1
|
Suleiman MA, Zaini MAA, Mu'azu ND. Pomegranate peel adsorbents for water pollutants removal: preparation, characterization and applications. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:1119-1139. [PMID: 40181669 DOI: 10.1080/15226514.2025.2484292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Pomegranate peel waste in the forms of raw biomass, biochar and activated carbon has been explored as adsorbents in water treatment. This review examined and discussed published works between 2008 and 2024 that focused on the utilization of pomegranate peel waste adsorbents with emphasis on preparation strategies, characterization techniques and applications. The thermal and chemical activation have shown to improve the structural and chemical properties of the resultant adsorbent materials to effectively adsorb various pollutants such as dyes, heavy metals, organics, inorganic nonmetals, and pharmaceuticals from water. The performance was compared and the avenues for future research was highlighted to shed insight into the potential of pomegranate peel adsorbents for environmental protection.
Collapse
Affiliation(s)
- Mohammed Awwal Suleiman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu-Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nuhu Dalhat Mu'azu
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Coelho RS, Soares LC, Adarme OFH, Maia LC, Costa CSD, Guibal E, Gurgel LVA. A Review on Advances in the Use of Raw and Modified Agricultural Lignocellulosic Residues in Mono- and Multicomponent Continuous Adsorption of Inorganic Pollutants for Upscaling Technologies. Polymers (Basel) 2025; 17:953. [PMID: 40219342 PMCID: PMC11991513 DOI: 10.3390/polym17070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Using raw and modified lignocellulosic residues as bioadsorbents in continuous adsorption is challenging but it marks significant progress in water treatment and the transition to a bio-based circular economy. This study reviews the application of bioadsorbents in fixed-bed columns for treating water contaminated with inorganic species, offering guidance for future research. It evaluates chemical modifications to enhance adsorptive properties, explores adsorption mechanisms, and analyzes bioadsorbent performance under competitive adsorption conditions. Analysis of adsorption data included evaluation of adsorption capacity in mono- and multicomponent solutions, regeneration, reuse, bed efficiency, and disposal of spent bioadsorbents. This enabled assessing their scalability to sufficiently high levels of maturity for commercialization. In multicomponent solutions, selectivity was influenced by the characteristics of the bioadsorbents and by competitive adsorption among inorganic species. This affected adsorption performance, increasing the complexity of breakthrough curve modeling and controlling the biomaterial selectivity. Models for mono- and multicomponent systems are presented, including mass transfer equations and alternatives including "bell-type" equations for overshooting phenomena and innovative approaches using artificial neural networks and machine learning. The criteria discussed will assist in improving studies conducted from cradle (synthesis of new biomaterials) to grave (end use or disposal), contributing to accurate decision making for transferring the developed technology to an industrial scale and evaluating the technical and economic feasibility of bioadsorbents.
Collapse
Affiliation(s)
- Ricardo Silva Coelho
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
- Environmental Engineering Graduate Program (ProAmb), School of Mines, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Nove, s/n, Bauxita, Ouro Preto 35402-163, MG, Brazil
| | - Liliane Catone Soares
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
| | - Oscar Fernando Herrera Adarme
- Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas (Unicamp), Av. Cândido Rondon, 501, Campinas 13083-875, SP, Brazil;
| | - Luisa Cardoso Maia
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
- Environmental Engineering Graduate Program (ProAmb), School of Mines, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Nove, s/n, Bauxita, Ouro Preto 35402-163, MG, Brazil
| | - Camila Stéfanne Dias Costa
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
- Environmental Engineering Graduate Program (ProAmb), School of Mines, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Nove, s/n, Bauxita, Ouro Preto 35402-163, MG, Brazil
| | - Eric Guibal
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, 30100 Ales, France;
| | - Leandro Vinícius Alves Gurgel
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
| |
Collapse
|
3
|
Cai Y, Zheng B, Lin X, You X, Jia Q, Xue N. Efficient and stable extraction of nano-sized plastic particles enabled by bio-inspired magnetic "robots" in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125501. [PMID: 39746636 DOI: 10.1016/j.envpol.2024.125501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 01/04/2025]
Abstract
In this research, a rationally-designed strategy was employed to address the crucial issue of removing nano-plastics (NPs) from aquatic environments, which was based on fabricating sea urchin-like structures of Fe3O4 magnetic robots (MagRobots). Through imitating the sea urchin's telescopic tube foot movement and predation mechanism, the unique structures of the MagRobots were designed to adapt to the size and surface interactions of NPs, leading to a high efficiency of NPs removal (99%), as evidenced by the superior performance of 594.3 mg/g for the removal of polystyrene (PS) nanoparticles from water, with 3300% increase over magnetic Fe3O4 without structural design. The adsorption process was further analyzed using density functional theory (DFT) models and adsorption experiments, indicating that it was driven by electrostatic interactions. MagRobots maintained an adsorption capacity of up to 328 mg/g over four cyclic experiments and demonstrated high-capacity adsorption (close to 400 mg/g) in natural water bodies. The results of the simulations were supported by experiments that verified the excellent adsorption performance, regeneration effect, and environmental stability of the MagRobots under both simulated and real-world water conditions. This ingenious structural strategy provided valuable perspectives for the development of efficient magnetic porous materials for wastewater treatment, which would have potential applications for the treatment of NPs in real aquatic ecosystems. The unique sea urchin-like structures of the MagRobots could offer an innovative approach to tackle the challenge of NPs removal.
Collapse
Affiliation(s)
- Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Buyun Zheng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xin You
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qunpo Jia
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ni Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
da Costa Santos YT, Salvestrini S, Vieira CBG, Menezes JMC, Ribeiro AJA, Nunes JVS, Coutinho HDM, Sena Júnior DM, de Paula Filho FJ, Teixeira RNP. Sorption thermodynamic and kinetic study of Cu(II) onto modified plant stem bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61740-61762. [PMID: 39436511 PMCID: PMC11541320 DOI: 10.1007/s11356-024-35194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
In this study, four types of "Juá" stem barks (Ziziphus joazeiro) were investigated for the removal of Cu(II) from aqueous solutions. The tested samples included natural coarse barks, and barks washed with water, ethanol-water, and NaOH solutions. The solvent-modified materials simulated the waste of the industrial extraction of saponins from bark. The valorization of these processing residues as sorbents was evaluated. The NaOH-washed sorbent exhibited the highest sorption capacity for Cu(II) (maximum sorption capacity ≈ 32 mg g-1). Ion exchange process between copper and exchangeable surface cations and electrostatic attraction of copper with carboxylate and phenolate groups were identified as the primary sorption mechanisms. Desorption tests revealed that a large portion of the metal sorbed (80%) was easily released from the sorbent thus suggesting, in line with the proposed mechanisms, the existence of weak sorbate-sorbent interactions. The sorptive process was found to be exothermic (∆H° = - 48.1 ± 13.5 kJ.mol-1) and thermodynamically favorable at lower temperatures.
Collapse
Affiliation(s)
- Yannice Tatiane da Costa Santos
- Federal Institute of Education, Science and Technology of Ceará - campus Juazeiro do Norte, Av. Plácido Aderaldo Castelo, 1646, Juazeiro do Norte, Ceará, 63040-540, Brazil
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, Crato, Ceará, 63105000, Brazil
| | - Stefano Salvestrini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy.
| | - Clara Beatryz Gomes Vieira
- Federal Institute of Education, Science and Technology of Ceará - campus Juazeiro do Norte, Av. Plácido Aderaldo Castelo, 1646, Juazeiro do Norte, Ceará, 63040-540, Brazil
| | - Jorge Marcell Coelho Menezes
- Science and Technology Center, Federal University of Cariri, Av. Ten. Raimundo Rocha, 1639, Juazeiro do Norte, Ceará, 63048-080, Brazil
| | - Antonio Junior Alves Ribeiro
- Federal Institute of Education, Science and Technology of Ceará - campus Juazeiro do Norte, Av. Plácido Aderaldo Castelo, 1646, Juazeiro do Norte, Ceará, 63040-540, Brazil
| | - João Victor Serra Nunes
- Analitycal Center, Federal University of Ceará - Campus Pici, Av. Humberto Monte, N/N, Fortaleza, Ceará, 60440-900, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, Crato, Ceará, 63105000, Brazil
| | - Diniz Maciel Sena Júnior
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, Crato, Ceará, 63105000, Brazil
| | - Francisco José de Paula Filho
- Science and Technology Center, Federal University of Cariri, Av. Ten. Raimundo Rocha, 1639, Juazeiro do Norte, Ceará, 63048-080, Brazil
| | | |
Collapse
|
5
|
Yu T, Huang X, Li H, Zheng J, Gao L, Wang S, Zhang Y. Silicate Derived from Phaeodactylum tricornutum for Removal of Polystyrene: Interfacial Effects of Living Organism and Its Derivatives with Nanoplastics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22931-22944. [PMID: 39406731 DOI: 10.1021/acs.langmuir.4c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The deposition of nanoplastics in the environment poses a direct threat to human health through the food chain. There is an urgent need to investigate how they can be effectively removed from water. In this work, the toxic effects of nanopolystyrene (PS) at different concentrations on Phaeodactylum tricornutum (PT) were investigated. The results show that PS affects the cell activity of PT through cell wall adhesion and shading effect and hinders the transmission of light energy, thus inhibiting the growth of PT. Considering that living PT is not suitable for the removal of heterogeneous aggregation of PS, magnesium silicate (MS) was obtained by calcination of PT biomass based on retaining salt. The maximum adsorption capacity of PS by MS was 40.85 mg g-1, which was 10 times higher than that of conventional adsorbents. The presence of competitive anions significantly affects the removal of PS. The application in real water bodies and the reusability of the adsorbents were also verified. By characterizing the materials before and after adsorption, it is found that the adsorption mechanism mainly includes electrostatic attraction, hydrogen bonding, π-π interaction, and complexation between Si-O bond and PS. This study explains the toxic effect of nano-PS on PT and innovatively develops a biomass derivative from diatoms, which provides a novel and feasible strategy for environmental remediation.
Collapse
Affiliation(s)
- Tingting Yu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xiong Huang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jishu Zheng
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
- Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Lihong Gao
- Research Institute of Agricultural Engineering, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
- Chongqing Key Laboratory of Agricultural Waste Resource Utilization Technology and Equipment Research, Chongqing 401329, PR China
| | - Song Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518061, PR China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Carneiro MA, Pintor AMA, Boaventura RAR, Botelho CMS. Arsenic and antimony desorption in water treatment processes: Scaling up challenges with emerging adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172602. [PMID: 38653411 DOI: 10.1016/j.scitotenv.2024.172602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The metalloids arsenic (As) and antimony (Sb) belong to the pnictogen group of the periodic table; they share many characteristics, including their toxic and carcinogenic properties; and rank as high-priority pollutants in the United States and the European Union. Adsorption is one of the most effective techniques for removing both elements and desorption, for further reuse, is a part of the process to make adsorption more sustainable and feasible. This review presents the current state of knowledge on arsenic and antimony desorption from exhausted adsorbents previously used in water treatment, that has been reported in the literature. The application of different types of eluents to desorb As and Sb and their desorption performance are described. The regeneration of saturated adsorbents and adsorbate recovery techniques are outlined, including the fate of spent media and possible alternatives for waste disposal of exhausted materials. Future research directions are discussed, as well as current issues including the lack of environmental impact analysis of emerging adsorbents.
Collapse
Affiliation(s)
- Mariko A Carneiro
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Ariana M A Pintor
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cidália M S Botelho
- Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
He W, Liu K, Zhang L, Liu M, Ni Z, Li Y, Xu D, Cui M, Zhao Y. Catalytic pyrolysis and in situ carbonization of walnut shells: poly-generation and enhanced electrochemical performance of carbons. RSC Adv 2024; 14:12255-12264. [PMID: 38628483 PMCID: PMC11019962 DOI: 10.1039/d4ra01608d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
In this study, walnut shell (WS) was used as feedstock, incorporating lithium carbonate (LC), sodium carbonate (SC), potassium carbonate (PC), and potassium hydroxide (PH) as pyrolysis catalysts and carbonization activators. A one-step method that allows catalytic pyrolysis and carbonization to be carried out consecutively under their respective optimal conditions is employed, enabling the concurrent production of high-quality pyrolysis oil, pyrolysis gas, and carbon materials from biomass conversion. The effects of LC, SC, PC, and PH on the yield and properties of products derived from WS pyrolysis as well as on the properties and performance of the resulting carbon materials were examined. The results indicated that the addition of LC, SC, PC, and PH enhanced the secondary cracking of tar, leading to increased solid and gas yields from WS. Additionally, it increased the production of phenolic compounds in bio-oil and H2 in syngas, concurrently yielding a walnut shell-based carbon material exhibiting excellent electrochemical performance. Specifically, when PC was used as an additive, the phenolic content in the pyrolysis oil increased by 27.64% compared to that without PC, reaching 74.9%, but the content of ketones, acids, aldehydes, and amines decreased. The hydrogen content increased from 2.5% (without the addition of PC) to 12.75%. The resulting carbon (WSC-PC) displayed a specific surface area of 598.6 m2 g-1 and achieved a specific capacitance of 245.18 F g-1 at a current density of 0.5 A g-1. Even after 5000 charge and discharge cycles at a current density of 2 A g-1, the capacitance retention rate remained at 98.16%. This method effectively enhances the quality of the biomass pyrolysis oil, gas, and char, contributing to the efficient and clean utilization of biomass in industrial applications.
Collapse
Affiliation(s)
- Wenjing He
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University Lianyungang 222005 China
| | - Keling Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Lanjun Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University Lianyungang 222005 China
| | - Muxin Liu
- School of Materials and Chemical Engineering, Bengbu University Bengbu Anhui 233030 PR China
| | - Zhengjie Ni
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Yueyang Li
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Duoduo Xu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Minjie Cui
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Yibo Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University Lianyungang 222005 China
| |
Collapse
|
8
|
Hoang ATP, Kim KW. Mitigation of arsenic accumulation in crop plants using biofertilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26231-26241. [PMID: 38494569 DOI: 10.1007/s11356-024-32825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Elevated levels of arsenic in crop plants have been found in various regions worldwide, especially where agricultural soils have been affected by arsenic-enriched aquifers and human activities including mining, smelting, and pesticide application. Given the highly toxic nature of arsenic, remediation should be carried out immediately to reduce this potentially toxic element transport from soil to crop plants. This study focused on the utilization of biofertilizer which is a combination of arsenic-accumulating microorganisms and adsorbent (carrier) in order to achieve high efficiency of arsenic immobilization and ability to apply in the field. Thirty-two bacterial strains were isolated from 9 soil samples collected from the Dongjin and Duckum mining areas in Korea using a nutrient medium amended with 2 mM sodium arsenite. Among isolates, strain DE12 identified as Bacillus megaterium exhibited the greatest arsenic accumulation capacity (0.236 mg/g dry biomass) and ability to resist up to 18 mM arsenite. Among the three agricultural waste adsorbents studied, rice straw was proved to have a higher adsorption capacity (0.104 mg/g) than rice husk and corn husk. Therefore, rice straw was chosen to be the carrier to form biofertilizer together with strain DE12. Inoculation of biofertilizer in soil showed a reduction of arsenic content in the edible part of lettuce, water spinach, and sweet basil by 17.5%, 34.1%, and 34,1%, respectively compared to the control group. The use of biofertilizer may open up the potential application in the field for other food plants.
Collapse
Affiliation(s)
- Anh T P Hoang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
9
|
Zhang L, Zhang Q, Wang Y, Cui X, Liu Y, Ruan R, Wu X, Cao L, Zhao L, Zheng H. Preparation and application of metal-modified biochar in the purification of micro-polystyrene polluted aqueous environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119158. [PMID: 37804638 DOI: 10.1016/j.jenvman.2023.119158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Microplastics (MPs) have already spread across the globe and have been found in drinking water and human tissues. This may pose severe threats to human health and water environment. Therefore, this study accurately evaluated the removal effect of metal-modified biochar on polystyrene microplastics (PS-MPs) (1.0 μm) in the water environment using a high-throughput fluorescence quantification method. The results indicated that Fe-modified biochar (FeBC) and Fe/Zn-modified biochar (Fe/ZnBC) had good removal efficiencies for PS-MPs under the dosage of 3 g/L, which were 96.24% and 84.77%, respectively. Although pore effects were observed (such as "stuck", "trapped"), the electrostatic interaction was considered the main mechanism for the adsorption of PS-MPs on metal-modified biochar, whereas the formation of metal-O-PS-MPs may also contribute to the adsorption process. The removal efficiency of PS-MPs by FeBC was significantly reduced under alkaline conditions (pH = 9 and 11) or in the presence of weak acid ions (PO43-, CO32-, HCO3-). A removal efficiency of 72.39% and 78.33% of PS-MPs was achieved from tap water (TW) and lake water (LW) using FeBC when the initial concentration was 20 mg/L. However, FeBC had no removal effect on PS-MPs in biogas slurry (BS) and brewing wastewater (BW) due to the direct competitive adsorption of high concentrations of chemical oxygen demand (COD). The findings of this study highlighted that metal-modified biochar had a potential application in purifying tap water or lake water which contaminated by MPs.
Collapse
Affiliation(s)
- Longfei Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| | - Xiaodan Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Lantian Zhao
- Jiangxi Qiangsheng Technology Co., Ltd., Nanchang, Jiangxi 330052, PR China
| | - Hongli Zheng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| |
Collapse
|
10
|
Liu J, Jia H, Xu Z, Wang T, Mei M, Chen S, Li J, Zhang W. An impressive pristine biochar from food waste digestate for arsenic(V) removal from water: Performance, optimization, and mechanism. BIORESOURCE TECHNOLOGY 2023; 387:129586. [PMID: 37516138 DOI: 10.1016/j.biortech.2023.129586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Anaerobic digestion has become a global practice for valorizing food waste, but the recycling of the digestate (FWD) remains challenging. This study aimed to address this issue by utilizing FWD as a low-cost feedstock for Ca-rich biochar production. The results demonstrated that biochar pyrolyzed at 900 °C exhibited impressive As(V) adsorption performance without any modifications. Kinetic analysis suggested As(V) was chemisorbed onto CDBC9, while isotherm data conformed well to Langmuir model, indicating monolayer adsorption with a maximum capacity of 76.764 mg/g. Further analysis using response surface methodology revealed that pH value and adsorbent dosage were significant influencing factors, and density functional theory (DFT) calculation visualized the formation of ionic bonds between HAsO42- and CaO(110) and Ca(OH)2(101) surfaces. This work demonstrated the potential of using FWD for producing Ca-rich biochar, providing an effective solution for As(V) removal and highlighting the importance of waste material utilization in sustainable environmental remediation.
Collapse
Affiliation(s)
- Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Hang Jia
- Beijing Graphene Institute, Beijing 100095, China
| | - Zelin Xu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Teng Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Meng Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Si Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Wenjuan Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
11
|
Kwak E, Kim JH, Lee S. Longevity evaluation of non-pumping reactive wells for control of groundwater contamination: Application of upscaling methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122136. [PMID: 37419206 DOI: 10.1016/j.envpol.2023.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Non-pumping reactive wells (NPRWs) are subsurface structures used for the passive treatment of contaminated groundwater using wells containing reactive media. In the vicinity of NPRWs, a combination of hydrogeological and chemical processes makes it difficult to predict their longevity. In this study, we evaluated the longevity of NPRWs using the upscaling methods. A horizontal two-dimensional sandbox was constructed to mimic the hydrogeological and chemical processes in a single unit of NPRW (unit NPRW). The groundwater flow and solute transport were simulated numerically to validate the processes of contaminant spreading prevention in the sandbox. Dye tracing and arsenic transport tests showed different performance of NPRW due to induced flow and uneven consumption of reactivity, which is dependent on the pathway length and residence time of the coal waste. Through numerical modeling of the experiments, the fate-related processes of contamination around NPRW were described in detail in both spatial and temporal terms. The stepwise approach of the upscaling methods was used to predict the contamination-blocking performance of the entire facility based on the reactivity of the materials and the contamination removal of the unit NPRW.
Collapse
Affiliation(s)
- Eunjie Kwak
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Hyun Kim
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Karadeniz SC, Isik B, Ugraskan V, Cakar F. Adsorptive removal of Safranine T dye from aqueous solutions using sodium alginate-Festuca arundinacea seeds bio-composite microbeads. Int J Biol Macromol 2023; 248:125880. [PMID: 37473894 DOI: 10.1016/j.ijbiomac.2023.125880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
In this study, composite microbeads were prepared using Festuca arundinacea seeds and sodium alginate biopolymer at different ratios and utilized as sorbents for the sorption of Safranine T from wastewater. The sorbents were characterized by FTIR, SEM, XRD, and BET analysis. According to BET analysis, the specific surface area of the adsorbents was calculated to be 10.99 m2/g and the surface was found to be mesoporous. The optimum conditions for adsorption studies including initial pH (2-12), concentration (10-50 mg/L), contact time (0-150 min), and adsorbent mass (0.05 g/50 mL-0.25 g/50 mL) were determined at 25 °C. The raw data obtained from sorption tests were applied to Freundlich, Langmuir-1, Langmuir-2, Langmuir-3, Langmuir-4, Temkin, Toth, and Koble-Corrigan isotherm models. The best results were obtained from the Langmuir-2 and accordingly the qm values were calculated as 454.54, 833.33, and 625.00 mg/g for FA, FA-SA-20, and FA-SA-30 at 25 °C, respectively. Adsorption kinetic data illustrated that the process followed the PSO model. Reusability and desorption studies were performed for composite microbeads. Additionally, the thermodynamic studies were performed at 25, 35 and 45 °C. Considering all these results, it was seen that the FA-SA-20 composite had the highest adsorption capacity and the best desorption efficiency.
Collapse
Affiliation(s)
- Sabri Can Karadeniz
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Fatih Cakar
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey.
| |
Collapse
|
13
|
Cai Y, Ran Z, Cang Y, Chen X, Shaaban M, Peng QA. Efficient removal of Cr(VI) and As(V) from an aquatic system using iron oxide supported typha biochar. ENVIRONMENTAL RESEARCH 2023; 225:115588. [PMID: 36858301 DOI: 10.1016/j.envres.2023.115588] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The removal of Cr(VI) and As(V) from aqueous solutions has been a worldwide concern. In this study, Typha biochar (FBC) with magnetic iron oxide was prepared by impregnating Typha with FeCl3 and performing pyrolysis, and the possible mechanism of Cr(VI) and As(V) removal was investigated by combining characterization means and adsorption experiments. The results showed that the modified Typha biochar is rich in pores and has the potential to eliminate Cr and As through processes such as exchange and reduction. The single molecule uptake capacities of FBC for Cr(VI) and As(V) were 32.82 and 21.56 mg g-1, respectively. The adsorption process is spontaneous heat absorption, and the adsorption results are also consistent with the proposed secondary kinetic model. FBC still had >60% removal efficiency in the second and third reuse of Cr(VI), indicating its good recyclability. Therefore, this study confirms that FBC can effectively remove both Cr(VI) and As(V).
Collapse
Affiliation(s)
- Yajun Cai
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China; Clean Production of TextilePrinting and Dyeing Engineering Research Center of the Ministry of Education, Wuhan, 430200, China.
| | - Zhonglyu Ran
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China.
| | - Yan Cang
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China.
| | - Xu Chen
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China.
| | - Muhammad Shaaban
- Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan.
| | - Qi-An Peng
- College of Environmental Engineering, Wuhan TextileUniversity, Wuhan, 430200, China; Clean Production of TextilePrinting and Dyeing Engineering Research Center of the Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
14
|
Tan X, Liu J, Liu M, Zhang Y, Liu Q, Duan G, Cui J, Lin A. Arsenic removal and stabilization behavior of schwertmannite@BC (Sch@BC) in contaminated dual media (water/soil): Via sulfate exchange and chemical complexation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121431. [PMID: 36914151 DOI: 10.1016/j.envpol.2023.121431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Arsenic (As) is extremely harmful to the ecological environment and human health owing to its high toxicity. The composite that biochar (BC) modified by Schwertmannite (Sch), marked as Sch@BC, were prepared to remediate As-contaminated water and soil with a high efficiency. The characterization results showed that the Sch particles were successfully loaded on the BC, providing more active sites for As(V) adsorption. Compared with the pristine BC, the adsorption capacity of Sch@BC-1 was significantly improved (50.00 mg/g), of which the adsorption capacity kept stable over a wide pH range (pH = 2-8). The adsorption process conformed to pseudo-second-order kinetics and Langmuir isotherm model, which indicated that chemical adsorption was the dominant mechanism and the adsorption rate was controlled by intraparticle diffusion. Sch@BC could adsorb As(V) through electrostatic interaction and ion exchange, forming a FeAsO4 complex and removing As(V). The 5-week soil incubation experiment showed that 3% Sch@BC showed the optimal stabilization effect, while the proportion of stable crystalline Fe/Mn-bound fractionation (F4) increased. Moreover, the results of microbial community diversity showed that Sch@BC interacted with As-resistant dominant microorganisms such as Proteobacteria in soil, promoted their growth and reproduction, and improved the stability of As in soil. In summary, Sch@BC is an excellent agent with broad application prospects for remediating As-contaminated water and soil.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jiahao Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qi Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100029, PR China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
15
|
Aktar S, Mia S, Makino T, Rahman MM, Rajapaksha AU. Arsenic removal from aqueous solution: A comprehensive synthesis with meta-data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160821. [PMID: 36509267 DOI: 10.1016/j.scitotenv.2022.160821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Removal of arsenic from drinking water is one of the most important global concerns. Among the various techniques, adsorptive removal of arsenic is considered as a viable most effective method. However, limited attention is given to understand the overall relative sorption capacity of different sorbents (e.g., biocomposite, biochar and nano-composite etc.) since various factors influence the sorption capacity. The aim of this study is to assess the effectiveness of various adsorbents with quantitative estimation (Langmuir adsorption maxima, Qmax) as well as to evaluate the influence of experimental conditions on the achievement of maximum adsorption. A number of analyses including meta-analysis, analysis of variance (ANOVA), scientometric and regression were performed. The results revealed that among the sorbents, nanoparticles show the greatest sorption capacity while pre-doped biochar performed the best among different biochars. Average across all sorbents, As (V) removal efficacy was higher than As (III). As expected, a high point of zero charge (PZC) and higher positive surface charge favored adsorption. The relative contribution of different mechanisms was also discussed. Our scientometric analyses revealed that, research should focus on the development of low-cost adsorbents and increase their reusability, safe disposal of adsorbed arsenic. Altogether, our findings provide a molecular understanding of arsenic sorption to different sorbents with implications for tailoring a good sorbent for arsenic removal from drinking water.
Collapse
Affiliation(s)
- Sanjida Aktar
- Department of Environmental Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Shamim Mia
- Department of Agronomy, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh.
| | - Tomoyuki Makino
- Graduate School of Agricultural Science, Tohoku University, Japan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Ashulia, Savar, Dhaka 1207, Bangladesh
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Instrument Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
16
|
Wu J, Yang C, Zhao H, Shi J, Liu Z, Li C, Song F. Efficient removal of microplastics from aqueous solution by a novel magnetic biochar: performance, mechanism, and reusability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26914-26928. [PMID: 36374390 DOI: 10.1007/s11356-022-24130-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics' (MPs) pollution removal from water bodies has become an urgent task to ensure water quality safety and water ecological security on a global scale. In this work, coprecipitation was employed to investigate the adsorption of MPs by magnetic biochar (MRB) prepared from agricultural waste rice husks in an aquatic system. The results showed that MRB can adsorb up to 99.96% of MPs in water; acidic conditions were favorable for the effective MPs' adsorption reaction, and competing anions had a greater effect on adsorption. The adsorption mechanism results revealed that the adsorption of MPs by MRB was a spontaneous process, and electrostatic attraction, surface complexation, hydrogen bonding and π-π interactions were present in the adsorption process. Furthermore, after the adsorption of MPs, MRB can be recovered by thermal treatment (500 °C) and still exhibits up to 90% MPs adsorption (after four uses). This work reveals that MRB is an inexpensive, efficient, and reusable nanoscale adsorbent for MPs pollution removal in water, which may provide new ideas for microplastic pollution control in the aqueous environment.
Collapse
Affiliation(s)
- Juanjuan Wu
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Chan Yang
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Juan Shi
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Zhifeng Liu
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Chen Li
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Fengmin Song
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| |
Collapse
|
17
|
Shi Y, Du J, Zhao T, Feng B, Bian H, Shan S, Meng J, Christie P, Wong MH, Zhang J. Removal of nanoplastics from aqueous solution by aggregation using reusable magnetic biochar modified with cetyltrimethylammonium bromide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120897. [PMID: 36539007 DOI: 10.1016/j.envpol.2022.120897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) pollution has become an emerging threat to the aquatic environment and its organisms. The removal of NPs from contaminated water is a global challenge. In this study, an efficient and reusable composite was prepared from cetyltrimethylammonium bromide (CTAB) modified magnetic biochar. The performances of CTAB modified magnetic biochar (CMB) to remove polystyrene (PS) and carboxylate-modified polystyrene (CPS) nanoparticles from water were systematically evaluated. The results showed that the PS and CPS removal performance of magnetic biochar was improved by CTAB modification. These increases were assigned to the increase in the surface hydrophobicity of CMB. Due to the strong electrostatic repulsion between the nanoparticles, PS and CPS maintained high stability in alkaline conditions, resulting in a significant decrease in removal efficiency. The removal efficiency was decreased to 67.4% for PS and to 40.7% for CPS at pH 11. The inhibition effects of NaCl on the PS and CPS removal efficiencies were decreased gradually with the increase of NaCl concentration. Among the anions studied, H2PO4- had the biggest impact on the removal performance of CMB. Besides, CMB could be used to remove PS and CPS in real surface water, and the removal efficiencies of PS and CPS were 95.3% and 97.8%, respectively. Particularly, the removal efficiencies of PS and CPS were 90.2% for PS and 94.8% for CPS when CMB was recycled five times. According to the characterization results of XRD, TGA, SEM, FTIR and XPS, PS and CPS nanoparticles were removed by CMB from water mainly through aggregation instead of adsorption. The efficient removal of PS and CPS by CMB via aggregation process offers new insight into the removal of NPs from aquatic environment.
Collapse
Affiliation(s)
- Yun Shi
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jiada Du
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tingman Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Bo Feng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Haohao Bian
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Meng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Peter Christie
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China
| | - Jin Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, China.
| |
Collapse
|
18
|
Rivadeneira-Mendoza BF, Estrela Filho OA, Fernández-Andrade KJ, Curbelo F, Fred da Silva F, Luque R, Rodríguez-Díaz JM. MOF@biomass hybrids: Trends on advanced functional materials for adsorption. ENVIRONMENTAL RESEARCH 2023; 216:114424. [PMID: 36162474 DOI: 10.1016/j.envres.2022.114424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This contribution aims to demonstrate the scope of new hybrids between biomass and metal-organic frameworks (MOF@biomass) used in the adsorption process of pollutants. After a brief presentation of the use of the main series of MOFs as efficient adsorbents for different types of pollutants, the limitations of these structures related to particle size and hydrodynamic problems during their application are highlighted. Lignocellulosic biomasses are also recognized as an alternative adsorbent, mainly due to their high natural abundance and their low environmental impact during and after their application. The limited capacity of bioadsorbents becomes important in this research. Consequently, the largest amount of information existing in the last ten years on MOF-Biomass functionalization as a hybrid and improvement technology for adsorption processes is compiled, analyzed, compared and contrasted. So far, there is no evidence of works that exploit the concept of functionalization of adsorbents of different nature to give rise to new hybrid materials. Through this review it was found that the hybrids obtained show a higher adsorption capacity (Qe) compared to their precursors, due to the increase of organic functional groups provided by the biomass. Thus, for heavy metals, dyes, Arsenium anions and other organic and pharmaceutical compounds, there are increases in Qe of about 100 mg g-1. The possibility of the new hybrid being studied for desorption and reuse processes is also raised, resulting in a new line of research that is attractive for the industry from an economic and environmental point of view. The functionalization methods and techniques used in the studies cited in this article are outlined. In conclusion, this research brings a new horizon of study in the field of adsorption and mentions the main future challenges related to new sustainable applications.
Collapse
Affiliation(s)
| | - Otoniel Anacleto Estrela Filho
- Programa de Pós-Graduação Em Engenharia Química, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Kevin Jhon Fernández-Andrade
- Instituto de Posgrado, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Fabiola Curbelo
- Programa de Pós-Graduação Em Engenharia Química, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, 58051-900, Brazil; Department of Chemical Engineering, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Fausthon Fred da Silva
- Departamento de Química, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa - PB, Brazil; Biomaterials Engineering, Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation.
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador.
| |
Collapse
|
19
|
Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Raval NP, Kumar M. Development of novel Core-shell impregnated polyuronate composite beads for an eco-efficient removal of arsenic. BIORESOURCE TECHNOLOGY 2022; 364:127918. [PMID: 36087649 DOI: 10.1016/j.biortech.2022.127918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) can geogenically and anthropogenically contaminate the potable water resources and undoubtedly reduces its availability for human consumption. To circumvent this predicament, present study focuses on the development of a novel biosorbent by impregnating calcium cross-linked polyuronate (alginate) beads (CABs) with bilayer-oleic coated magnetite nanoparticles (CAB@BOFe) for As(V) removal. Initially, the system parameters (i.e., adsorbents dose (0.1- 3.0 g L-1), pH (4.0-13), reaction times (0-180 min) and sorbate concentrations (10-150 µg L-1)) were optimized to establish adsorbent at the lab-scale. CAB@BOFe had higher monolayer (ad)sorption capacity (∼62.5 µg g-1, 120 min) than CABs (∼17.9 µg g-1, 180 min). Electrostatic/Ion-dipole interactions and surface-complexation mechanisms mediated As(V) sorption onto CAB@BOFe mainly obeyed Langmuir isotherm (R2 ∼ 0.9) and well described by intraparticle diffusion process. Furthermore, it demonstrated an excellent arsenate removal performance from the single/multiple anionic contaminants simulated water samples which supported its prospective field applicability.
Collapse
Affiliation(s)
- Nirav P Raval
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India; Department of Earth and Environmental Science, KSKV Kachchh University, Bhuj-Kachchh, Gujarat 370 001, India
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248 007, India.
| |
Collapse
|
21
|
Moreira WM, Viotti PV, de Moura AA, Gimenes ML, Vieira MGA. Synthesis of a biobased resin and its screening as an alternative adsorbent for organic and inorganic micropollutant removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79935-79953. [PMID: 35091942 DOI: 10.1007/s11356-021-18250-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The sol-gel route was used to synthesize a biophenolic resin from a blend of Kraft black liquor and condensed tannin. The biobased resin has an amorphous structure and diversified surface functional groups. The biomaterial thermal stability was improved by Kraft black liquor, which increased the fixed carbon yield by 19.78% in an oxidant medium and 9.07% in an inert medium. Moreover, the presence of fixed carbon and char is positively related to the material flame retardant property. Additionally, impedance measurements were used to understand the physical phenomena occurring at the polymeric matrix's interface and the material's final properties. The biobased resin characterization and the considerable increase in the presence of micropollutants in surface and water bodies suggest the new biomaterial application in the adsorption process. Thus, its adsorption capacity toward several organic and inorganic micropollutants and its effectiveness in complex water matrices were evaluated. Methylene blue was used as a model compound to assess the influence of the resin composition on the adsorption capacity, and the type H isotherm indicates the high affinity of the biobased resin toward the micropollutant. The adsorption occurs in multilayer by intermolecular interaction and electrostatic forces. The amount of Kraft black liquor favored the adsorption, and the adsorption capacity was greater than 1250 mg g-1. When inorganic compounds were evaluated, the carboxyl and phenol groups favor the biomaterial affinity toward metal ions. Cu2+ and Ni2+ were completely removed from the contaminated water, and the adsorption capacity of the other inorganic compounds was: Pb2+ (36.97 mg g-1), Al3+ (22.17 mg g-1), Ba2+ (12.76 mg g-1), Ag1+ (33.85 mg g-1), and Fe2+ (19.44 mg g-1). In contrast, the adsorption capacity of the organic micropollutants was: 2,4-D (3.09 mg g-1), diuron (5.89 mg g-1), atrazine (2.71 mg g-1), diclofenac (2.04 mg g-1), caffeine (5.79 mg g-1), acetaminophen (4.80 mg g-1), methylene Blue (106.66 mg g-1), and methyl orange (30.48 mg g-1). The results pointed that the adsorption efficiency of organic micropollutants increases with the distribution coefficient (logD), indicating the biobased resin affinity toward more lipophilic compounds and ionized species.
Collapse
Affiliation(s)
- Wardleison Martins Moreira
- School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil.
- Department of Chemical Engineering, State University of Maringá, Avenida Colombo, Maringá, Paraná, 579087020-900, Brazil.
| | - Paula Valéria Viotti
- Department of Chemical Engineering, State University of Maringá, Avenida Colombo, Maringá, Paraná, 579087020-900, Brazil
| | - Alexandre Amado de Moura
- Department of Chemical Engineering, State University of Maringá, Avenida Colombo, Maringá, Paraná, 579087020-900, Brazil
| | - Marcelino Luiz Gimenes
- Department of Chemical Engineering, State University of Maringá, Avenida Colombo, Maringá, Paraná, 579087020-900, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil
| |
Collapse
|
22
|
Elias MMC, Soares LC, Maia LC, Dias MVL, Gurgel LVA. Multivariate optimization applied to the synthesis and reuse of a new sugarcane bagasse-based biosorbent to remove Cd(II) and Pb(II) from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79954-79976. [PMID: 35190982 DOI: 10.1007/s11356-022-18654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
This study reports the use of multivariate tools to optimize the synthesis of a new agricultural-based biosorbent derived from sugarcane bagasse (SB) for the removal of Cd(II) and Pb(II) from aqueous solutions, as well as to optimize the process of desorption of these ions from the spent biosorbent using an acidic solution. The effects of the reaction parameters temperature (T), time (t), and the ratio of 1,2,3,4-butanetetracarboxylic acid dianhydride (BTCAD) to raw SB (wBTCAD wraw SB-1) on the chemical modification of raw SB with BTCAD and on the equilibrium adsorption capacity (qe) for Cd(II) and Pb(II) were investigated by application of a 23 Doehlert experimental design (DED), followed by optimization using a statistical desirability tool to produce the best adsorbent in terms of performance and cost. The best reaction condition was wBTCAD wraw SB-1 of 4.0 g g-1, t of 1 h, and T of 70 ºC. The optimal synthesis condition resulted in a modified sugarcane bagasse (MSB) that provided qe values for Cd(II) and Pb(II) of 0.50 and 0.61 mmol g-1, respectively, obtained under the following conditions: 0.311 mmol Cd(II) L-1, 0.632 mmol Pb(II) L-1, pH 5.0, 4 h, 0.2 g L-1 MSB, 130 rpm, and 25 °C. The desorption of Cd(II) and Pb(II) from MSB was investigated by a 22 DED, with optimization using the desirability tool to obtain the best desorption condition in terms of HNO3 solution concentration ([Formula: see text]) and t. The desorption efficiencies for Cd(II) and Pb(II) were 90 ± 4% and 88 ± 3%, respectively, obtained using 0.7 mol L-1 HNO3, t of 42 min, and 1.0 g L-1 MSB-M(II) (M = Pb or Cd). Infrared spectroscopy was used to investigate the natures of the interactions involved in the adsorption of Cd(II) and Pb(II) on MSB, as well as possible changes in the chemical structure of MSB after desorption. The synthesis of MSB can be performed under mild reaction conditions (t = 1 h, T = 70 ºC), and the solvents used can be recovered by distillation. BTCA is commercially available at moderate cost and can alternatively be obtained employing microbial succinic acid, metal-free catalysis, and modest use of petrochemical feedstocks. Furthermore, MSB can be reused, which could contribute to increasing the economic feasibility of water and wastewater treatment processes.
Collapse
Affiliation(s)
- Megg Madonyk Cota Elias
- Physical Organic Chemistry Group, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, s/n°, Bauxita, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Liliane Catone Soares
- Physical Organic Chemistry Group, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, s/n°, Bauxita, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Luisa Cardoso Maia
- Physical Organic Chemistry Group, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, s/n°, Bauxita, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Mariana Viviane Lima Dias
- Physical Organic Chemistry Group, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, s/n°, Bauxita, 35400-000, Ouro Preto, Minas Gerais, Brazil
| | - Leandro Vinícius Alves Gurgel
- Physical Organic Chemistry Group, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, s/n°, Bauxita, 35400-000, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Sawood GM, Gautam SB, Mishra A, Dixit S, Singh N. Modeling of the As (III) adsorption using Fe impregnated polyethylene terephthalate char matrix: A statistical approach. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1790-1809. [PMID: 36240312 DOI: 10.2166/wst.2022.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present research aimed to analyse the impact of economical Fe impregnated polyethylene terephthalate (PET) char (PETC-Fe) for adsorption of As (III) through series of column experiments. For an inlet arsenite concentration of 1,000 μg/L, PETC-Fe exhibits excellent uptake capacity of 1,892 μg/g. Central composite design (CCD) in response surface methodology (RSM) was used to evaluate the influence of various process variables on the response function (breakthrough time) for optimization and assessment of interaction effects. The breakthrough time is more responsive to influent As (III) concentration and bed height than inlet flow rate, according to the perturbation plot. Adams-Bohart, Bed Depth Service Time (BDST) model, and Thomas models were used to model the dynamics of the adsorption system. The BDST model suited the experimental data well in the early part of the breakthrough curve, but there were minor variations over the breakpoints. Despite the fact that the experimental values and the data sets estimated using the Adams-Bohart model followed a similar pattern, they differed slightly. The PETC-Fe was found to be a sustainable and highly economical adsorbent, with a desorption performance of more than 97%, indicating the adsorbent's reusability. This adsorbent's excellent As (III) uptake capacity and regeneration performance imply that it might be used in industrial/domestic applications, and the information obtained could aid in future scaling up of the adsorption system.
Collapse
Affiliation(s)
- Ghazi Mohd Sawood
- Department of Chemical Engineering, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur 208024, India E-mail:
| | - Shashi Bala Gautam
- Department of Chemical Engineering, Government Polytechnic, Kanpur 208002, India
| | - Ashutosh Mishra
- Department of Chemical Engineering, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur 208024, India E-mail:
| | - Shobhit Dixit
- Department of Chemical Engineering and Technology, IIT BHU, Varanasi, Uttar Pradesh, 221005, India
| | - Neeta Singh
- Department of Chemical Engineering, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur 208024, India E-mail:
| |
Collapse
|
24
|
Humelnicu D, Ignat M, Dinu MV, Dragan ES. Optimization of Arsenic Removal from Aqueous Solutions Using Amidoxime Resin Hosted by Mesoporous Silica. ACS OMEGA 2022; 7:31069-31080. [PMID: 36092575 PMCID: PMC9453956 DOI: 10.1021/acsomega.2c03140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The paper reports on the performances of cross-linked amidoxime hosted into mesoporous silica (AMOX) in the removal of As(III) and As(V). The optimum pH for sorption of As(III) and As(V) was pH 8 and pH 5, respectively. The PFO kinetic model and the Sips isotherm fitted the best the experimental data. The thermodynamic parameters were evaluated using the equilibrium constant values given by the Sips isotherm at different temperatures and found that the adsorption process of As(III) and As(V) was spontaneous and endothermic on all AMOX sorbents. The spent AMOX sorbents could be easily regenerated with 0.2 mol/L HCl solution and reused up to five sorption/desorption cycles with an average decrease of the adsorption capacity of 18%. The adverse effect of the co-existing inorganic anions on the adsorption of As(III) and As(V) onto the sorbent with the highest sorption capacity (AMOX3) was arranged in the following order: H2PO4 - > HCO3 - > NO3 - > SO4 2-.
Collapse
Affiliation(s)
- Doina Humelnicu
- Faculty
of Chemistry, “Al. I. Cuza”
University of Iasi, Carol
I Bd. 11, Iasi 700506, Romania
| | - Maria Ignat
- Faculty
of Chemistry, “Al. I. Cuza”
University of Iasi, Carol
I Bd. 11, Iasi 700506, Romania
- “Petru
Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania
| | - Maria Valentina Dinu
- “Petru
Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania
| | - Ecaterina Stela Dragan
- “Petru
Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania
| |
Collapse
|
25
|
Yuan J, Li Q, Zhao Y. The research trend on arsenic pollution in freshwater: a bibliometric review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:602. [PMID: 35864315 DOI: 10.1007/s10661-022-10188-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
We conducted a quantitative and qualitative bibliometric analysis based on 8740 research articles from the Web of Science Core Collection published in the last 20 years (2000-2020) for a better understanding of the research progress and development trend of arsenic pollution in freshwater (FAP). The results showed a significant increase in the number of publications from 2007 to 2020, especially after 2015. Four of the top 10 productive authors are from China. Two of the top three research institutions are from China, and the publications of Chinese Academy of Sciences accounted for 5.40% of the total. China is also the center of the national cooperation network, indicating a greater influence of China in this scientific research field. The top three journals included Science of the Total Environmental, Environmental Science Technology, and Journal of Hazardous Materials. Besides arsenic, the high-frequency keywords in this field included adsorption, contamination, groundwater, removal, detection, and geochemistry. The researchers mainly focused on the groundwater environment, as well as the pollution hazards of arsenic in water bodies, remediation techniques, detection, migration, and transformation. Studies should pay more attention to the application and development of phytoremediation technology in the field of FAP in the future.
Collapse
Affiliation(s)
- Jie Yuan
- Wuhan Library, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Big Data in Science and Technology, Wuhan, 430074, People's Republic of China
| | - Qianxi Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, 430074, People's Republic of China
| | - Yanqiang Zhao
- Wuhan Library, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Big Data in Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
26
|
Selective removal of Cd(II), As(III), Pb(II) and Cr(III) ions from water resources using novel 2-anthracene ammonium-based magnetic ionic liquids. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Li K, Li S, Li Q, Liu H, Yao W, Wang Q, Chai L. Design of a high-performance ternary LDHs containing Ni, Co and Mn for arsenate removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127865. [PMID: 34848069 DOI: 10.1016/j.jhazmat.2021.127865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
To cope with the current serious arsenate pollution problem, a new ternary layered double hydroxides (LDHs) containing Ni, Co and Mn with good performance was developed, guiding by DFT calculations. First, Ni, Co and Mn were screened as the metal sources to constitute the LDHs, due to their high ionic charge density. Then, Ni(II), Co(II) and Mn(III)-O octahedra were selected as the primary units for structuring the LDHs, because of their good chemical activity. Meanwhile, the ratio of metals in the ternary LDHs, favoring for arsenate removal, was optimized at 1:2:1. In addition, the synergistic effect among various metals in the LDHs was considered. The results suggested that in the case of single doping, all three metals can act as the center to promote chemical activity independently. On the contrary, when combined together, there is only one unilateral active center. Moreover, the existence of ligand covalent bonds between arsenate and LDHs was confirmed. Finally, a promising new NiCo2Mn-LDHs with the maximum adsorption capacity of 407.23 mg/g for arsenate removal had been prepared.
Collapse
Affiliation(s)
- Kaizhong Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shuimei Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China.
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Wenming Yao
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410004, China
| |
Collapse
|
28
|
Ma Z, Li JS, Xue Q, Zhan B, Chen X, Wan Y, Zhao Y, Sun Y, Poon CS. Deep insight on mechanism and contribution of As(V) removal by thermal modification waste concrete powder. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150764. [PMID: 34624289 DOI: 10.1016/j.scitotenv.2021.150764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Expanding the utilization strategy of waste concrete powder (WCP) is conducive to minimizing the environmental burden caused by construction & demolition wastes (C&DW). In this study, WCP prepared in the laboratory was thermally treated and used to remove As(V) from wastewater. Batch adsorption tests were implemented to explore the influence factors such as modification temperature (0-850 °C), pH (1.00-12.00), dosage (2-50 g/L), co-coexisting ions (SO42-, NO3-, Cl- and PO43-) and temperature (25-45 °C). Various methods including spectroscopic tests, Rietveld refinement and sequential extraction process were employed to examine the mechanisms and their contribution to As(V) removal. Results show that the As(V) removal capacity of WCP was slightly enhanced after treatment at 200 °C, the pseudo-second-order kinetics model and Langmuir model could describe the adsorption process well. The maximum uptake capacity for As(V) calculated by Langmuir model at 25, 35 and 45 °C were 31.89, 25.56 and 17.42 mg/g respectively, and the removal rate reached a maximum of 95.37% (C0 = 100 mg/L). Thermodynamically, the As(V) elimination was exothermic and spontaneous. The ettringite produced by rehydration of WCP proved to be essential for As(V) removal. Electrostatic attraction, precipitation, complexation and ion exchange were identified to be the main mechanisms of As(V) adsorption. This study confirmed the potential of WCP in removing As(V) from wastewater and provided a new insight into the removal mechanisms.
Collapse
Affiliation(s)
- Zihan Ma
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China.
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China
| | - Baojian Zhan
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, China
| | - Xin Chen
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yong Wan
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yaqin Zhao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Road, Xuzhou 221116, Jiangsu, PR China
| | - Yuehui Sun
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chi Sun Poon
- IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan 430071, China
| |
Collapse
|
29
|
Wang J, Sun C, Huang QX, Chi Y, Yan JH. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126486. [PMID: 34214855 DOI: 10.1016/j.jhazmat.2021.126486] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 05/26/2023]
Abstract
Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential threats to organisms. This study proposes efficient Mg/Zn modified magnetic biochar adsorbents for microplastic removal. For polystyrene (PS) microspheres (1 µm, 100 mg/mL) in aqueous solution, the removal efficiencies of magnetic biochar (MBC), Mg modified magnetic biochar (Mg-MBC), and Zn modified magnetic biochar (Zn-MBC) were 94.81%, 98.75%, and 99.46%, respectively. It is supposed that the adsorption process was a result of electrostatic interaction and chemical bonding interaction between microplastics and biochar. The coexisting H2PO4- and organic matters in real water significantly affected the removal efficiency of Zn-MBC due to competitive adsorption effect. Microplastic degradation and adsorbent regeneration were accomplished by thermal treatment simultaneously. The degradation of adsorbed MPs was promoted by the catalytic active sites originated from Mg and Zn, releasing adsorption sites. Thermal regeneration maintained the adsorption capability. Even after five adsorption-pyrolysis cycles, MBC (95.02%), Mg-MBC (94.60%), and Zn-MBC (95.79%) showed high microplastic removal efficiency. Therefore, the low-cost, eco-friendly, and robust Mg/Zn-MBCs have promising potential for application in microplastic removal.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Chen Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qun-Xing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Yong Chi
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jian-Hua Yan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Sahu N, Singh J, Koduru JR. Removal of arsenic from aqueous solution by novel iron and iron-zirconium modified activated carbon derived from chemical carbonization of Tectona grandis sawdust: Isotherm, kinetic, thermodynamic and breakthrough curve modelling. ENVIRONMENTAL RESEARCH 2021; 200:111431. [PMID: 34081972 DOI: 10.1016/j.envres.2021.111431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The aim of the present study was: development of activated carbon modified with iron (Fe@AC) and modified with iron and zirconium (Fe-Zr@AC) from the Tectona grandis sawdust (TGS) waste biomass and its potential applicability for the removal of As (III) from contaminated water by batch and column mode. The biomass waste was pre-treated with ferric chloride (FeCl3) and the mixture of FeCl3 and zirconium oxide (ZrO2) and then pyrolyzed at 500 °C for 2 h. The properties of both bioadsorbents were comprehensively characterized by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), Particle Size analysis (PSA), point of zero charge (pHZPC), Brunauer-Emmett-Teller (BET) to prove successful impregnation of the Fe and Zr on the surface of AC of TGS. FTIR analysis clearly indicates the Fe and Fe-Zr complexation on biosorbents surface and biosorption of As (III). The results revealed that maximum As (III) removal was achieved 86.35% by Fe-Zr@AC (3 g/L dose, pH-7.0, temperature-25 °C and concentration 0.5 mg/L). However, maximum removal of As (III) was attained ~75% by Fe@AC (with dose-4g/L, pH-7.0, temperature-25 °C and concentration 0.5 mg/L) at the initial concentration of 0.5 mg/L of As (III). Fe-Zr@AC exhibits higher efficiency with qmax value 1.206 mg/g than Fe@AC with the qmax value 0.679 mg/g for the removal of As(III). While in the column study, Fe-Zr@AC exhibited 98.8% removal at flow rate of 5 mL/min and bed height of 5 cm. Biosorption Isotherm and Kinetics were fitted good with Langmuir isotherm (R2 ≥ 0.99) and followed pseudo-second-order (R2 ≥ 0.99). The regeneration study indicates that the prepared biosorbents efficiently recycled up to five cycles. Therefore, Fe@AC and Fe-Zr@AC derived from TGS has been showed to be novel, effective, and economical biosorbent. The collective benefits of easy development, good affinity towards As (III), good separability, reusability, and inexpensive of magnetized Fe@AC and Fe-Zr@AC make it a novel biosorbent. The application of Fe-Zr@AC for the removal of As (III) from the water was very efficient its concentration in the solution after treatment was found below the 10 μg/L as per the guideline WHO.
Collapse
Affiliation(s)
- Naincy Sahu
- Laboratory of Environmental Nanotechnology and Bioremediation, Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Jiwan Singh
- Laboratory of Environmental Nanotechnology and Bioremediation, Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701, Republic of Korea.
| |
Collapse
|