1
|
Hu JS, Xiao HY, Tang XY, Yan H, Chen Z, Cheng JH, Li XY. Polarity and fluorescent fractions of manure dissolved organic matter could affect differently the adsorption and desorption of antibiotics in soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124767. [PMID: 40048977 DOI: 10.1016/j.jenvman.2025.124767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
The impacts of manure dissolved organic matter (DOM) on the adsorption and desorption of veterinary antibiotics in soils have not been fully explored. In this study, the effects of pig manure (PM) DOM and its hydrophilic and hydrophobic fractions on antibiotic adsorption and subsequent desorption in three topsoils of bamboo stands under different fertilization conditions (control, with heavy manure application, and with heavy manure application suspended) were examined by batch experiments, with the aid of excitation-emission matrix fluorescence spectroscopy, Fourier transformed infrared spectroscopy, and X-ray photoelectron spectroscopy. The addition of 100 mg-C L-1 PM DOM was found to increase the adsorption (in terms of the Freundlich affinity coefficient (Kf)) of florfenicol by 71.27%-132.23% but decrease the adsorption of doxycycline, enrofloxacin, and sulfamethazine by 41.67%-94.78%, 98.09%-99.99%, and 22.93%-67.20%, respectively. These effects resulted mainly from the increases in solution pH by PM DOM addition and preferential adsorption of PM DOM's protein-like fraction to the soils. Effects of hydrophilic and hydrophobic fractions of PM DOM were antibiotic and soil specific, except the increases in adsorption Kf of florfenicol in all tested soils. Among the four antibiotics, sulfamethazine exhibited the lowest Kf values in the soils with PM DOM addition during both the adsorption and desorption processes, implying that sulfamethazine may be the most leachable antibiotic in the field. The results of this study indicate that it is essential to consider the varying effects of the aromaticity and hydrophobicity of manure DOM in assessing the leaching risk of veterinary antibiotics in manured soils.
Collapse
Affiliation(s)
- Jin-Sheng Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610299, China; University of Chinese Academy of Sciences, Beijing, 101408, China; State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hui-Yun Xiao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiang-Yu Tang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Hao Yan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhuo Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jian-Hua Cheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiao-Yu Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
2
|
Lu N, Bu M, Zhang C, Gao Q, Wang X, Zhou X, Ding D, Zhang H. Development of a rapid detection method for enrofloxacin in food. Biotechnol Genet Eng Rev 2024; 40:3931-3949. [PMID: 37083187 DOI: 10.1080/02648725.2023.2204701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Develop the ic-ELISA rapid detection method of Enrofloxacin (ENR). Corresponding antibodies are obtained by animal immunity to identify their titer and specificity. The optimal coating time was obtained by indirect competition ELISA, and the antigen coating time, suitable coating concentration, primary antibody dilution factor, blocking solution blocking time, primary antibody reaction time and secondary antibody reaction time were optimized, and the specificity and accuracy of the method were evaluated. The ic-ELISA rapid detection method of ENR, IC50 was 9.13 ng/mL, and the linear detection range (IC20-IC80) was 4.16-20.03 ng/mL. The LOD limit is 2.11 ng/mL. The cross-reactivity rate of 9 fluoroquinolones was above 10%, and the average recovery rate was above 80%. The reason why the heterologous coating is more sensitive may be due to the fact that the piperazine group of ofloxacin is one less carbon atom than enrofloxacin, and ofloxacin is connected to the main ring by N and O hybridization, while enrofloxacin is connected to the main ring through a ternary ring, these two reasons may cause the charge density of extracyclic oxygen at the ofloxacin binding site to be higher than that of enrofloxacin, and the binding ability to antibodies is stronger. Therefore, when heterologous coating, the competitive inhibition rate against enrofloxacin is higher and the effect is better. The conclusion obtained through this experiment is that the detection method has strong broad spectrum and good sensitivity, and can quickly detect the total amount of enrofloxacin and its seven common fluoroquinolones in fish and eggs.
Collapse
Affiliation(s)
- Ning Lu
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| | - Meichao Bu
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Chao Zhang
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Qianni Gao
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| | - Xiaolu Wang
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| | - Xiaohui Zhou
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| | - Dejie Ding
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Huimin Zhang
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
- Bozhou Key Laboratory of Medicinal and Food Homologous Functional Foods, Bozhou University, Bozhou, China
| |
Collapse
|
3
|
Bai C, Ge X, Huang Z, Qi Z, Ren H, Yu Y, An T. Polybrominated diphenyl ethers and their alternatives in soil cores from a typical flame-retardant production park: Vertical distribution and potential influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124597. [PMID: 39047890 DOI: 10.1016/j.envpol.2024.124597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
With the prohibition on the production and use of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs) have emerged as their alternatives. However, the vertical transport and associated influencing factors of these chemicals into soil are not clearly understood. To clarify the vertical distribution of the pollutants and related influencing factors, surface soil and soil core samples were collected at a depth in the range of 0.10-5.00 m in a typical 20-year-old flame-retardant production park and surrounding area. PBDEs and DBDPE show a clear point source distribution around the production park with their central concentrations up to 2.88 × 104 and 8.46 × 104 ng/g, respectively. OPFRs are mainly found in residential areas. The production conversion of PBDEs to DBDPE has obvious environmental characteristics. The vertical distribution revealed that most of the pollutants have penetrated into the soil 5.00 m or even deeper. The median concentrations of deca-BDE and DBDPE reached 50.9 and 9.85 × 103 ng/g, respectively, even at a depth of 5.00 m. Soil organic matter plays a crucial role in determining the vertical distribution, while soil clay particles have a greater impact on the high molecular weight and/or highly brominated compounds.
Collapse
Affiliation(s)
- Chifei Bai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhaofa Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Helong Ren
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
4
|
Wu J, Jiang Y, He R, Liu Z, Zhang X, Wang W, Kong W, Wang G, Wu Y. Adsorption/desorption of enrofloxacin in farmland soil as the effect of pH and coexisting ions: implications for enrofloxacin fate and risk in loess soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:363. [PMID: 39126534 DOI: 10.1007/s10653-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Fluoroquinolone antibiotics have been extensively used in clinical treatments for human and animal diseases. However, their long-term presence in the environment increases the risk of producing resistance genes and creates a potential threat to ecosystems and the health of humans and animals. Batch equilibrium experiments were utilized to investigate the adsorption and retention behavior and mechanism of the quinolone antibiotic enrofloxacin (ENR) in farmland soil in North China. The adsorption and desorption kinetics of ENR in soil were best fitted by pseudo-second-order model (R2 > 0.999). Both the adsorption and desorption processes of ENR in soil reached equilibrium in 1 h. The desorption amounts of ENR were significantly lower than the adsorption amounts, with the hysteresis coefficient (HI) being less than 0.7. The adsorption thermodynamic process of ENR followed the Linear and Freundlich models (0.965 < R2 < 0.985). Hydrophobic distribution and heterogeneous multimolecular layer adsorption were identified as critical factors in the adsorption process. The adsorption amount of ENR gradually decreased with increasing temperature and the initial concentration of ENR. The adsorption rate of ENR was above 80%, while the desorption rate remained below 15%, indicating strong retention ability. The adsorption rate of ENR in soil decreased with increasing pH, the adsorption rate reached 98.3% at pH 3.0 but only 31.5% at pH 11. The influence of coexisting ions on adsorption primarily depended on their properties, such as ion radius, ionic strength, and hydrolysis properties, and the inhibition of adsorption increased with increasing ionic strength. These findings contribute to understanding the fate and risk of veterinary antibiotics in loess soil in North China.
Collapse
Affiliation(s)
- Jiali Wu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Rui He
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zhewei Liu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaozhen Zhang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wenjing Wang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Weichen Kong
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Gang Wang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yingqin Wu
- Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
5
|
Kong W, Wang W, Jiang Y, Wang G, Ma F, Wu Y. Sorption of ciprofloxacin and enrofloxacin on alkaline cropland soil in semiarid regions: Roles of pH, ionic strength, and ion type. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121565. [PMID: 38917539 DOI: 10.1016/j.jenvman.2024.121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Animals manure and chemical fertilizers are widely applied to agricultural soils to mitigate soil fertility decline resulting from intensive farming practices. However, the use of antibiotics such as ciprofloxacin (CIP) and enrofloxacin (ENR) in these manures introduces certain environmental risks. The sorption of CIP and ENR in soil is influenced by various factors. Soil cations (i.e., Na+, K+, Mg2+, and Ca2+) and artificially introduced ions (NH4+) can affect the sorption behavior of CIP and ENR in alkaline agricultural soils through mechanisms such as ion exchange and competitive sorption. To investigate the effects of ionic strength and ion type on the sorption of antibiotics in alkaline agricultural soil, batch equilibrium experiments were conducted in this study. The results showed that the affinity of alkaline farmland soil to CIP and ENR was poor, and Kd was only 159 L/kg and 89 L/kg, respectively. Increases in temperature and pH inhibited CIP and ENR sorption on soil. Mineral elements in the soil strongly inhibited CIP and ENR sorption. Conversely, NH4+ promoted the Kd values of CIP and ENR by 46% and 221%, respectively. Additionally, under different influencing factors, both the sorption affinity (Kd) and sorption amount of ENR were lower than those of CIP. These findings indicate that ENR has a greater migration potential and poses a greater environmental risk in agricultural soils. Alkaline soil and mineral elements increase the migration potential of CIP, ENR, but the introduction of NH4+ in agricultural production can weaken the migration potential of them.
Collapse
Affiliation(s)
- Weichen Kong
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wenjing Wang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Gang Wang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Fengfeng Ma
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yingqin Wu
- Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
6
|
Sonkar V, Venu V, Nishil B, Thatikonda S. Review on antibiotic pollution dynamics: insights to occurrence, environmental behaviour, ecotoxicity, and management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51164-51196. [PMID: 39155346 DOI: 10.1007/s11356-024-34567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Antibiotic contamination poses a significant global concern due to its far-reaching impact on public health and the environment. This comprehensive review delves into the prevalence of various antibiotic classes in environmental pollution and their interactions with natural ecosystems. Fluoroquinolones, macrolides, tetracyclines, and sulphonamides have emerged as prevalent contaminants in environmental matrices worldwide. The concentrations of these antibiotics vary across diverse environments, influenced by production practices, consumer behaviours, and socio-economic factors. Low- and low-middle-income countries face unique challenges in managing antibiotic contamination, with dominant mechanisms like hydrolysis, sorption, and biodegradation leading to the formation of toxic byproducts. Ecotoxicity reports reveal the detrimental effects of these byproducts on aquatic and terrestrial ecosystems, further emphasizing the gravity of the issue. Notably, monitoring the antibiotic parent compound alone may be inadequate for framing effective control and management strategies for antibiotic pollution. This review underscores the imperative of a comprehensive, multi-sectoral approach to address environmental antibiotic contamination and combat antimicrobial resistance. It also advocates for the development and implementation of tailored national action plans that consider specific environmental conditions and factors. Thus, an approach is crucial for safeguarding both public health and the delicate balance of our natural ecosystems.
Collapse
Affiliation(s)
- Vikas Sonkar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Vishnudatha Venu
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Benita Nishil
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
7
|
Hong H, Liu C, Li Z. Chemistry of soil-type dependent soil matrices and its influence on behaviors of pharmaceutical compounds (PCs) in soils. Heliyon 2023; 9:e22931. [PMID: 38076171 PMCID: PMC10703727 DOI: 10.1016/j.heliyon.2023.e22931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 05/07/2025] Open
Abstract
Behaviors of pharmaceutical compounds (PCs) in soil are usually determined by experimental extrapolation of results from separate constitutes to the soil, or from a special soil to other regional soil conditions. However, such extrapolation is problematic due to variations in soil clay mineral and organic matter (OM) compositions with soil types, which dominate the interaction mechanisms of PCs in soil. It is essential to review current literature to enhance our understanding of the soil-type dependent surface chemistry of soil matrices and the environmental behavior of PCs in different soil types. Major types of soils occur globally in parallel to the latitudinal or altitudinal zonation due to regional climate conditions with distinct clay mineral and OM compositions. The soil-type dependent surface chemistry results in variations in retention, distribution, transport, and transformation PCs in soil. The mixture of PCs of different classes usually exhibited enhanced sorption due to the cooperative multilayer sorption on soil constituents, and that of the same class often caused differential adsorption capacity compared to the sorption from single compound due to competitive sorption. PCs preferentially adsorb to a soil component, or to a special soil type, and exhibit notably soil-type dependent sorption affinity, mobility, and dissipation. The soil-dependent surface chemistry of soil is critical to predict the persistence and bioavailability of PCs in soil. In the future, more detailed studies of influence of individual soil factor on the behaviors of PCs and especially the practical field site investigation are required to better understand the sorption, transport, transformation, and ecotoxicology of PCs in typical soil types.
Collapse
Affiliation(s)
- Hanlie Hong
- School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Chen Liu
- School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Zhaohui Li
- Department of Geosciences, University of Wisconsin-Parkside, 900 Wood Road, Kenosha, WI, 53144, USA
| |
Collapse
|
8
|
Fang L, Chen C, Li S, Ye P, Shi Y, Sharma G, Sarkar B, Shaheen SM, Lee SS, Xiao R, Chen X. A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115175. [PMID: 37379666 DOI: 10.1016/j.ecoenv.2023.115175] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The occurrence of antibiotics in agricultural soils has raised concerns due to their potential risks to ecosystems and human health. However, a comprehensive understanding of antibiotic accumulation, distribution, and potential risks to terrestrial ecosystems on a global scale is still limited. Therefore, in this study, we evaluated the accumulation of antibiotics and their potential risks to soil microorganisms and plants, and highlighted the driving factors of antibiotic accumulation in agricultural soils based on 134 peer-reviewed studies (between 2000 and 2022). The results indicated that 56 types of antibiotics were detected at least once in agricultural soils with concentrations ranging from undetectable to over 7000 µg/kg. Doxycycline, tylosin, sulfamethoxazole, and enrofloxacin, belonging to the tetracyclines, macrolides, sulfonamides, and fluoroquinolones, respectively, were the most accumulated antibiotics in agricultural soil. The accumulation of TCs, SAs, and FQs was found to pose greater risks to soil microorganisms (average at 29.3%, 15.4%, and 21.8%) and plants (42.4%, 26.0%, and 38.7%) than other antibiotics. East China was identified as a hot spot for antibiotic contamination due to high levels of antibiotic concentration and ecological risk to soil microorganisms and plants. Antibiotic accumulation was found to be higher in vegetable fields (245.5 µg/kg) and orchards (212.4 µg/kg) compared to croplands (137.2 µg/kg). Furthermore, direct land application of manure resulted in a greater accumulation of TCs, SAs, and FQs accumulation in soils than compost fertilization. The level of antibiotics decreased with increasing soil pH and organic matter content, attributed to decreasing adsorption and enhancing degradation of antibiotics. In conclusion, this study highlights the need for further research on the impacts of antibiotics on soil ecological function in agricultural fields and their interaction mechanisms. Additionally, a whole-chain approach, consisting of antibiotic consumption reduction, manure management strategies, and remediation technology for soil contaminated with antibiotics, is needed to eliminate the potential environmental risks of antibiotics for sustainable and green agriculture.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - ShiYang Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pingping Ye
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sabry M Shaheen
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
9
|
Li H, Dong Q, Zhang M, Gong T, Zan R, Wang W. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121579. [PMID: 37028785 DOI: 10.1016/j.envpol.2023.121579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs), which are the most commonly regulated and most widely concerned per- and polyfluoroalkyl substances (PFAS) have received increasing attention on a global scale due to their amphiphilicity, stability, and long-range transport. Thus, understanding the typical PFAS transport behavior and using models to predict the evolution of PFAS contamination plumes is important for evaluating the potential risks. In this study, the effects of organic matter (OM), minerals, water saturation, and solution chemistry on the transport and retention of PFAS were investigated, and the interaction mechanism between long-chain/short-chain PFAS and the surrounding environment was analyzed. The results revealed that high content of OM/minerals, low saturation, low pH, and divalent cation had a great retardation effect on long-chain PFAS transport. The retention caused by hydrophobic interaction was the prominent mechanism for long-chain PFAS, whereas, the retention caused by electrostatic interaction was more relevant for short-chain PFAS. Additional adsorption at the air-water and nonaqueous-phase liquids (NAPL)-water interface was another potential interaction for retarding PFAS transport in the unsaturated media, which preferred to retard long-chain PFAS. Furthermore, the developing models for describing PFAS transport were investigated and summarized in detail, including the convection-dispersion equation, two-site model (TSM), continuous-distribution multi-rate model, modified-TSM, multi-process mass-transfer (MPMT) model, MPMT-1D model, MPMT-3D model, tempered one-sided stable density transport model, and a comprehensive compartment model. The research revealed PFAS transport mechanisms and provided the model tools, which supported the theoretical basis for the practical prediction of the evolution of PFAS contamination plumes.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Wu JY, Gao JM, Guo JS, Hou XY, Wang DR, Wu JC, Li XJ, Jia CY. Comprehensive analysis of the fates and risks of veterinary antibiotics in a small ecosystem comprising a pig farm and its surroundings in Northeast China. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130570. [PMID: 37055976 DOI: 10.1016/j.jhazmat.2022.130570] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 06/19/2023]
Abstract
This study investigated the behavior of veterinary antibiotics (VAs) in a small farm ecosystem. Manure and environmental samples were collected around a large pig farm in northeast China. Thirty-four VAs in six categories were analyzed. Then, a multimedia fugacity model was used to estimate the fates of VAs in the environment. The results showed that VAs were prevalent in manure, soil, water, and sediment, but not in crops. Compared with fresh manure, VA levels were significantly lower in surface manure piles left in the open air for 3-6 months. The main VAs, tetracyclines and quinolones, decreased by 427.12 and 158.45 µg/kg, respectively. VAs from manure piles were transported to the surroundings and migrated vertically into deep soil. The concentrations of ∑VAs detected in agricultural soils were 0.03-4.60 µg/kg; > 94% of the mass inventory of the VAs was retained in soil organic matter (SOM), suggesting that SOM is the main reservoir for antibiotics in soil. Risk assessment and model analysis indicated that the negative impact of mixed antibiotics at low concentrations in farmland on crops may be mediated by indirect effects, rather than direct effects. Our findings highlight the environmental fates and risks of antibiotics from livestock farms.
Collapse
Affiliation(s)
- Jian-Yong Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xian-Yu Hou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - De-Rui Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jing-Cheng Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiao-Jun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chun-Yun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
11
|
Cui S, Qi Y, Zhu Q, Wang C, Sun H. A review of the influence of soil minerals and organic matter on the migration and transformation of sulfonamides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160584. [PMID: 36455724 DOI: 10.1016/j.scitotenv.2022.160584] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Sulfonamides (SAs) are common antibiotics that are widely present in the environment and can easily migrate in the environment, so they pose an environmental risk. Minerals and organic matter influence the antibiotic migration and transformation in sewage treatment plants, activated sludge, surface water, and soil environment. In the present paper, the influence of the process and mechanism of minerals and organic matter on the adsorption, degradation, and plant uptake of SAs in soil were summarized. In the impact process of mineral and organic matter on the SAs migration and transformation, the pH value is undoubtedly the most important factor because it determines the ionic state of SAs. In terms of influence mechanisms, the minerals absorb SAs well via cation exchange, complexation, H-bonding, and cation bridging. Mineral photodegradation is also one of the primary removal methods for SAs. Soil organic matter (SOM) can significantly increase the SAs adsorption. The adsorption forces of SAs and SOM or dissolved organic matter (DOM) were very similar, but SOM decreased SAs mobility in the environment, while DOM increased SAs availability. DOM generated active substances and aided in the photodegradation of SAs. This review describes the effects of minerals and organic matter on the fate of SAs in soil, which is useful in controlling the migration and transformation of SAs in the soil environment.
Collapse
Affiliation(s)
- Shengyan Cui
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Arenas-Lago D, Race M, Zhang Z, Núñez-Delgado A. Removal of emerging pollutants from the environment: From bioadsorbents to nanoparticle-based systems. ENVIRONMENTAL RESEARCH 2023; 216:114692. [PMID: 36374794 DOI: 10.1016/j.envres.2022.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the Call for Papers corresponding to this Virtual Special Issue (VSI), the Editors indicated that, as is well known, emerging pollutants include a variety of substances that pose remarkable risks for the environment and public health. In fact, emerging pollutants are considered a matter of concern deserving increasing efforts to elucidate their occurrence, fate, repercussions, and alternatives to their removal from the various environmental compartments where they can be found after spreading as contaminants. Also, the Editors commented that, among the various alternatives that can be considered for achieving their successful removal, some of them are based on the use of sorbent materials, and, specifically, bioadsorbents, which are attractive due to the efficacy and low cost associated with some of them. Another alternative is related to the utilization of nanoparticle-based systems, which may be considered a promising field of research in this way. In both cases, obtaining new research results, as well as designing and programming new ways of going steps ahead in the investigation of both kinds of materials, would be key objectives. According to the previous considerations, the Editors of the VSI invited researchers having new data concerning these aspects to submit manuscripts with experimental results, discussion, reflections and prospective related to their work. With the Special Issue closed, the number of submissions received was 83, with 40 high-quality works being accepted for publication, increasing the overall knowledge on this topic by providing results that we are sure will be of value for the scientific community and the society.
Collapse
Affiliation(s)
- Daniel Arenas-Lago
- Soil Science and Agricultural Chemistry, Univ. of Vigo, Fac. Sciences, Campus Univ., 32004 Ourense, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, Univ. of Cassino and Southern Lazio 03043 Cassino, Italy
| | - Zhien Zhang
- Department of Chemical and Biomedical Engineering, West Virginia Univ., Morgantown, WV, USA
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. of Santiago de Compostela, Engineering Polytech. School, Campus Univ. S/n, 27002 Lugo, Spain.
| |
Collapse
|
13
|
Hu J, Tang X, Qi M, Cheng J. New Models for Estimating the Sorption of Sulfonamide and Tetracycline Antibiotics in Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16771. [PMID: 36554653 PMCID: PMC9778684 DOI: 10.3390/ijerph192416771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Sulfonamides (SAs) and tetracyclines (TCs) are two classes of widely used antibiotics. There is a lack of easy models for estimating the parameters of antibiotic sorption in soils. In this work, a dataset of affinity coefficients (Kf and Kd) of seven SA/TC antibiotics (i.e., sulfachlorpyridazine, sulfamethazine, sulfadiazine, sulfamethoxazole, oxytetracycline, tetracycline, and chlortetracycline) and associated soil properties was generated. Correlation analysis of these data showed that the affinity coefficients of the SAs were predominantly affected by soil organic matter and cation exchange capacity, while those of the TCs were largely affected by soil organic matter and pH. Pedotransfer functions for estimating Kf and Kd were built by multiple linear regression analysis and were satisfactorily validated. Their performances would be better for soils having higher organic matter content and lower pH. These pedotransfer functions can be used to aid environmental risk assessment, prioritization of antibiotics and identification of vulnerable soils.
Collapse
Affiliation(s)
- Jinsheng Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiangyu Tang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Minghui Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jianhua Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
14
|
Álvarez-Esmorís C, Rodríguez-López L, Núñez-Delgado A, Álvarez-Rodríguez E, Fernández-Calviño D, Arias-Estévez M. Influence of pH on the adsorption-desorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine in soils with variable surface charge. ENVIRONMENTAL RESEARCH 2022; 214:114071. [PMID: 35995223 DOI: 10.1016/j.envres.2022.114071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this research, the adsorption/desorption of the antibiotics doxycycline (DC), enrofloxacin (ENR), and sulfamethoxypyradazine (SMP) was studied in 6 agricultural soils with predominance of variable charge, both before and after removing organic matter by calcination. DC adsorption was high at acidic pH, and decreased at pH values above 8. Removal of organic matter with calcination caused just a slight decrease in adsorption, and even in some soils adsorption was similar to that in non-calcined samples. The adsorption coefficients (Kd) were higher for the DC- species compared to DC+, DC0 and DC2-. Regarding DC desorption, the values were very low throughout the pH range covered in the study (2-12), both in the calcined samples and in those not subjected to calcination. ENR showed a similar behavior to DC regarding the effect of pH, since ENR adsorption also decreased at basic pH, but the effect of removing organic matter was different, as it caused a clear decrease in ENR adsorption. The species with the highest Kd was in this case ENR0, although ENR+ is also quantitatively important as regards Kd value in calcined samples. For this antibiotic, no differences in desorption were observed between calcined and non-calcined samples. Finally, SMP adsorption also decreased as pH increased, and, in addition, similarly to what happened with ENR, in general, there was a strong decrease in SMP adsorption when organic matter was removed. The species with the highest Kd in this case was SMP+ in non-calcined samples, but SMP0 and SMP- become more relevant in calcined samples. The percentages of SMP desorption were higher than those for the other two antibiotics, and an increase occurs at intermediate pH values, being higher for calcined samples. These results can be considered relevant in terms of increasing the knowledge as regards the possible evolution and fate of the three antibiotics studied. Specifically, for different pH conditions and with different organic matter contents, when they reach soils and other environmental compartments after being discharged as contaminants. This could have important repercussions on public health and the overall environment.
Collapse
Affiliation(s)
| | - Lucia Rodríguez-López
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Avelino Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | | | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain.
| |
Collapse
|
15
|
Cu and As(V) Adsorption and Desorption on/from Different Soils and Bio-Adsorbents. MATERIALS 2022; 15:ma15145023. [PMID: 35888489 PMCID: PMC9323072 DOI: 10.3390/ma15145023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
This research is concerned with the adsorption and desorption of Cu and As(V) on/from different soils and by-products. Both contaminants may reach soils by the spreading of manure/slurries, wastewater, sewage sludge, or pesticides, and also due to pollution caused by mining and industrial activities. Different crop soils were sampled in A Limia (AL) and Sarria (S) (Galicia, NW Spain). Three low-cost by-products were selected to evaluate their bio-adsorbent potential: pine bark, oak ash, and mussel shell. The adsorption/desorption studies were carried out by means of batch-type experiments, adding increasing and individual concentrations of Cu and As(V). The fit of the adsorption data to the Langmuir, Freundlich, and Temkin models was assessed, with good results in some cases, but with high estimation errors in others. Cu retention was higher in soils with high organic matter and/or pH, reaching almost 100%, while the desorption was less than 15%. The As(V) adsorption percentage clearly decreased for higher As doses, especially in S soils, from 60−100% to 10−40%. The As(V) desorption was closely related to soil acidity, being higher for soils with higher pH values (S soils), in which up to 66% of the As(V) previously adsorbed can be desorbed. The three by-products showed high Cu adsorption, especially oak ash, which adsorbed all the Cu added in a rather irreversible manner. Oak ash also adsorbed a high amount of As(V) (>80%) in a rather non-reversible way, while mussel shell adsorbed between 7 and 33% of the added As(V), and pine bark adsorbed less than 12%, with both by-products reaching 35% desorption. Based on the adsorption and desorption data, oak ash performed as an excellent adsorbent for both Cu and As(V), a fact favored by its high pH and the presence of non-crystalline minerals and different oxides and carbonates. Overall, the results of this research can be relevant when designing strategies to prevent Cu and As(V) pollution affecting soils, waterbodies, and plants, and therefore have repercussions on public health and the environment.
Collapse
|
16
|
Ghiasi F, Solaimany Nazar AR, Farhadian M, Tangestaninejad S, Emami N. Synthesis of aqueous media stable MIL101-OH/chitosan for diphenhydramine and metronidazole adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24286-24297. [PMID: 34825335 DOI: 10.1007/s11356-021-17739-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, pristine MIL101(Cr) was modified to synthesize hydroxyl-functionalized (MIL101(Cr)-OH) and chitosan (CS)-coated (MIL101(Cr)-OH/CS) metal-organic frameworks (MOFs) to enhance adsorption capacity and reusability, respectively. The synthesized adsorbents were characterized by XRD, FTIR, and BET analyses. The kinetics behavior and the equilibrium adsorption of diphenhydramine (DPH) and metronidazole (MNZ) from aqueous solution on the synthesized adsorbents and a commercial activated carbon were compared at 25°C. The pH-dependent of the adsorption capacity and reusability of MIL101-OH/CS were investigated. The results showed that upon adding OH functional group and chitosan polymer, the adsorption capacity increased; the DPH adsorption capacity on MIL101-OH and MIL101-OH/CS was 634 and 573 mg/g, respectively. Also, the maximum adsorption capacity of MNZ on MIL101-OH/CS was 600 mg/g, which was twice the adsorption capacity of MIL101 and four times the adsorption capacity of the commercial activated carbon. The equilibrium and kinetics behavior results were in good agreement with Langmuir and the pseudo-second-order models, respectively. The DPH and MNZ adsorption mechanisms on MIL101-OH/CS were hydrogen bonding and electrostatic interactions, respectively.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ali Reza Solaimany Nazar
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | | - Nafiseh Emami
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|