1
|
Graham TR, Kennedy AR, Morton J, Reynolds JG, Pearce CI. Determining hexavalent chromium transport properties in alkaline nuclear waste using nuclear magnetic resonance spectroscopy. Commun Chem 2025; 8:180. [PMID: 40483379 PMCID: PMC12145419 DOI: 10.1038/s42004-025-01546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/30/2025] [Indexed: 06/11/2025] Open
Abstract
This study focuses on the transport properties of hexavalent chromium, specifically the chromate anion, to improve predictive models and environmental remediation strategies for Cr(VI) migration. Using 53Cr Nuclear Magnetic Resonance (NMR) spectroscopy, the research quantifies chromate in multicomponent electrolytes replicating nuclear waste conditions at the Hanford Site in Washington State. The consistency of the 53Cr NMR signal integral with chromate concentration, despite varying matrix compositions, establishes it as a reliable concentration indicator. The transport properties of chromate in an alkaline solution were assessed using relaxation-based measurements via saturation recovery and Carr-Purcell-Meiboom-Gill experiments, determining spin-lattice and spin-spin relaxation times. These measurements, combined with the Bloembergen-Purcell-Pound equation, helped estimate the rotational correlation time and the 53Cr self-diffusion coefficient using Stokes-Einstein-Debye and Stokes-Einstein equations. Direct measurements were obtained through pulsed field gradient stimulated echo 53Cr NMR spectroscopy. Monte Carlo simulations further estimated uncertainty propagation. The results enhance comprehension of chromate transport and highlight prospects for identifying transport properties of NMR-active nuclei, traditionally considered unreachable.
Collapse
Affiliation(s)
- Trent R Graham
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ashley R Kennedy
- Pacific Northwest National Laboratory, Richland, WA, USA
- Savannah River National Laboratory, Aiken, SC, USA
| | - Jacob Morton
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
2
|
Ahmed S, Choudhury TR, Alam MZ, Nurnabi M. Characterization and application of synthesized calcium alginate-graphene oxide for the removal of Cr 3+, Cu 2+ and Cd 2+ ions from tannery effluents. CLEANER WATER 2024; 1:None. [PMID: 38948691 PMCID: PMC11212350 DOI: 10.1016/j.clwat.2024.100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024]
Abstract
Environmental sustainability has gained acceptance to achieving the goal of a secure ecosystem with a reliable management system. Heavy metal remediation of aqueous streams is of special concern due to the intractability and persistence in the environment. Adsorption is a potential alternative to the existing inefficient conventional technologies for the removal and recovery of metal ions from aqueous solutions and becomes vital to align with the Sustainable Development Goals (SDGs) and mitigate the adverse environmental and social impacts. Calcium Alginate-Graphene oxide (CA-GO) composite has been synthesized for the adsorption of heavy metals including Cr3+, Cu2+, and Cd2+ ions from tannery effluents. Graphene oxide is prepared from commercial graphite powder and reacted with sodium alginate and calcium chloride to form the beads of CA-GO composite. The developed composite was characterized by FTIR, elemental analysis, SEM, XRD analysis, and Raman spectroscopy. Moreover, the effect of pH, adsorbent dosage, contact time, and initial concentration of metal ions on the adsorption capacity were investigated through batch experiments. At a pH>3.0 (pHzpc), the carboxyl group of CA-GO was deprotonated to make the surface negatively charged and facilitate metal adsorption. The optimum pH and maximum adsorption capacity of CA-GO for removal of Cr(III), Cu(II), and Cd(II) were 4.5, 6.0, and 7.0, and 90.58, 108.57, and 134.77 mg g-1, respectively. The kinetics, adsorption isotherms, and thermodynamics were studied to determine the adsorption mechanism. The kinetic of adsorption adopted the second-order model. Thermodynamic parameter were calculated and the adsorption process was determined to be exothermic and spontaneous at room temperature. The developed composite has been efficaciously applied for the removal of metal ions and pollution from real tannery effluents.
Collapse
Affiliation(s)
- Sobur Ahmed
- Institute of Leather Engineering and Technology, University of Dhaka, Hazaribagh, Dhaka 1209, Bangladesh
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Atomic Energy Centre, Atomic Energy Commission, Dhaka, Bangladesh
| | - Md. Zahangir Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad Nurnabi
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
3
|
He Q, He Y, Zhang Z, Ou GZ, Zhu KF, Lou W, Zhang KN, Chen YG, Ye WM. Spatiotemporal distribution and pollution control of pollutants in a Cr(VI)-contaminated site located in Southern China. CHEMOSPHERE 2023; 340:139897. [PMID: 37604342 DOI: 10.1016/j.chemosphere.2023.139897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Soil and groundwater Cr(VI) pollution resulting from improper disposal and accidental spills is a critical problem worldwide. In this study, a comprehensive study was conducted to assess the hydrogeological conditions of a contaminated site, obtain spatiotemporal distribution and trend forecasts of pollutant Cr(VI), and determine the feasibility of applying clayey engineered barriers for pollution control. The results showed that the hydraulic conductivity (K) of the clayey barrier (1.56E-5 m/d) is several orders of magnitude lower than that of the stratum beneath the contaminated site, with K values ranging from 0.0014 to 4.76 m/d. Cr(VI) exhibits high mobility and a much higher concentration in the vadose zone, with maximum values of 6100 mg/kg in topsoil and 2090 mg/L in the perched aquifer. The simulation results indicated that the groundwater in the vicinity of the contaminated site, as well as downstream of the Lianshui River, is seriously threatened by Cr(VI). Notably, the pollution plume could occur downstream of the Lianshui River after 8 years. The retention efficiency of clayey engineered barriers will decrease over time, at 61.6% after 8 years and 33% after 20 years. This work contributes to an in-depth understanding of Cr(VI) migration at contaminated sites.
Collapse
Affiliation(s)
- Qi He
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China; School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yong He
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China.
| | - Zhao Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Ge-Zhi Ou
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Kao-Fei Zhu
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Wei Lou
- Hunan HIKEE Environmental Technology CO., Ltd., Changsha, 410221, China
| | - Ke-Neng Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
| | - Yong-Gui Chen
- Key Laboratory of Geotechnical & Underground Engineering of Ministry of Education and Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wei-Min Ye
- Key Laboratory of Geotechnical & Underground Engineering of Ministry of Education and Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
4
|
Experimental and Modeling Study on Cr(VI) Migration from Slag into Soil and Groundwater. Processes (Basel) 2022. [DOI: 10.3390/pr10112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transport and prediction of hexavalent chromium (Cr(VI)) contamination in “slag–soil–groundwater” is one with many uncertainties. Based on the column experiments, a migration model for Cr(VI) in the slag–soil–groundwater system was investigated. The hydraulic conductivity (Kt), distribution coefficient (Kd), retardation factor (Rd), and other hydraulic parameters were estimated in a laboratory. Combining these hydraulic parameters with available geological and hydrogeological data for the study area, the groundwater flow and Cr(VI) migration model were developed for assessing groundwater contamination. Subsequently, a Cr(VI) migration model was developed to simulate the transport of Cr(VI) in the slag–soil–groundwater system and predict the effect of three different control programs for groundwater contamination. The results showed that the differences in the measured and predicted groundwater head values were all less than 3 m. The maximum and minimum differences in Cr(VI) between the measured and simulated values were 1.158 and 0.001 mg/L, respectively. Moreover, the harmless treatment of Cr(VI) slag considerably improved the quality of groundwater in the surrounding areas. The results of this study provided a reliable mathematical model for transport process analysis and prediction of Cr(VI) contamination in a slag–soil–groundwater system.
Collapse
|
5
|
Guo SS, Tian YQ, Wu H, Jin XD, Gan LZ, Li Y, Yang JY. Spatial distribution and morphological transformation of chromium with coexisting substances in tannery landfill. CHEMOSPHERE 2021; 285:131503. [PMID: 34265720 DOI: 10.1016/j.chemosphere.2021.131503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The prosperity and development of tannery industry have brought about rapid economic growth. However, the tannery landfill without anti-seepage measures in the early stage has generated masses of environmental hazards owing to the lack of awareness in environmental protection. Therefore, it is imperative to pay much attention to the understanding of environmental hazards from tannery waste. In this study, solid samples and groundwater samples were collected from a tannery landfill to study the effect of the characteristic pollutants produced by tanning on chromium distribution with other coexisting substances. The results showed that significant correlations were demonstrated between multiple coexisting substances (total organic carbon, total petroleum hydrocarbons, total nitrogen, Cr, F, Ca, Cu and Pb), indicating the possible same source or they coming from the same tannery production stage. The weights of positive effects and negative effects of coexisting substances on total Cr distribution in the profile decreased in the order: total nitrogen > Cu > Ca > Pb > total organic carbon > F > SO42-> Cd, and Ni > Cl > Hg, respectively. Moreover, the simulation of Visual MINTEQ showed that the cations were mainly bound to Cr as CrO42-, while the anions were bound to Cr3+. This study provided a new perspective on the selection of remediation strategies for Cr-contaminated sites to avoid secondary environmental pollution caused by the release of coexisting heavy metals.
Collapse
Affiliation(s)
- Shan-Shan Guo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yong-Qiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hao Wu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Xiao-Dan Jin
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Long-Zhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Li
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|