1
|
Ferdowsi M, Khabiri B, Buelna G, Jones JP, Heitz M. Prolonged operation of a methane biofilter from acclimation to the failure stage. ENVIRONMENTAL TECHNOLOGY 2024; 45:2589-2598. [PMID: 36789628 DOI: 10.1080/09593330.2023.2179421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Global warming needs immediate attention to reduce major greenhouse gas emissions such as methane (CH4). Bio-oxidation of dilute CH4 emissions in packed-bed bioreactors such as biofilters has been carried out over recent years at laboratory and large scales. However, a big challenge is to keep CH4 biofilters running for a long period. In this study, a packed-bed lab-scale bioreactor with a specialized inorganic-based filter bed was successfully operated over four years for CH4 elimination. The inoculation of the bioreactor was the active leachate of another CH4 biofilter which resulted in a fast acclimation and removal efficiency (RE) reached 80% after seven weeks of operation for CH4 inlet concentrations ranging from 700 to 800 ppmv and an empty bed residence time (EBRT) of 6 min. During four years of operation, the bioreactor often recorded REs higher than 65% for inlet concentrations in the range of 1900-2200 ppmv and an EBRT of 6 min. The rate and interval of the nutrient supply played an important role in maintaining the bioreactor's high performance over the long operation. Forced shutdowns were unavoidable during the 4-year operation and the bioreactor fully tolerated them with a partial recovery within one week and a progressive recovery over time. In the end, the bioreactor's filter bed started to deteriorate due to a long shutdown of twelve weeks and the extended operation of four years when the RE dropped to below 8% with no sign of returning to its earlier performance.
Collapse
Affiliation(s)
- Milad Ferdowsi
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Bahman Khabiri
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gerardo Buelna
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - J Peter Jones
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Michèle Heitz
- Department of Chemical Engineering and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Han M, Feng H, Peng C, Lei X, Xue J, Malghani S, Ma X, Song X, Wang W. Spatiotemporal patterns and drivers of stem methane flux from two poplar forests with different soil textures. TREE PHYSIOLOGY 2022; 42:2454-2467. [PMID: 35870127 DOI: 10.1093/treephys/tpac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In forest ecosystems, the majority of methane (CH4) research focuses on soils, whereas tree stem CH4 flux and driving factors remain poorly understood. We measured the in situ stem CH4 flux using the static chamber-gas chromatography method at different heights in two poplar (Populus spp.) forests with separate soil textures. We evaluated the relationship between stem CH4 fluxes and environmental factors with linear mixed models and estimated the tree CH4 emission rate at the stand level. Our results showed that poplar stems were a net source of atmospheric CH4. The mean stem CH4 emission rates were 97.51 ± 6.21 μg·m-2·h-1 in Sihong and 67.04 ± 5.64 μg·m-2·h-1 in Dongtai. The stem CH4 emission rate in Sihong with clay loam soils was significantly higher (P < 0.001) than that in Dongtai with sandy loam soils. The stem CH4 emission rate also showed a seasonal variation, minimum in winter and maximum in summer. The stem CH4 emission rate generally decreased with increasing sampling height. Although the differences in CH4 emission rates between stem heights were significant in the annual averages, these differences were driven by differences observed in the summer. Stem CH4 emission rates were significantly and positively correlated with air temperature (P < 0.001), relative humidity (P < 0.001), soil water content (P < 0.001) and soil CH4 flux (P < 0.001). At these sites, the soil emitted CH4 to the atmosphere in summer (mainly from June to September) but absorbed CH4 from the atmosphere during the other season. At the stand level, tree CH4 emissions accounted for 2-35.4% of soil CH4 uptake. Overall, tree stem CH4 efflux could be an important component of the forest CH4 budget. Therefore, it is necessary to conduct more in situ monitoring of stem CH4 flux to accurately estimate the CH4 budget in the future.
Collapse
Affiliation(s)
- Menghua Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Huili Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changhui Peng
- School of Geographic Science, Hunan Normal University, Changsha, Hunan 410000, China
- Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Xiangdong Lei
- Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianhui Xue
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Saadatullah Malghani
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xuehong Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weifeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
3
|
Development and Validation of a Practical Model for Transient Biofilter Performance. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040051. [PMID: 36412752 PMCID: PMC9680303 DOI: 10.3390/biotech11040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Biofilters are biological air-phase packed-bed reactors used for the removal of industrial air pollutants such as volatile organic compounds (VOCs) and odors. Because of the economic and environmental benefits, biofilter technology is preferred in applications such as wastewater treatment plants, waste recycling facilities, and several chemical industries over conventional treatment methods such as adsorption, absorption, and thermal oxidation processes. In order to predict the performance of biofilters, mathematical models under steady-state and transient conditions are needed. The transient biofilter models for gas-phase bioreactors are highly complex, as they involve several parameters that are not easily determined for industrial applications. In this work, a practical transient biofilter model is developed and an analytical solution for the transient model is obtained. When this model is compared with the published but more complex model, this new transient model produces almost the same level of prediction with equal comparisons of experimental data for VOCs, benzene, and toluene. This simple model has fewer parameters and will be very useful and practical for industrial applications for the analysis of transient biofilter performance.
Collapse
|
4
|
Huang D, Gao L, Cheng M, Yan M, Zhang G, Chen S, Du L, Wang G, Li R, Tao J, Zhou W, Yin L. Carbon and N conservation during composting: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156355. [PMID: 35654189 DOI: 10.1016/j.scitotenv.2022.156355] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Composting, as a conventional solid waste treatment method, plays an essential role in carbon and nitrogen conservation, thereby reducing the loss of nutrients and energy. However, some carbon- and nitrogen-containing gases are inevitably released during the process of composting due to the different operating conditions, resulting in carbon and nitrogen losses. To overcome this obstacle, many researchers have been trying to optimize the adjustment parameters and add some amendments (i.e., pHysical amendments, chemical amendments and microbial amendments) to reduce the losses and enhance carbon and nitrogen conservation. However, investigation regarding mechanisms for the conservation of carbon and nitrogen are limited. Therefore, this review summarizes the studies on physical amendments, chemical amendments and microbial amendments and proposes underlying mechanisms for the enhancement of carbon and nitrogen conservation: adsorption or conversion, and also evaluates their contribution to the mitigation of the greenhouse effect, providing a theoretical basis for subsequent composting-related researchers to better improve carbon and nitrogen conservation measures. This paper also suggests that: assessing the contribution of composting as a process to global greenhouse gas mitigation requires a complete life cycle evaluation of composting. The current lack of compost clinker impact on carbon and nitrogen sequestration capacity of the application site needs to be explored by more research workers.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|