomes.
Collapse
Affiliation(s)
- Weipeng Zhang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, Guangdong, China.
| | - Weiqiang Chen
- The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Dengqiu Lu
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Junfeng Nie
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Zhumin Hu
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Cuiyao Xian
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| |
Collapse
|
4
|
Lawruk-Desjardins C, Storck V, Ponton DE, Amyot M, Walsh DA. A genome catalogue of mercury-methylating bacteria and archaea from sediments of a boreal river facing human disturbances. Environ Microbiol 2024; 26:e16669. [PMID: 38922750 DOI: 10.1111/1462-2920.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Methyl mercury, a toxic compound, is produced by anaerobic microbes and magnifies in aquatic food webs, affecting the health of animals and humans. The exploration of mercury methylators based on genomes is still limited, especially in the context of river ecosystems. To address this knowledge gap, we developed a genome catalogue of potential mercury-methylating microorganisms. This was based on the presence of hgcAB from the sediments of a river affected by two run-of-river hydroelectric dams, logging activities and a wildfire. Through the use of genome-resolved metagenomics, we discovered a unique and diverse group of mercury methylators. These were dominated by members of the metabolically versatile Bacteroidota and were particularly rich in microbes that ferment butyrate. By comparing the diversity and abundance of mercury methylators between sites subjected to different disturbances, we found that ongoing disturbances, such as the input of organic matter related to logging activities, were particularly conducive to the establishment of a mercury-methylating niche. Finally, to gain a deeper understanding of the environmental factors that shape the diversity of mercury methylators, we compared the mercury-methylating genome catalogue with the broader microbial community. The results suggest that mercury methylators respond to environmental conditions in a manner similar to the overall microbial community. Therefore, it is crucial to interpret the diversity and abundance of mercury methylators within their specific ecological context.
Collapse
Affiliation(s)
| | - Veronika Storck
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Dominic E Ponton
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Amyot
- Département de sciences biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Ren A, Yao W, Zhu D. A mitochondrion-targeted fluorescent probe based on ESIPT phthalimide for the detection of Hg 2+ with large Stokes shift. Analyst 2023; 148:5882-5888. [PMID: 37917054 DOI: 10.1039/d3an01671d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A novel mitochondrion-targeted Hg2+-specific fluorescent probe 1 based on ESIPT phthalimide was designed and synthesized for the first time. Owing to the blockage of the ESIPT process between the hydroxy group and the carbonyl oxygen of the imide by the diphenylphosphinothioate group, 1 was almost nonfluorescent. After reacting with Hg2+, 1 exhibited a dramatic fluorescence enhancement due to the recovery of the ESIPT process through Hg2+-induced desulfurization-hydrolysis of the diphenylphosphinothioate moiety and the cleavage of the P-O bond. 1 showed a large Stokes shift, rapid response and high sensitivity and selectivity for Hg2+ over other metal ions. Moreover, 1 was successfully employed to image Hg2+ in the mitochondria of living cells.
Collapse
Affiliation(s)
- Aishan Ren
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China.
| | - Wenqin Yao
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China.
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545005, PR China
| | - Dongjian Zhu
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China.
| |
Collapse
|
6
|
Cheng X, Feng B, Chen F, Huang S, Zhang S, Gao F, Zeng W. Development of a Water-Soluble Fluorescent Probe Based on Natural Flavylium for Mercury(II) Ion Detection and Clinical Antidote Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13263-13269. [PMID: 37639577 DOI: 10.1021/acs.jafc.3c04537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The health hazard posed by Hg2+ makes it imperative to develop a fast and convenient means for detecting Hg2+ in water samples and living objects. While fluorescence sensing technology is considered a promising candidate, the poor water solubility and fluorescence quenching in aqueous solutions of most existing probes limit their practical application. To overcome this, we developed a natural flavylium-inspired fluorescent probe with excellent water solubility. Our probe demonstrated outstanding performance of high sensitivity (LOD = 0.47 nM), fast response (<10 min), and great selectivity for Hg2+. Notably, we validated its applicability in real water, urine samples, and living cells. Furthermore, the probe was successfully applied to evaluate the effectiveness of antidotes for clinical Hg2+ poisoning.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shengwang Zhang
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Feng Gao
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
- The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| |
Collapse
|
7
|
Chen J, Tao J, Yu HF, Ma CP, Tan F, Wang XC. Highly selective chemosensor for the sensitive detection of Hg 2+ in aqueous media and its cell imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122648. [PMID: 36966729 DOI: 10.1016/j.saa.2023.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
The deleterious toxicity of Hg2+ on ecological and biological system makes it crucial for the precise monitoring of Hg2+. Herein, we prepared a novel "turn-on" chemosensor N'-(4-(methylthio)butan-2-ylidene) rhodamine B hydrazide (denoted as MTRH) by a simple two-step reaction. MTRH exhibited an ultra-low detection limit (LOD) in fluorescence measurement of Hg2+ in pure aqueous media, which was estimated to be 1.3 × 10-9 mol·L-1. Moreover, the proposed chemosensor holds the ability of visualizing Hg2+ by the distinct color change of the solution. The corresponding recognition mechanism was investigated by Job's plots, mass spectrometry and DFT calculation analysis. Importantly, the characteristics such as high sensitivity, low cytotoxicity and good biocompatibility of MTRH exhibited in the application of detecting Hg2+ in real water sample and bioimaging of intracellular Hg2+ prove that MTRH is a promising tool to evaluate the levels of Hg2+ in complex biological systems.
Collapse
Affiliation(s)
- Jin Chen
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Tao
- College of Chemistry and Life Science, Anshan Normal University, Anshan 114016, China
| | - Hai-Feng Yu
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Cui-Ping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Chun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
8
|
Ullah S, Zahra QUA, Mansoorianfar M, Hussain Z, Ullah I, Li W, Kamya E, Mehmood S, Pei R, Wang J. Heavy Metal Ions Detection Using Nanomaterials-Based Aptasensors. Crit Rev Anal Chem 2022; 54:1399-1415. [PMID: 36018260 DOI: 10.1080/10408347.2022.2115287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Heavy metals ions as metallic pollutants are a growing global issue due to their adverse effects on the aquatic ecosystem, and human health. Unfortunately, conventional detection methods such as atomic absorption spectrometry exhibit a relatively low limit of detection and hold numerous disadvantages, and therefore, the development of an efficient method for in-situ and real-time detection of heavy metal residues is of great importance. The aptamer-based sensors offer distinct advantages over antibodies and emerged as a robust sensing platform against various heavy metals due to their high sensitivity, ease of production, simple operations, excellent specificity, better stability, low immunogenicity, and cost-effectiveness. The nucleic acid aptamers in conjugation with nanomaterials can bind to the metal ions with good specificity/selectivity and can be used for on-site monitoring of metal ion residues. This review aimed to provide background information about nanomaterials-based aptasensor, recent advancements in aptamer conjunction on nanomaterials surface, the role of nanomaterials in improving signal transduction, recent progress of nanomaterials-based aptasening procedures (from 2010 to 2022), and future perspectives toward the practical applications of nanomaterials-based aptasensors against hazardous metal ions for food safety and environmental monitoring.
Collapse
Affiliation(s)
- Salim Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Zahid Hussain
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Ismat Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Edward Kamya
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Shah Mehmood
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, PR China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, Anhui, PR China
| |
Collapse
|
9
|
Cheng X, Huang S, Lei Q, Chen F, Zheng F, Zhong S, Huang X, Feng B, Feng X, Zeng W. The exquisite integration of ESIPT, PET and AIE for constructing fluorescent probe for Hg(II) detection and poisoning. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Xu J, Zhu X, Hui R, Xing Y, Wang J, Shi S, Zhang Y, Zhu L. Associations of metal exposure with hyperuricemia and gout in general adults. Front Endocrinol (Lausanne) 2022; 13:1052784. [PMID: 36531480 PMCID: PMC9755211 DOI: 10.3389/fendo.2022.1052784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Epidemiological evidence of the associations between metal exposure and gout-related outcomes (including serum uric acid [SUA], hyperuricemia and gout) is scarce. The aim of the study is to investigate the associations of metal exposure with SUA, hyperuricemia and gout in general adults. METHODS In this study, the exposure to five blood metals (mercury, manganese, lead, cadmium and selenium) of general adults was analyzed based on the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018 (n = 14,871). Linear, logistic and weighted quantile sum (WQS) regression models were applied to examine the associations of blood metals with gout-related outcomes. Possible dose-response relationships were analyzed through restricted cubic spline regression. RESULTS Compared with the lowest quartile of blood metals, mercury (quartile 2 and 4), lead (quartile 2, 3, and 4) and selenium (quartile 2 and 4) were found to be positively correlated with SUA and hyperuricemia. Higher levels of mercury and lead were associated with gout, but only those in the fourth quartile had statistical significance (OR [95%CI]: 1.39 [1.10-1.75] and 1.905 [1.41-2.57]) respectively). The WQS index of the blood metals was independently correlated with SUA (β [95%CI]: 0.17 [0.13-0.20]), hyperuricemia (OR [95%CI]: 1.29 [1.16-1.42]) and gout (OR [95%CI]: 1.35 [1.15-1.58]). Among them, lead was the most heavily weighted component (weight = 0.589 for SUA, 0.482 for hyperuricemia, and 0.527 for gout). In addition, restricted cubic spline regression models showed a linear association of lead with the prevalence of hyperuricemia and gout. CONCLUSION Our results suggested that blood metal mixtures were positively associated with gout-related outcomes, with the greatest effect coming from lead.
Collapse
Affiliation(s)
- Jing Xu
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Xing
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Shuang Shi
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- *Correspondence: Shuang Shi, ; Yong Zhang, ; Ling Zhu,
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- *Correspondence: Shuang Shi, ; Yong Zhang, ; Ling Zhu,
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Department of Cardiology, The Third Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Shuang Shi, ; Yong Zhang, ; Ling Zhu,
| |
Collapse
|
11
|
Liu Y, Xu Z, Zhu S, Fakhri A, Kumar Gupta V. Evaluation of synergistic effect of polyglycine functionalized gold/iron doped silver iodide for colorimetric detection, photocatalysis, drug delivery and bactericidal applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Belmonte A, Muñoz P, Santos-Echeandía J, Romero D. Tissue Distribution of Mercury and Its Relationship with Selenium in Atlantic Bluefin Tuna ( Thunnus thynnus L.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413376. [PMID: 34948982 PMCID: PMC8708749 DOI: 10.3390/ijerph182413376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Mercury (Hg) is an important heavy metal to consider in marine predators, while selenium (Se) has a natural antagonistic effect on this metal in fish. The Atlantic bluefin tuna (ABFT, Thunnus thynnus) is a pelagic top-level predator of the trophic web and their Hg muscular content is an object of concern in food safety. Nevertheless, little is known about levels of this metal in remaining tissues, which may be important as by-product source, and its relationship with Se. Thus, concentration of both elements in liver, kidney, brain, gill and bone, in addition to muscle, of ABFT were determined. The kidney was the tissue with the highest concentration of Hg (Total-Hg, THg) and Se, and the Se/THg concentration ratio was similar in all tissues, except bone and muscle. The Selenium Health Benefit Value (HBVSe) was positive in each specimen and tissue, indicating that the Se plays an important role against Hg not only in the muscle.
Collapse
Affiliation(s)
- Antonio Belmonte
- TAXON Estudios Ambientales S.L. C/Uruguay s/n, 30820 Alcantarilla, Spain;
| | - Pilar Muñoz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | | | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: ; Tel.: +34-868-884-318
| |
Collapse
|
13
|
Effect of Hg2+ on the microphysical and chemical properties of oil-producing Nannochloropsis sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|